MANUAL

Compucolor Corporation

P.O. Box 569
Norcross, Georgia 30071
Telephone 404/449-5996

COMPUCOLOR II
PROGRAMMING AND REFERENCE

MANUAL

Copyright (¢) 1979 by Compucolor Corporation

999209 Rev. 3

TABLE OF CONTENTS

CHAPTER TITLE
1. INTRODUCTION

1.1 The COMPUCOLOR II .

.2 Initializing and Running BASIC. .

1
1.3 Keyboard Layouts. .
1.4 Using the Manual. .

2. ESSENTIALS FOR SIMPLE PROGRAMMING

2.1 Variables . « « .« .
2. llumbers . « « « « .
2

. 2. Priority of Arithmetic

2.

BEGINNING TO PROGRAM

(93]
.

Sample Program. . .
The PRINT Statement
The RUN Command . .
Corrections
The REM Statement .
The LIST Command. .
The END Statement .
The CONT Comnmand. .

Inmediate Hode . .

.
U ST SN Ve @ o I I o AN § 2 BEDY o IS TN A § JUETY

W= O

WWwWwWwWwwuwwwuw wwww
.

4, MORE STATEMENTS, COMHANDS,

4,1 The INPUT Statement
4,2 The DATA Statement,
4,2 The READ Statement.

4.4 The RESTORE Statement

4,5 The GOTO Statement.

2
.2 Arithmetic Operations
N

Sanples and Examples

4.6 Relational Operators,
4.€.1 Relational Operators in

4,7 Logical Operators .

Multiple Statement Lines
Introduction to Strings
The CLEAR Statement.

AND FEATURES

The Assignment Statement. .

Strings

4,8 The IF THEN and IF GOTO Statements,
4,9 The FCR and NEXT Statements

PAGE

LN e -

o3 onntn

10
10
11
12
12
13
13
14
14
15
16
16

17

18
19
19
20
21
21
22
23
25
26

FUNCTIONS AND SUBROUTINES

5.1 Functions . . . ¢« ¢ ¢ ¢« « « «

5.1.1 The

Sine and Cosine Functions;

SIN(x) and COS(x).. e e e .

5.1.2 The

Arctangent and Tangent Functlons,

ATN(x) and TAN(x) . . .

.3 The
i

Square Root Function; SQR(x)

The Exponential and Logarithmic Functions;

EXP(x) and LOG(x)

5 The
6 The
.7 The
8 The
.9 The
se

ARRAYS

Absolute Value Functlon, ABS(x)
Greatest Integer Function; INT(x)
Random Number Function; RND(x).
Sign Function; SGN(x)

Position Function; POS(x)

r Defined Functions.
ASIC String Functions.
ubroutines . . . e e
he ON GOTO and ON GOSUB Statements e o .

6.1 Introduction to Arrays.

6.2 Subscripted Variables . . e e e e
6.3 Subscripted String Varlables e e e e e e
6.4 The Dimension Statement

FURTHER SOPHISTICATION

7.1 Formatting the Printout
7.1.1 The Tabulator Function; TAB(x) . e
7.1.2 The Space Function; SPC(x).

7.2 Immediate Mode and Debugging.
T7.2.1 Restrictions on Immediate Mode. .

7.3 Machine Level Interfaces with DISK BASIC.
7.3.1 The WAIT Statement.
7.3.2 The OUT Statement e e e e e
7.3.3 The Input Function; INP(x) .« e e .
7.3.4 The Peek Function; PEEK(x).
7.3.5 The POKE Statement. . . .
7.3.6 The User Call Function; CALL(x) .

7.4 String Space Allocation

. b2
. 43
. Uy
. uu

. 46

. u7
. 48

48

. 48

49

. 49

50

. 50

50

. 50

50
51

8. DISK FEATURES

8.1 Loading and Saving ProgramsS . « « « « « « « « « 53
8.1.1 Program Chaining. . . « +« « « « o o o« o « o+ 54
8.1.2 MENU Programs . . . e e s o s+ e e e + « « 55

8.2 Using the File Control gystem Through BASIC ., . 56
8.2.1 Loading and Saving Displays . « «. « « o« .« . 87

8.2 Introduction to Random Files, . . « « « . « « . 58

8.

4 The FILE Statement. . . . + « ¢ « « &+ « &+ « « « 58
8.4.1 Random File Creation. + « « « « + + 58
8.4.2 Random File Open . . .+ . . v v « o« « « « . 59
8.4.2 Random File CloS€ . + ¢« « « « s o o« « =+ « « 59
8.4.4 Dump File Buffers . . « « « « « o« o « s &« « 59
8.4.5 File Attributes . . « ¢ o « o o« « o « « « « b0
8.4.€ File Error TrapPifNg . « « « « o « + « « « « 60
8.4.7 File Error Determination. « . . 61
8.5 The GET Statement . . v v o o« o o o o o o = 61
8.6 The PUT Statement . .« v ¢ ¢ o o« o « o o« o = 62
8.7 Inproving File ACCESS v v v o o o o o o o« = 62
8.3 Storage RequirementsS, . .« « o« « o« s o s o @ 63

9. COLCR, GRAPHICS, AND OTHER TERMINAL FEATURES
> 9.1 The PLOT Statement., o« « « v ¢ v « « o« o« « « o+ o+ b4

9.2 COlOPr & v v & « « 4+ « « o s o o « 4 + e« s+ s+ a4 . b4
9.2 Special CharactelrsS. v« o « o « o o o o« o « o« « . b6
9.4 Cursor CoNtrols . v v o« o o o o o o o o o o« « + b7
9. Visible Cursor MoOde . v v o o « o o o o« « o« 67
9. M 2 Blind Cursor Mode . . . +« & & &+ « o« +« « « o« 69
G.5 Vector Graphics . . o o ¢ o « o o o o o o« o « « 11
9.6 RS-232C Interface , . e e s e e e e e e e . . 81
9.7 Using the COMPUCOLOR II as a Terminal , 82
9.8 Miscellaneous Escape CodeS. . +. « « « « « « « .+ 83

10. THE FILE CONTROL SYSTEM

10.1 Introduction to FCS. +« + « « .
10.2 FCS Comnands v o o o o o o o =

&y

SECTION

A.

APPENDICES

TITLE
DISK BASIC

BASIC Statements, . .
BASIC Operators . . .
Standard Mathematical
Standard String Functi
BASIC Error Codes . .
BASIC Random File Erro

-
*. & 9
AU N —

FCS (FILE CONTROL SYSTEM)

B.1 FCS Conpands. . « « =
B.2 FCS Error Codes . . .

CRT COMMANDS

Control Codes
Status Word Format. .
Escape Codes.
Baud Rate Selection .
Graphic Plot Submodes
Incremental Direction

a0
-
AU =W =

INTERNAL FEATURES

Key Memory Locations.
Port Assignments. . .
Fifty Pin Bus
RS-232C Interface . .

oogoo
* e
W N =

ASCII VALUES

COMPUCOLOR CHARACTER SET

HARDWARE SPECIFICATIONS

Functions

ons . .

r Codes

PAGE

G.1 8080 Microprocessor Specifications. .
G.2 TMS 5501 Specifications ., . .
G.3 SMC 5027 Specifications . . .

100
102

104
106
107
108
109
109

110
110
112
112

113

115
130
140

1. INTRODUCTION

1.1 The COMPUCOLOR II

The COMPUCOLOR II will gladly introduce itself with but the
slightest help from the user. Its brilliant colors and amazing
versatility are easy to get to know. Once plugged in, it is ready to
perform a myriad cof tasks, both simple and complex. The user can easily
insert a disk from the COMPUCOLCR library and have at his fingertips an
assortment of games, recipes, financial statements and more. But for
the more adventurous, (and COMPUCOLOR makes it fun to be adventurous!)
COMPUCOLOR II offers the opportunity for the user to write his own
programs. The language of communication for the COMPUCOLOR II is BASIC,
a popular computer language developed at Dartmouth University to make
programming easy for everyone.

BASIC is a single user, conversational programming language which
uses simple statements and familiar mathematical notations to perform
operations. BASIC is one of the simplest computer languages to learn,
and once learned provides the facility found in more advanced techniques
to perform intricate manipulations and express problems efficiently.

Like any other language, BASIC has a prescribed grammar to which
the user must adhere in order to produce statements and commands
intelligible to the computer. The following pages provide a quick but
complete introducticn Lo the FASIC language and the features of the
COMPUCOLOR II. Careful resding and liberal experimentation with
examples will emnable a user Lo start programming in a short time.
Adopting 2 leisurely pace with the text will ensure that the new user
will find programming much easier than suspected.

1.2 Initializing and Running BASIC

When the COMPUCOLOR II is turned on, the screen display for Model 3
will be:

DISK BASIC 8001 V.6.78 COPYRIGHT (C) BY COMPUCOLOR
MAXIMUM RAM AVATLABLE?

7873 BYTES FREE

READY

The number of free bytes on Models 4 and & will be 15665 and 32049,
respectively. The READY message indicates that the machine is now ready
to accept any BASIC programming statements that the user wishes to
enter. If the user wishes to use a prepared program from one of the
COMPUCOLOR II diskettes, the disketie must be slid into the opening on
the right hand side of the machine, and the door must be closed.
Pushing the U730 key ‘tne browe key on the upper left of the keyboard)
will result ir o lisb o "MENU® of available programs on the screen. A
choice is indicated by tvyping in the number of the selected program.
The program wiil be loazded »nr? the COMPUCCLOR IT will proceed with
instructions or hnw to use the vrogram,

If, when the machine is powered on, the proper message does not

appear, the user should hold the shift and control keys down while
striking the CPU RESET key. This should produce the correct screen
display, however, there may be a delay of 5 or more seconds before it
appears. On the deluxe or extended keyboards the COMMAND key can be
struck in place of the combined CONTROL SHIFT sequence.

It may often be necessary to reset BASIC after the machine has been
turned on and a program or two has been run. The first step to
reinitializing BASIC is striking the CPU RESET key. The screen will
output:

COMPUCOLOR II CRT MODE V.6.78

Then, the ESC and W(BASIC) keys are hit in sequence. The machine will
print the message:

DISK BASIC 8001 V.6.78 COPYRIGHT (C) BY COMPUCOLOR
MAXIMUM RAM AVAILABLE?

If the user desires no specific amount of memory, then simply striking
the RETURN key will bring the READY message to the screen, If, however,
a certain amount of memory needs to be specified (as is necessary in
some applications), the user must type in a number up to 8192, (or 16384
if the machine is a Model 4; or 32768 for Model 5) subtracting from this
maximum any amount of space to be reserved as not for use by BASIC. The
user then strikes the RETURN key and the machine will return the number
of free bytes and the READY message. The machine is now ready, as when
it is first turned on, to either accept a user's program or load a
COMPUCOLOR II program from an inserted diskette., If it is necessary to
leave BASIC by using the CPU RESET key or by entering the File Control
System, BASIC can be re-entered without losing the program in its
workspace by typing ESC and E (BSC RST).

If the machine will not return the proper messages and/or numbers,
the local dealer should be contacted for assistance.

1.3 COMPUCOLOR II Keyboard Layouts

The layouts of the standard, extended, and deluxe keyboards are
shownh in the following figures.

-2-

! r |
CRase |lgmase | cpu
] H n]“‘ LiNg \ s
T i
I:JTO ro o || 38 on || memex [m.m ar | v Jwem I,m)] wueem) || ey H ‘
I rusorrireom | on florr | ow L ‘ NENED R - « lwour) >
y 1] " = ‘ 1 * i a —\ Y2 i .
woey ! 2 2 | I bt ‘ g = v AT
— ;)
' TN 0% | daw :'quﬁ» {imy -‘ H i
. TAB 7‘ Cram [{BANC) || agr | warE) l Wi} “'"'” " | X “:{-‘;uml‘ L
i w £ § R i v e P RETURN '
L_Fﬁ = [paor | -‘ J ‘ ‘ n I : i—_ ‘
| conrmow (| unp) | wem ‘,"T’;,]I _— u(uu; ‘I mouL) jjabcany + * | awrem -
e B] e e] |
i f i§ | i
| sy || ebenl nar !“m, ™t ol ! rLoT P) i< ‘ > ? P ‘
i Lz x pej|'vV]e NN . 7
fz:c': areaT
L
STANDARD
= — 1
I !
|
} "
exase [[enase | cry
} PASE i LNt RESEY
i =7 T ” e}
| ‘w i 1] | | } | v |
| PG ON || BG ON |ilu>l ,IL/A1 AT Mws) MB\’) KBMOCK}; Muuk) ({2} ‘ H
| auT i 1 IPELETE IWIERT [logLeveE [maEny
E | auto JpLoore|FLaow i on | oFF | cx “ |- | A h — U © | meven > [Lcman cran | ot |ume
I ; —) ; ' | P s - V 5 °; N .
‘ oum It ‘ ; 0 % a2 iy = "
L T\[ut) |{ioac] i esc) | 3 . ‘ 5 ‘ 6 || 7 ! 0 1 [| z v ||omeax
i S ! i M RS ¢ . J
\] \ I B I , » {__ anc || e [maus | n(n vesn |t i H [i 1
A TeuT) i PoxE }; Tag || emaw \ | i"R' |) |17 [~ twe ” c Iy e "5 | rerom | e | 9]+
| _ b | LY . L .
b r' == e b —
[3 1 [’:", (i LpeLe |[twarry oy ‘I(B 7
| Lo ! lmuﬂ \‘ conTmoL || teks I; L i L froean) || 4+ | » | gwree A 5 6
| | ! | & s Folhia [lWw &oo vk L N B x
\ ‘ : i jlevmsom | (EL Hire I ! |
' Faav] ”‘lu!ﬂ : ‘ swiey { neow | xwrr ' xv || viwe || ProT pespn | < b o> g ? MIFT X [
| [g xfefvie v v g :‘ i I I
I ; F
! r cars
i] CoMmManD) Cars Imcrear ") - | +
i
OPTION 22A
s
| I 7 — ; '
' i e \V:éy "\VV’!%, ﬁ,::l]‘ ':A Ues s o Foe i o ﬁ“r i 1“ £ Loz D ors U oere ll | i - !
R bl Al all ol il o Al R I |
; ' fi Fo on || me on || BLie | BT ¢ |m (a8up) | o + ‘ I h !
\ L AUTO [i i LIV, : %4 ‘ " l’ Sur} m‘,(m')l cnm) I < | roME > ;,o(un‘x-uu |DELETE| msEnT Lo
i . L Lam iFLe onil o ’ ors 1 o L ; H Iy W h)) Lun \ trAR ‘ LI!IJl une
i f i r i T =y P =
; [oy \)b L % foa o2 ooy ‘ I ATTH X
P i) 1}lﬂ.mc:dl (le) | I | 2 !: s 16 | 7 i s 1l 9 [;,‘ z iy emeax ’ !
L I5 ; ‘ ‘
i]‘ (s Huwc) | mec b T " e |l ¥ I i ‘ 76
! g || pong TAB cram Exi ‘nm oin | LN | ; | omavm | AL : i -
i i el w R l‘ a Y {[» “ li o =l Tt | meTuen T e T 9 [= ‘ |
i pLon || P} 1 conTmoL ‘um Hw.' 7 ‘ ﬁ“ seLL ‘“'“‘”w L (m;\;rml—‘ + \ P 1 e “ i li | 1 ’ !
‘ - [i s} od Fio6 Mo gl x \\1 L }(H \ E 40 s I; & \ L | .
, ‘ i i T T) — by
I\ i | ‘um 1; sy || el et ‘.év i Uhes | o | L SEonLll < | > 2 gy e ,! s | !
| | B | ' S ' i =
o : - LI LN N -
i e
‘ TCOMM ANG) ‘; gc’: ‘u—nv ol - 1 = - If
| ! L i
j l
OPTION 24A

———]

1.4 Using the Manual

BASIC has thirty (30) key word program, editing, and command
statements, eighteen (18) mathematical functions, nine (9) string
functions and thirty (30) two-letter error messages. These features are
described in detail in the next chapters, thus providing a ready
reference to BASIC's capabilities. If the user is unfamiliar with the
BASIC language, then the remaining portion of this manual should be
studied in sequence while having a COMPUCOLOR II available to run the
examples given.

Compucolor Corporation has a number of BASIC programs on the
COMPUCOLOR II diskettes that are available at nominal prices. In
addition, Compucolor will pay for BASIC programs that are provided on
diskettes when properly documented and accepted for release on future
Compucolor diskettes. Enjoy programming in BASIC!

le

2. ESSENTIALS FOR SIMPLE PROGRAMMING

.1 VYariables

BLSIC usea variables as a basis for cornveying values in programming
Chrtenents, The variable is an elgebraic symbol representing a number
wrich the uzer assigns to it. A variabie is forpmed in one of three

RN 7t can be & letter zlone, : letter follcwed by a number, or iLwo
ters, For oxanple:

Acreptablile Variesbles Umacceptable Variablec

) =

>4
(S)

F - begins with a digit
25 = numeric cornot

O

i variable lcrger thzn 2 characters will be sccepted by EASIC, but EZASIC
will only read the first two characters. Thus, these must be distinct
Trov any cther variables uvsed in the program. For example, CAT is not a
rrew variable in a prcecgrem zlready using the variabtle CANCEL. Vords
tred ac srecific commands or statements in BESIC are reserved, end
cannct he used as variable nzmes (e.g. LIST, RUNM, READ, etc.). If such
& word is used, BASIC will] not accept it as =z variable, and will uszuvally
relurn an error message. Certein cther specicl purpcse variatles are
acceptable ir BASIC, and wili be described in later sections of this
nanual.

Vhen the user essigns a value to & vevieble, it will retsin thnest
value until it is changed by a later statemert or calculatior in the
program. A11 numeric variables, until given & value by the user, are
assumed by the computer to have the value 0. String variables are
initislly assumed to be eqgual to the null strirg (see Sectior Z.10C.)
This assures thst later changes or additiors will not misinterpret
values,

2.2 lumbers

BASIC treats all numbers (rezl and integer) as decimal rumbers,
lhei is, it accepts any decimal number and assumes a decimal peint after
en integer, The advantage of treating all numbers as decimal numbers is
thet any number or symbecl can te Used in any mathematical exprescsion
without regard to its type. Numbers used must be in the aprroxinmate
rarge 10 =3¢ < N <1¢ g L

In addition to integers and real numbers, a third format for
numbers is recognized and accepted by BASIC. This is the scientific or
"E-type" notation, and in this format a number is expressed as a decimal
number times some power of 10. The form is:

XxEn

where E represents "times 10 to the power of"™; thus the number is read,
"xx times 10 to the power of n." For example:

25.8E2 = 25.8 * 100 = 2580

Data may be input in any one or all three of these forms. Results of
computations are output as decimals if they are within the range
.01<{n<999999; otherwise, they are output in E format. BASIC handles
seven significant digits in normal operation and prints € decimal digits
as illustrated below:

Value Typed In Value Output by BASIC
.01 .01
. 0099 9.9E-03
999999 999999
1000000 1E+06

BASIC automatically suppresses the printing of leading and trailing
zeroes in integer and decimal numbers, and, as can be seen from the
preceding examples, formats all floating point numbers in the form:

(sign) x.xxxxxE (+ or -)n

where x represents the number carried to six decimal places; E stands
for "times 10 to the power of"; and n represents the value of the
exponent. For example:

-3.47021E+08 is equal to -347,021,000
7.26E-04 is equal to .000726

Floating point format is used when storing and calculating most numbers.
NOTE: Because memory size limitations prohibit the storage of infinite
binary numbers, some numbers cannot be expressed exactly in BASIC,.
Accuracy is approximately 7.1 digits, and errors in the 6th digit can
occur. For example; .999998 may be the result of same functions instead
of 1. Discrepancies of this type are magnified when such a number is
used in mathematical operations.

2.3 Arithmetic Operations

BASIC performs addition, subtraction, multiplication, division and
exponentiation. Formulas to be evaluated are represented in a format
similar to standard mathematical notation. The five operators used in
writing most formulas are:

Symbol Operator Example Meaning

+ X+Y Add Y to X

- X=Y Subtract Y from X

* A*Y Multiply X by Y

/ XY Divide X by Y

- X'y Raise ¥ to Yth power

BASIC also permits the use of unary plus and minus. The - in -A+B,
or the + in +X-Y are examples of such usage. Unary pluz is ignored,
while unary minus is treated as a zero minus the variable. The
vxpression -A+E is processed as 0-A+E.

2.2.1 Priority of Arithmetic COperations

Whern more than ore operation is to be performed in a single
formvla, as is most often the case, certain rules nust be observed as to
the preccedence of operators. In any given mathematical formule, BASIC
performs the arithmetic operations in the following order of
evaiuation:

. Parentheses receive top priority. Any expression within
parentheses is evaluated before an unperenthesized
expression

?. Exponentiation

2. Unary minus

. Multiplication and division (of equal pricrity)

5, Addition and Subtraction (of equal priority)

6. Logical operators in the order NOT, AND, then ORK. (sec
Section 4.7)

If the rules above do nct clearly designate the order cf priority, theun
the evaluation of the expression proceeds from left to right. The
expression A™B"C is evaluated from left to right as follows:

1. A°DB = step 1
2. (result of step 1)°C = answer

The expression A/B*C is also evaluated from left to right since
multiplication and division are of equal priority:

1. A/B
2. (result of step 1)%C

step 1
answer

The expression A+B¥C"D is evaluated as:
1. C°D = step 1
2. (result of step 1)*B = step 2
3. (result of step 2)+A = answer

Parentheses may be nested, or enclosed by a second set (or more) of
bparentheses. In this case, the expression within the innermost
parentheses is evaluated first, and then the next innermost, and so on,
until all have beer evaluated. In the following example:

A= 7% ((B"2+4) /7 X)

the order cf evaluation is:

1. B2 = step 1
2. (result of step 1)+ = step 2
3. {result of step 2)/X = step 3
4, (result of step 3)*7 = A

Parentheses alsc prevent any confusion or doubt as to how the expression
is evaluated. For example:

A*B"~2/ 7+B/C¥D" 2 ((A*B"2)/T7)+((B/C)*D"2)

Both of these formulas are executed in the same way, but the order of
evaluaton in the second is made more clear by the use of parentheses.
Spaces may be used in a similar manner. Since the BASIC

interpreter ignores spaces (except when enclosed in quotatior marks),
the two statements:

B=D"2+ 1 B=D"2+1

are identical in meaning and consequence, but spaces in the first
statement provide ease in reading when the line is entered. When such a
statement is subsequently printed by the computer, spaces entered on
input are ignored, and the spacing will appear differently on the
screen.

2.4 The Assignment Statement

The user assigns a value to a variable by the use of the equals (=)

sign. The variable must appear on the left of the statement and its
value on the right. For example:

=2

A
Qu = 7-5

-8-

The statements 2=A , and 7.5=Q4 , although algebraically equivalent to
the above examples, are not legal in BASIC, because the machine always
takes the value on the right of the equals sign and assigns it to the
variable on the left of the sign. The number 2 is not an acceptable
variable, and the machine cannot replace its value with that of "A",
The fundemental dirfference in meaning and use of the equals sign in
algebra and in BASIC must be clearly understood to avoid confusion. In
algebraic nctation, the formula X=X+1 is meaningless, However, in BASIC
(zand in most other computer languages), the equals sign designates
replacement rether than equality. Thus, this formula is actually
translated: "add one to the current value of X and store the new result
back in the same variable X." Whatever value has previously been
assigned to X will be combined with the value 1. An expression such as
L=B+C instructs the computer tc add the values of B and C and store the
result in a third variable A. The variable A is not being evaluated in
terms of any previously assigned vzlue, but only in terms of B and C.
Therefore, if A has been assigned any value prior to its use in this
statement, the old value is lost; it is instead replaced by the value
B+C. For example:

X=2 Assigns the value 2 to the variable X.
X=X+ 1+Y Adds 1 to the current vzlue of X, then adds the

value of Y to the result and assigns that value to
X.

3. BEGINNING TO PROGRAM

3.1 Sample Program

The lines below form an acceptable BRASIC program which the machine
will understard and compute. The numbers at the start of each line are
an essential part of the program. Fach statement must have a line
number in order to be executed when the progran runs on the machine.
The computer will process each line in ascending numerical order,
regardless of the order in which it is typecd into the machine.

C
0
C +B

A
B
C
PRINT C

H T 3 o

=W N

O PE

The line number itself may be any integer from 0 to 65526, and
lines may be numbered in increments as low as 1, but it is 2 good
programming practice to number program statements in increments of 10 or
100. Thkis lezves adequate room for insertion of statements at a later
time without the necessity of renumbering the entire program. Hitting
the returrn key at the end of a numbered line automatically enters that
line into the computer and stores it in memory.

2.2 The PRINT Statement

Lire 40 of the above program is a PRINT statement. This statement
is necessary in order to retrieve the calculation the machine has made.
After line 30, the comptuter has solved the problem and assigned the
value 15 to the variable C. Without the PRINT statement, however, it
will simply store that informatior for future use, and it will not be
visible to the user. The PRINT statement need nct always give the value
of & single variable; it may contzin an exprcssion. Therefore, in the
preceding program, the same result would have appeared if the program
had read:

10 A=8
20 B=7
30 PRINT A+B

Other examples of the use of expressions in PRINT statements are:

10 A=400 1C R 5
20 PRINT A*g75 20 P = 3.14159
30 PRINT P*¥R"2

H

- 10—

The PRINT statement can also be used to print a message or string
of characters, either alone, or together with the evaluation and
printing of numeric values. Characters to be printed are enclosed in
double quotation marks. For example:

10 PRINT "CLASSIFIED"
20 PRINT "INFORMATION"

gives:

CLASSIFIED

INFORMATION
and:

10 A=50

20 PRINT "THE NEXT NUMBER IS",A
gives:

THE NEXT NUMBEER IS 50

When a character string is printed, only the characters between the
quotes appear; nc leading or trailing spaces are added. Leading and
trailing spaces can be added within the quotation marks using the
keyboard space bar; spaces appear in the printout exactly as they are
typed within the quotation marks.

A convenient shortcut in DISK BASIC is the use of the question mark
(?) in place of the word "PRINT" in any PRINT statement. For example:

10 ?A is equal to 10 PRINT A
30 ?"MAGIC" is equal to 30 PRINT "MAGIC"

When the program is listed by the machine, however, the question mark is

replaced by the word PRINT. (For a more detailed description of the
PRINT statement, see Section T.1)

3.3 The RUN Command

Once a program has been properly written and entered into the
computer, the use of the RUN command will cause it to be processed by
the machine and return the result of the program. When the last program
line is typed and entered, the user types RUN and hits RETURN.
Because RUN is a command and not part of the actual program, it needs no
line number. The machine will return the result and the message READY.
The READY message indicates that the machine is prepared to accept
further additions or changes to the program. For example:

-11-

Program Machine Response

10 R=50

20 T=50

30 PRINT R¥*T 2500
RUN READY

If the user desires to write a completely new program, the machine
must be cleared of existing data by re-initializing BASIC. (See 1.2.)

3.4 Corrections

Corrections can be easily made while programming. If, while typing
a line, the user makes a mistake, the €=can be used to delete the last
character typed. The & moves the cursor back one space at a time, and
it can be struck repeatedly until the error is erased. The line is then
retyped from that point on, or, if the rest of the original line was
correct, the —% can be used to restore that portion of the line removed
by the €.

If the line containing the error is already entered, a correction
is made by retyping the line correctly, using the same line number. The
computer will replace the faulty line with the one most recently typed.

If the user desires to delete an entire line from the progran,
entering that line number and hitting RETURN will remove it from the
program. The line currently being entered can be deleted by typing the
ERASE LINE key.

The ERASE PAGE key will clear the entire CRT screen, but it does
not change or disturb any BASIC statements in any way. It is often used
to obtain a blank workspace on the screen while programming.

3.5 The REM Statement

It is often desirable to insert notes and messages within a
program. Such data as the name and purpose of the program, how it is
used, how certain parts of the program work, and expected results at
various points are useful things to have present in the program for
ready reference by anyone using that program.

The REMARK or REM statement is used to insert remarks or comments
into a program without these comments affecting execution. Remarks do,
however, use memory in the user area which may be needed by an
exceptionally long program.

The REM statement must be preceded by a line number. The message
itself can contain any legal character on the keyboard, including some
of the control characters. BASIC completely ignores anything in a line
following the letters REM. Typical REM statements are shown below:

10 REM THIS PROGRAM COMPUTES THE
15 REM ROOTS OF A QUADRATIC EQUATION

-12-

3.6 The LIST Command

The user can see a listing of his program on the screen by typing
LIST and hitting RETURN. Such a listing makes finding errors much
easier, and facilitates additions and changes to the program. A portion
of any program may be viewed by typing LIST followed by a line number.
The screen will show a listing of that line and all following lines in
the program. Because the machine will scroll the program very rapidly,
the user may wish to stop the listing at same point for a closer lodk.
Hitting the BREAK key will cause the scrolling to halt. Hitting the
RETURN key will resume the listing. To stop the listing altogether, so
that the user can edit or change the program, the LINEFEED key (¢) is
struck. This will produce the message READY.

3.7 The END Statement
The optional END statement is of the form:

END

Upon executing an END statement, program execution is terminated and the
READY message is printed. Program execution can be continued at the
statement immediately following the END statement by entering a CONT
command. For example, executing the following lines:

10 PRINT 1: END: PRINT 2
20 PRINT 3

gives the following response:

RUN
1

READY

CONT
2
3

READY

In this fashion the END statement can be used to generate program breazks
to facilitate debugging a program.

Program execution will also terminate automatically when the
program runs out of statements. Note that in both cases currently open
files are not closed.

-13-

3.8 The CONT Command
The CONT command is of the form:

CONT

This command is used to continue program execution at the next statement
after a program break or error is detected. Execution can be restarted
at a specific line number by using a GOTO statement instead of CONT.

A CN error message is printed if it is impossible to continue
execution after a program break. This message will appear if no program
exists or a new or corrected line was entered into the program.

3.9 Multiple Statement Lines

For convenience in programming, DISK BASIC allows the user to place
more than one statement on a single numbered line. The general form
is:

statement:statement: ... :statement

where 'statement! is any permissible BASIC statement. Any number of
statements may be put together on one line, with the restrictior that
line length must not exceed 96 characters. The colon (:) denotes new
statements and separates them from one another. The statements are
executed in order from left to right.

The user must take note of a few statements whose use in multiple
statement lines requires some caution.

Because BASIC ignores anything after REM, in the following
statement:

A=50:B=25:C=4: REM THIS PROGRAM ADDS:PRINT A+B+C

the result of A+B+C will never be computed and printed.

Because GOTO causes an immediate and unconditional transfer of
control, anything following GOTO in a multiple statement line will never
be executed. DATA statements that appear after GOTO's will, however, be
read by any corresponding READ statements.

Care must be taken when IF...THEN statements are used in multiple
statement lines. If the result of the test is false, control will not
pass to the next statement in the line, but rather to the next numbered
statement. For example:

50 C=2: A=5:IF A=6 THEN PRINT 1:PRINT 2
60 IF C=2 THEN PRINT 3:PRINT 4

This program will print out the numbers 3 and 4. If the IF...THEN
statement comparison is true and does not pass control to a specific
line number, the next statement to the right in the multilple statement
line will be executed. For example:

bo A=10: IF A=10 THEN B=500: PRINT A+B

will result in setting B to 500 and the printing of the result of A+B.

-1

3.10 Introduction to Strings

The previous sections described the manipulation of numerical
information only; however, DISK BASIC also processes information in the
form of character strings. A string, in this context, is a sequence of
characters treated as a unit. A string is composed of alphabetic,
numeric, or special characters. The maximum length of quoted strings
and strings entered using the INPUT statement is determined by the
length of the input line buffer which is 96 characters or bytes.

Any variable name followed by a dollar sign ($) character indicates
a string variable. For example:

A$
C7$
LONG$

are simple string variables and can be used as follows:

10 A$="HELLO"
20 PRINT A$

Note that the string variable A$ is separate and distinct from the
variable A. In DISK BASIC, all control characters above control code C
(or 3) are legal characters within quotes (") except for the following:

Control Code
Control Code
Control Code
Control Code
Control Code

or 11 or erase line
or 12 or erase page
or 13 or return/enter
or 25 or cursor right
or 26 or cursor left

N X OCR

Concatenation is a string operator that puts one string after
another without any intervening characters. It is specified by a plus
sign (+) and works only with strings. The maximum length of a
concatenated string is 255 characters. In each of the following
examples, D$ contains the result of concatenating the strings A$, B$,
and C$.

10 A$ = "3 10 A$ = "I AM"

20 B$ = ma2n 20 B$ = " A CLEVER"

30 C$ = "yym 30 C$ = " COMPUCOLOR II"

40 D$ = A$+B$+C$ 40 D$ = A$+B$+C$

50 PRINT D$ 50 PRINT D$

RUN RUN

332244 I AM A CLEVER COMPUCOLOR II

-15=

2.11 The CLEAR Statement

The CLEAR statement clears all the user's variables including
simple variables and arrays. The CLEAR statement has two forms as shown
below:

CLEAR

and
CLEAR expression

The difference between the two forms is that the form with the
expression specifies the new number of bytes in the string space. Upon
entry to BASIC the string space is initialized to 50 bytes. For
example, in programs that heavily use strings, this allocation can be
changed by executing a CLEAR 250; it should be one of the first executed
statements in a program because it also clears all the variables. For
further information on how strings are allocated in the string space,
see Section 7.4,

3.12 Immediate Mode

It is not necessary to write a complete program to use BASIC. Most
of the statements discussed in this manual can be included in a program
for later execution or given as commands which are immediately executed
by the DISK BASIC interpreter. This latter facility makes BASIC an
extremely powerful calculator.

BASIC distinguishes between lines entered for later execution and
those entered for immediate execution solely by the presence (or
absence) of line numbers. Statements which begin with line numbers are
stored as part of the program; statements without line numbers are
executed immediately upon being entered into the system. Thus the
line:

10 PRINT "THIS IS A COMPUCOLOR IT"

produces no action at the console upon entry, while the statement:
PRINT "THIS IS A COMPUCOLOR II"

causes the immediate output:
THIS IS A COMPUCOLOR II

Multiple statements can be used on a single line in immediate mode.
For example:

A=1:PRINT A gives: 1
Program loops are also allowed in immediate mode; thus a table of
squares can be produced as follows: (For a description of FOR NEXT

loops, see Section 4.9)

FOR I=1 TO 10: PRINT I, I"2:NEXT I

-16=

16
25
36
kg
64
81
0 100

2OV OO~V W N =

READY

3.13 Samples and Examples

In order to become more adept at programming, any user previously
unfamiliar with BASIC should set aside some time for experimentation
with the information thus far provided in this manual. Simple programs
such as the ones below make good practice efforts.

A B
10 REM THIS PROGRAM COMPUTES 10 REM THIS PROGRAM AVERAGES
20 REM THE AREA OF A CIRCLE 20 REM FIVE NUMBERS
30 REM THE FORMULA IS: 30 A=23
40 REM AREA = PI ® RADIUS " 2 40 B=1
50 PI = 3.14159 50 C=188
60 R = 25 60 D=5
70 A =PI ®% R "~ 2 70 E=89
80 PRINT "AREA = ",A 80 T=A+B+C+D+E

90 AV=T/5

95 PRINT M"AVERAGE =",AV

Write programs to solve these problems:

A B
How many cubic yards of soil can be Convert 40 degrees Fahrenheit
into put into a box that measures into degrees Celsius using
5 feet by 42.5 inches by 1 yard? the formula C = (5/9)% (F-32)

-17-

4. MORE STATEMENTS, COMMANDS, AND FEATURES

4,1 The INPUT Statement

The INPUT statement is used when data values are to be entered from
the terminal keyboard during program execution. The form of the
statement is:

INPUT list

where 'list' is a list of variable names separated by commas. For
example:

10 INPUT A,B,C

causes the computer to pause during execution, print a question mark,
and wait for the entry of three numeric values separated by commas. The
values are input to the computer by typing the RETURN key.

If too few values are entered, BASIC prints another ? to indicate
that more data values are needed. If too many values are used, the
excess data values on that line are ignored, but the program will
continue. The values entered in response to the INPUT statement cannot
be continued on another line and are terminated by the RETURN key.
Values must be separated by commas if more than one value is entered on
the same line.

When reading numeric values, spaces are ignored. When a non-space
is found, it is assumed to be part of a number; if not, then the
question mark is repeated. The number is terminated by a comma, colon,
or carriage return.

When reading string items, leading spaces are ignored. When a
non-space character is found, it is assumed to be the start of a string
item. If this first character is a quotation mark ("), the item is
taken as being a quoted string and all characters between the first
double quote (") and a matching double quote or carriage return are
returned as characters in the string. Thus, quoted strings may contain
any legal character except double quote. If the first non-space
character is not a double quote, then it is assumed to be an unquoted
string constant. The string will terminate with a comma, colon, or
carriage return.

When there are several values to be entered via the INPUT
statement, it is helpful to print a message explaining the data needed.
For example:

10 PRINT "YOUR AGE IS"
20 INPUT A

The INPUT statement can also contain quoted strings. The above example
could be written:

10 INPUT "YOUR AGE IS?";A
Note that when a quoted string is included in an INPUT statement, the

normal ? is not printed as a prompt character, and if desired, must be

-18=

included as shown within the quotes above.

The INPUT statement allows BASIC to be programmed to accept direct
questions and answers as well as fill-in-the-blank applications.

If the user wishes to stop a program while it is waiting at an
input statement, LINEFEED and RETURN must be typed in sequence. If
RETURN is typed in response to the INPUT prompt (?), DISK BASIC will
assume the value 0 for numeric variables, and "Q" for string variables.
If there are additional variables in the INPUT list, a question mark (?)
will be printed as discussed above.

4,2 The DATA Statement

The DATA statement is used in conjunction with the READ statement
to enter data into an executing program. One statement is never used
without the other. The form of the statement is:

DATA value list

where value list contains the numbers or strings to be assigned to the
variables listed in a READ statement. Individual items in the value
list are separated by commas; strings are usually enclosed in quotation
marks. For example:

150 DATA 4,7,2,3,"ABC™
170 DATA 1,34E-3,3,171311

The scanning of numeric and string items is identical to that
described above in the INPUT statement. An SN error message can result
from an improperly formatted DATA list.

The location of DATA statements is arbitrary as long as they appear
in the correct order; however, it is good practice to collect all
related DATA statements near each other.

When the RUN command is executed, BASIC searches for the first DATA
statement and saves a pointer to its location. Each time a READ
statement is encountered in the program, the next value in the DATA
statement is assigned to the designated variable. If there are no more
values in that DATA statement, BASIC looks for the next DATA statement.

4,3 The READ Statement

A READ statement is used to assign the values listed in the DATA
statements to the specified variables. The READ statement is of the
form:

READ variable list

The items in the variable list may be simple variable names or string
variable names and are separated by commas. For example:

10 READ A, B$, C
20 DATA 12, mipon, _12E2

Since data must be read before it can be used in a program, READ

statements generally occur near the beginning of the program. A READ
statement can be placed anywhere in a multiple statement line.

-19~

If there are no data values available in the DATA statements for
the READ to store, the out of data message below is printed:

OD ERROR IN xxxxx
READY

Items in the data list in excess of those needed by the program's
READ statements are ignored.

4,4 The RESTORE Statement

The RESTORE statement causes the program to reuse the data from the
first DATA statement, or, if a line number is specified, from the first
DATA statement on or after the specified line. The two forms of the
RESTORE statement are as follows:

RESTORE
and

RESTORE line number
For example:

100 RESTORE 50

causes the next READ statement to start reading data from the first DATA
statement on or after line 50. The following example shows how the
RESTORE statement functions:

10 INPUT " ENTER 1 FOR NUMERIC, 2 FOR STRINGS:"; A

20 IF A = 2 THEN 200

100 RESTORE 190

10 FOR I = 1 TO 5 READ B: PRINT B: NEXT I

120 GOTO 10

190 DATA 10, 20, 30, 40, 50, 60

200 RESTORE 290

210 FOR I = 1 TO 5 READ B$: PRINT B$: NEXT I

220 GOTO 10

290 DATA "APPLE"™, "BOY", "CAT", "DOG", "ELEPHANT", "FOX"

If a 2 is entered, the first 5 string data values in line 290 are
printed; otherwise, the first 5 numeric data values on line 190 are
printed. The sixth data items in lines 190 and 290 are not read.

4,5 The GOTO Statement

The GOTO statement is used when it is desired to uncornditionally
transfer to some line other than the next sequential line in the
program. In other words, a GOTO statement causes an immediate jump to a
specified line, out of the normal consecutive line number order of
execution. The general form of the statement is as follows:

GOTO line number

-20-

The line number to which the program jumps can be either greater or
lower than the current line number. It is thus possible to jump forward
or backward within a program. For example:

10 A=2

20 GOTO 50

30 A=SQR(A+14)
50 PRINT A,A%®A
RUN

causes the following output:

2 q

When the program encounters line 20, control transfers to line 50; line
50 is executed, control then continues to the line following line 50.
Line 30 is never executed. Any number of lines can be skipped in either
direction.

When written as part of a multiple statement line, GOTO should
always be the last executable statement on the line, since any statement
following the GOTO on the same line is never executed. For example:

110 A=ATN(B2): PRINT A:GOTO 50

However, REM and DATA statements can follow a GOTO on the same line
because they are non-executable statements.

4.6 Relational Operators
Relational operators allow comparison of two values and are usually

used to compare arithmetic expressions or strings in an IF...THEN
statement. The relational operators are:

MATHEMATICAL BASIC
SYMBOL SYMBOL EXAMPLE MEANING

= = A=B A is equal to B.

< < A<B A is less than B.

< <=, =< A<=B g is less than or equal to
> > A>B A is greater than B.

2 >= , => A>=B A is greater than or equal

to B.
= <>, XX A<>B A is not equal to B.

The result of the relational operators is -1 for true and 0 for
false.

4,6.1 Relational Operators in Strings

When applied to string operands, the relational operators test

-21-

alphabetic sequence. Comparison is made character by character on the
basis of the ASCII codes (See Appendix E) until a difference is found.
If, while the comparison is proceeding, the end of one string is
reached, the shorter string is considered to be smalder. For example:
PY‘*‘ZC Cres ?
55 IF A$<B$ THEN 100

When line 55 is executed, the first characters of each string (A$ and
B$) are compared, then the second characters of each string, and so on
until the character in A$ is less than the corresponding character in
B$. If this test is true, execution continues at line 100.
Essentially, the strings are compared for alphabetic order. Below is a
list of the relational operators and their string interpretations.

In any string comparison, leading and trailing blanks are
significant (i.e., "ABC" is not equivalent to "ABC ").

OPERATOR EXAMPLE MEANING

= A$=B$ The strings A$ and B$§ are
alphabetically equal.

< A$<B$ The string A$ alphabetically
precedes B$.

> A$>B$ The string A$ alphabetically
follows B$.

<= A$<=B$ The string A$ is equivalent to
or precedes B$ alpha-
betically.

>= A$>=B$ The string A$ is equivalent to
or follows B$ alpha-
betically.

<O A$<>B$ The strings A$ and B$ are not

alphabetically equal.

-22-

4,7 Logical Operators

Logical operators are typically used as Boolean operators in
relational expressions. For example, consider the following two
sequences of statements:

THEN 150

100 IF A
c THEN 150

= B
110 IF <D

and
200 IF

210 IF
220 ...

o =

<> 5 THEN 220
= 10 THEN 250

In both cases the sequences can be simplified by using the logical
operators AND and OR. The first two statements can be combined into a
single statement:

100 IF A = B ORC <D THEN 150

Similarly, the second sequence of statements is equivalent to:

200 IF A = 5 THEN IF B = 10 THEN 250
220 ...

This can be further simplified to:
200 IF A = 5 AND B = 10 THEN 250

Following the rules of Boolean algebra, the unary operator NOT will
change true into false and vice versa. For example:

100 IF A <> 5 THEN 150
is equivalent to:
100 IF NOT (A=5) THEN 150

More complex expressions can be constructed by using combinations of the
AND, OR, and NOT operators.

Logical operators may also be used for bit manipulation and Boolean
algebraic functions. The AND, OR, and NOT operators convert their
arguments into sixteen bit, signed, two's complement integers in the
range -32768 to 32767. After the operations are performed, the result
is returned in the same form and range. If the arguments are not in
this range, a CF error message will be printed and execution will be
terminated. Truth tables for the logical operators appear below. The
operations are performed bitwise, that is, corresponding bits of each
argument are examined and the result computed one bit at a time. 1In
binary operations, bit 7 is the most significant bit of a byte and bit O
is the least significant.

-23-

AND

X Y X AND Y

1 1 1

1 0 0

0 1 0

0 0 0
OR

X Y XORY

1 1 1

1 0 1

0 1 1

0 0 0
NOT

X NOT X

1 0

0 1

Some examples will serve to show how the logical operators work:

63 AND 16=16

15 AND 14=14

-1 AND 8=8

4 OR 2=6

10 OR 10=10

-1 OR -2=-1

NOT 0=-1

NOT X=z=(X+1)

63 = binary 111111 and 16 = binary 10000, so
63 AND 16 = 16

15 = binary 1111 and 14 = binary 1110 , so
15 AND 14 = binary 1110 = 14

-1=binary 1111111111111111 and 8zbinary 1000,
so -1 AND 8 = 8

4 = binary 100 and 2 = binary 10 so 4 OR 2
binary 110 = 6

binary 1010 OR'd with itself is 1010=10

-1 = binéry 171711111111111111 and =2
1111111111111110, so -1 OR -2 = -1

the bit complement of sixteen zeros is sixteen
ones, which 1is the two's complement
representation of =1

the two's complement of any number is the bit
complement plus one.

A typical use of logical operations is "masking"--testing a binary
number for some predetermined pattern of bits. Such numbers might come
from the computer's input ports and would then reflect the condition of

some external device.

-2l

4,8 The IF...THEN and IF...GOTO Statements

The IF-THEN statement is used to transfer control conditionally
from the normal consecutive order of statement numbers, depending upon
the truth of some mathematical relation or relations. The basic form of
the IF statement is as follows:

THEN
IF expression line number
GOTO

where 'expression' is an arithmetic expression. If the result of the
expression is nonzero (true), execution begins at the line number given
and proceeds as usual. If the value of the expression is zero (false),
the next statement in numerical order will be executed. Usually the
statement is of the form:

THEN
IF expression rel. op. expression line number
GOTO

In this case, expressions cannot be mixed; both must be string or both
must be numeric. Numeric comparisons are handled as described in 4.6,
String comparisons are performed on the ASCII values of the strings as
described in 4.6.1 and Appendix E. The rel. op. (relational operator)
must be as described in 4.6, and the 1line number is the line of the
program to which control is conditionally passed.

If the value of the expression is true, control passes to the line
number specified. If the value of the expression is false, control
passes to the next statement in sequence. For example:

3C IF A=B THEN 20 B0 IF A<>T1 GOTO 20
B0 PRINT A+B 55 PRINT A
50 PRINT A"2 60 D=A+B+*C

An alternate form of the IF...THEN statement is as follows:
IF expression THEN statement

where the statement is any valid DISK BASIC statement. Note that
multiple statements can follow the THEN if they are separated by colons
(:). With this form of the IF...THEN statement, if the expression
evaluates to non-zero (true), the statements following the THEN are
executed., Otherwise, control passes to the next numbered line. For
example:

10 A=10

20 IF A=10 THEN PRINT "TRUE":GOTO 40
30 PRINT "FALSE"

40 END

-25-

4,9 The FOR and NEXT Statements

FOR and NEXT statements define the beginning and end of a loop. (A
loop is a set of instructions which are repeated over and over again,
each time being modified in some way until a terminal condition is
reached.) The FOR statement is of the form:

FOR variable = expression!1 TO expression? STEP expression3

where the variable is the index, expressioni is the initial vealue,
expression2 is the terminal value, and expression3 is the incremental
value. For example:

15 FOR K=2 TO 20 STEP 2

causes the program to execute the designated loop as long as K is less
than or equal to 20. Each time through the loop, K is incremented by 2,
So the loop is executed a total of 10 times. After executing the loop,
when K=20, program control passes to the line following the associated
NEXT statement, and the value of K is 22.

The index variable must be unsubscripted, although such loops are
commonly used in dealing with subscripted variables. In such a case the
control variable is used as the subscript of a previously defined
variable. The expressions in the FOR statement can be any acceptable
BASIC expression.

The NEXT statement signals the end of the lcop which began with the
FOR statement. The NEXT statement is of the form:

NEXT variable

where the variable is the same variable specified in the FOR statement.
The variable is actually optional, since any NEXT statement encountered
is assumed by the computer to be closing the locp for the appropriate
FOR variable. Together the FOR and NEXT statements define the
boundaries of a program loop. When execution encounters the NEXT
statement, the computer adds the STEP expression value to the variable
and checks to see if the variable is still less than or equal to the
terminal expression value. When the variable exceeds the terminal
expression value, control falls through the loop to the statement
following the NEXT statement. Note that the variable is not necessary
since when a NEXT statement is encountered it is assumed it is for the
appropriate FOR loop variable.

If the STEP expression and the word STEP are omitted from the FOR
statement, +1 is the assumed value. Since +1 is a common STEP value,
that portion of the statement is frequently omitted.

The expressions within the FOR statement are evaluated once upon
initial entry into the loop. The test for completion of the loop is
made after each execution of the loop. (If the test fails initially,
the loop is still executed once.)

-26~

The index variable can be modified within the loop. When control
falls through the loop, the index variable retains the value used to
fall through the loop.

The following is a demonstration of a simple FOR-NEXT loop. The
loop is executed 10 times; the value of I is 11 when control leaves the
loop; and +1 is the assumed STEP value:

10 FOR I=1 TO 10
20 PRINT I
30 NEXT I
40 PRINT I

The loop itself is defined by lines 10 through 30. The numbers 1
through 10 are printed when the loop is executed. After I=10, control
passes to line Y40 which causes 11 to be printed. If line 10 had been:

10 FOR I = 10 TO 1 STEP =1

the value printed by line 40 would have been O.
The following loop is executed only once since the value of I=44
has been reached and the termination condition is satisfied.

10 FOR I = 2 TO 44 STEP 2
20 I = 44
30 NEXT I

If the initial value of the variable is greater than the terminal
value, the 1loop is still executed once. The loop set up by the
statement:

10 FOR I = 20 TO 2 STEP 2

will be executed only once although a statement like the following will
initialize execution of a loop properly:

10 FOR I = 20 TO 2 STEP -2

For positive STEP values, the loop is executed until the control
variable is greater than its final value. For negative STEP values, the
loop continues until the control variable is less than its final value.

FOR loops can be nested but not overlapped. The depth of nesting
depends upon the amount of user storage space available; in other words,
upon the size of the user program and the amount of RAM available.
Nesting is a programming technique in which one or more loops are
completely within another loop. The field of one loop (the numbered
lines from the FOR statement to the corresponding NEXT statement,
inclusive) must not cross the field of another loop. For example:

-27-

ACCEPTABLE NESTING UNACCEPTABLE NESTING
TECHNIGUES TECHNIQUES

Two-Level Nesting

10 FOR I1 = 1 TO 10 10 FOR I1 = 1 TO 10
[20 FOR I2 = 1 TO 10 20 FOR I2 = 1 TO 10
30 NEXT I2 30 NEXT I1
[40 FOR I3 = 1 TO 10 40 NEXT I2
50 NEXT I3
60 NEXT I1
Three~Level Nesting
~—=10 FOR I1 = 1 TO 10 r— 10 FOR I1 = 1 TO 10
20 FOR I2 = 1 TO 10 —20 FOR I2 = 1 TO 10
30 FOR I3 = 1 TO 10 30 FOR I3 = 1 TO 10
40 NEXT I3 40 NEXT I3
[20 FOR I4 = 1 TO 1C 50 FOR I4 = 1 TO 10
0 NEXT I4 60 NEXT I4
70 NEXT I2 70 NEXT I1
—80 NEXT I1 L. 80 NEXT I2

It is possible to exit from a FOR-NEXT loop without the control
variable reaching the termination value. A conditional or unconditional
transfer can be used to leave a loop. Control can only transfer into a
loop which has been left earlier without being completed, ensuring that
termination and STEP values are assigned.

Both FOR and NEXT statements can appear anywhere in a multiple
statement line. For example:

10 FOR I = 1 TO 10 STEP 5: NEXT I: PRINT "I="; I
causes:
I= 11

to be printed when executed.
In the case of nested loops which have the same endpoint, a single
NEXT statement of the following form can be used:

NEXT variable 1, ... , variable N

The first variable in the list must be that of the most recent loop, the
second most recent, and so on. For example:

10 FOR I=1 TO 10
20 FOR J=1 TO 10
30 ...

100 NEXT J,I

-28-

5.1 Functions

5. FUNCTIONS AND SUBROUTINES

BASIC provides functions to perform certain standard mathematical
operations which are frequently used and time-consuming to program.
These functions have three or four letter call names followed by a
parenthesized argument. They are pre-defined and may be used anywhere in

a program.

Call Name

ABS(x)

ATN (x)

CALL(x)

COS(x)
EXP(x)
FRE (x)

INT (x)

INP (x)

LOG (x)

PEEK (x)

POS(x)

RND (x)

SGN (x)

X

A =

b, AS
¢ WABI

Function
Returns the absolute value of x.

Returns the arctangent of x as an angle in
radians in range + 7;/2), where 7% = 3.14150.

Call the user machine language program at
decimal location 33282. (8202 HEX) The D,E
registers have value of X upon entry and value
of Y upon return from machine language
routine.

Returns the cosine of x radians.

Returns the value of exhhere e = 2.71828.

Returns the number of free bytes not in use. ;}kﬂ

Returns the greatest integer less than or
equal to x.

Returns a byte from input port x. The range
for x is 0 to 255.

Returns the natural logarithm of x.

Returns a byte from memory address
~32768<x<65535; or if x is negative the memory
address is 65536+x.

Returns the value of the current cursor
position between 0 and 63.

Returns a random number between 0 and 1.

Returns a -1, 0, or 1, indicating the sign of
x.

Ve A
a

-20-

{h.*i [SIRTTEN

A
)

™

e

w

\V
N

£y

SIN(X) Returns the sine of x radians.

SPC(x) Causes x spaces to be generated. (Valid only
in a PRINT statement).

SQR(x) Returns the square root of x.

TAB(x) Causes the cursor to space over to column

number x. (Valid in PRINT statement only).
TAN(x) Returns the tangent of x radians.

The argument x to the functions can be a constant, a variable, an
expression, or another function. Square brackets cannot be used as the
enclosing characters for the argument x, e.g. SIN[x] is illegal.

Function calls, consisting of the function name followed by a
parenthesized argument, can be used as expressions anywhere that
expressions are legal.

Values produced by the functions SIN(x), COS(x), ATN(x), SQR(x),
EXP(x), and LOG(x) have six significant digits.

5.1.1 The Sine and Cosine Functions; SIN(x) and COS(x)

The SIN and COS functions require an argument angle expressed in
radians., If the angle is stated in degrees, conversion to radians may
be done using the identity:

radians = degrees * (%] /180)

In the following example program, 3.14159 is used as a namninal
value for 7% . P is set equal to this value at line 20. At line 40 the
above relationship is used to convert the input value into radians.
Note the use of the TAB function to produce a more legible printout.

10 REM CONVERT ANGLE (X) TO RADIANS, AND

11 REM FIND SIN AND COS '

20 P = 3.14159

25 PRINT "DEGREES",, "RADIANS",, "SINE",, "COSINE"
30 FOR X = 0 TO 90 STEP 15

40 Y = X*(P/180)

60 PRINT X, Y;TAB(32); SIN(Y); TAB(48); COS(Y)

70 NEXT X
RUN
DEGREES RADIANS SINE COSINE
0 0 0 1
15 .261799 .258819 +965926
30 .523598 5 .866026
45 . 785398 . 707106 . 707107
60 1. 0472 .866025 .500001
75 1.309 .965926 .25882
90 1.5708 1 1.12352E-06

-30-

5.1.2 The Arctangent and Tangent Functions; ATN(x) and TAN (x)

The arctangent function returns a value in radian measure, in the
range - #1 /2 to + 7 /2 corresponding to the value of a tangent supplied as
the argument (x).

In the following program, the input is an angle in degrees.
Degrees are then converted to radians at line 50. At line 70 the
tangent value, Z, is supplied as the argument to the AIN function to
derive the value found on column 4 of the printout under the label
ATN(x). Also in line 70 the radian value of the arctangent function is
converted back to degrees and printed in the fifth column of the
printout as a check against the input value shown in the first column.

10 P = 3.14159

15 PRINT

20 PRINT "ANGLE","ANGLE"; TAB(20);"TAN (X)";

21 PRINT TAB(32);"ATAN(X)",,"ATAN(X)"

25 PRINT " (DEGS)", " (RADS)",,," (RADS)",," (DEGS)"
30 FOR X = 0 TO 45 STEP 15

35 PRINT

4% FORX = 0 TO 75 STEP 15

50 Y = X*#P/180

60 Z = TAN(Y)

70 PRINT X,Y;TAB(20);Z; TAB(32);ATN(Z); TAB(L48); ATN(Z)* 180/P

80 NEXT X
RUN
ANGLE ANGLE TAN(X) ATAN (X) ATAN (X)
(DEGS) (RADS) (RADS) (DEGS)
0 0 0 0 0
15 .21799 .26 7949 .261799 15
30 .523598 57735 .523598 30
45 . 785398 .999999 . 785398 45
60 1.0472 1.73205 1.0472 60
75 1.309 3.73204 1.309 75

5.1.3 The Square Root Function; SQR(x)

This function derives the square root of any positive number as
shown below:

10 INPUT X
20 X = SQR(X)
30 PRINT X
40 GOTO 10
RUN
216
Y
21000
31.6228
? (LINEFEED) (RETURN)
READY

If the argument is negative, a CF error will result.

-31=

5.1.4 The Exponential and Logarithmic Functions; EXP(x) and LOG(x)

The exponential function raises the number e to the power x. EXP
is the inverse of the LOG function. The relationship is:

LOG(EXP(X)) = X = EXP(LOG(X))

The following program prints the exponential equivalent of an input
value,

10 INPUT X
20 PRINT EXP(X), LOG(EXP(X)), EXP(LOG(x))

30 GOTO 10
RUN

287

6.07601E+37 87 87
?.0033
21

2.71828 1 1

Logarithms to the base e may easily be converted to any other base
using the following formula:

log N
log N = mcemew—-

log , a

where a represents the desired base and e = 2.71828. The following
program illustrates conversion to the bases 10 and 2.

10 PRINT "VALUE","BASE E LOG","BASE 10 LOG","BASE 2 LOG"
20 INPUT X

30 PRINT X,LOG(X); TAB(24);LOG(X)/LOG(10);

40 PRINT TAB(40);LOG(X)/LOG(2)

50 GOTO 20
RUN |
VALUE BASE E LOG BASE 10 LOG BASE 2 LOG
21
1 0 0 0
274
y 1.38629 .60206 2
210
10 2.30259 1 3.32193
21000
1000 6.90776 3 9.96579

An attempt to find the LOG of zero or of a negative number causes a CF
error message.

-32-

5.1.5 The Absolute Value Function; ABS(x)

The ABS function returns the absolute value of any argument. The
absolute value is the argument itself with a positive sign. For example
the absolute value of both 3 and -3 is 3. The ABS function may be
illustrated as follows:

PRINT ABS(12.34),ABS(-23.65)
12.34 23.65

5.1.6 The Greatest Integer Function; INT (x)

The greatest integer function returns the value of the greatest
integer not greater than x. For example:

PRINT INT(34.67)
34

PRINT INT(11)
11

The INT of a negative number is a negative number with the same or
larger absolute value, i.e., the same or smaller algebraic value. For
example:

PRINT INT(-23.45)
=24

PRINT INT(-11)
=11

The INT function can be used to round numbers to the nearest
integer, using INT(X+.5). For example:

PRINT INT(34.67+.5)
35

PRINT INT(-5.1+.5)
=5

INT(x) can also be used to round to any given decimal place or
integral power of 10, by using the following expression as an argument:

(X*10°D+.5) /10°D

where D is an integer supplied by the user.

10 REM INT FUNCTION EXAMPLE

15 PRINT

20 PRINT "NUMBER TO BE ROUNDED:"

25 INPUT A

40 PRINT "NO. OF DECIMAL PLACES:"

45 INPUT D

60 B = INT(A®* 10D +.5)/10°D

70 PRINT "NUMBER ROUNDED

80 GOTO 15
RUN

NUMBER TO BE ROUNDED
?55.65842

NO. OF DECIMAL PLACES:

72

NUMBER ROUNDED = 55.66

NUMBER TO BE ROUNDED
?78.375

NO. OF DECIMAL PLACES:

?=2
NUMBER ROUNDED = 100

NUMBER TO BE ROUNDED
?67.38

NO. OF DECIMAL PLACES:

?=1
NUMBER ROUNDED = 70

NUMBER TO BE ROUNDED
? (LINEFEED) (RETURN)

READY

5.1.7 The Random Number Function;

The random number function produces a random number, or random
The numbers are reproducible in the same
order after the ESC, E sequence if X>0 for later checking of a program.

number set between 0 and 1.

=" ;B

RND (x)

In DISK BASIC the form RND without arguments is not legal.

example:

10 PRINT "RANDOM NUMBERS:

30 FORI = 1 TO 8
40 PRINT RND(I),

50 NEXT I

RUN

RANDOM NUMBERS:
. 100250 .968134
.839019 .306121

-34-

.886657
.285553

.63644Y
.285534

To obtain random digits from O to 9, line 40 can be changed to read:
40 PRINT INT(10%RND (1)),
This time the results will be printed as follows:

RANDOM NUMBERS:
8 9 3 5 6 1 8
2

It is possible to generate random numbers over a given range. If the
open range (A,B) is desired, use the expression:

(B~A)®RND (1)+4A

to produce a random number in the range A<n<B.
The following program produces a random number set in the open
range (4,6). The extremes, % and 6, are never reached.

10 REM RANDOM NUMBER SET IN OPEN RANGE 4,6.
20 FOR B = 1 TO 8
30 A = (6-4) ®# RND(1) + L4

40 PRINT A,

50 NEXT B

RUN
4,20054 5.92962 5. 77325 5.27288
4,99125 5.02420 4.18825 5.99989

Negative arguments, i.e. RND(-123), will start a new random number
sequence, while RND(0) will always generate the last random number.

5.1.8 The Sign Function; SGN(x) !

{on
The sign function returns the value 1 if x is a positive number, 0 ~
if x is 0 and -1 if x is negative. For example: R

10 REM SGN FUNCTION EXAMPLE

20 READ A,B,C

25 PRINT "A = "A,"B = "B,"C = "C

30 PRINT "SGN(A) = "SGN(A), "SGN(B) = "SGN(B),

40 PRINT "SGN(C) = "SGN(C)

50 DATA -7.32, .44, O

RUN

A= -7.32 B= .41 C= 0
SGN(A) = -1 SGN(B) = 1 SGN(C) = O

-35-

5.1.9 The Position Function; POS(x)

The POS function returns the current x coordinate of the cursor's
position. It is most often used to determine whether or not a
particular program result, either string or numeric, will fit on a given
line. By use of the P0OS(x) function, the correct placement of the
answer can be easily determined.

5.2 User Defined Functions

In some programs it may be necessary to execute the same sequence
of statements or mathematical formulas in several different places.
BASIC allows definition of unique operations or expessions and the
calling of these functions in the same way as the predefined standard
mathematical functions.

These user defined functions are described by a function name, the
first two letters of which are FN followed by any acceptable BASIC
variable name. For example:

Legal Illegal
FNA FNAS$
FNAA FN2
FNA1

Each function is defined once and the definition may appear anywhere in
the program. The defining or DEF statement is formed as follows:

DEF FNA (argument) = expression
where A is a variable name., The argument must be a simple variable.

The expression may contain the argument variable and any other program
variables. For example:

10 DEF FNA(S) = 8™2
causes a later statement:
20 R = FNA(U4)+1
to be evaluated as R = 17. As another example:

50 DEF FNB(A) = A+X"2
60 Y= FNB(14)

causes the function to be evaluated with the current value of the
variable X within the program. The two following programs:

-36-

10 DEF FNS(A) = A™A 10 DEF FNS(X) = X"X

20 FOR I=1 TO 5 20 FOR I=1 TO 5
30 PRINT I, FNS(I) 30 PRINT I, FNS(I)
40 NEXT I 40 NEXT I

cause the same output:

RUN
1 1
2 4
3 27
4 256
5 3125

User defined functions cannot have several arguments, as shown below:
25 DEF FNL(X,Y,Z) = SQR(X"2 + Y"2 + 2°2)

Such a statement will cause an error of the type:
SN ERROR IN 25

When calling a user defined function, the parenthesized argument
can be any legal expression. The value of the expression is substituted
for the argument variable. For example:

10 DEF FNZ(X) = X*2
20 A=2
30 PRINT FNZ (2+A)

Line 30 causes the result 16 to be printed.

If the same function name is defined more than once, then the last
defintion (the one with the higher line number) will be used. The
program below:

X"2
X+X

10 DEF FNX (X)
20 DEF FNX(X)
30 A=5

40 PRINT FNX(A)

will cause 10 to be printed.
The function variable need not appear in the function expression as
shown below:

10 DEF FNA (X) = 4+2
20 R=FNA(10)+1
30 PRINT R
RUN
7

-37=

\wﬁm\h
S e

5.3 BASIC String Functions

Like the intrinsic mathematical functions described above, BASIC
contains various functions for use with character strings. These
functions allow the program to concatenate two strings, access part of
a string, determine the number of characters in a string, generate a
character string corresponding to a given number or vice versa, and
perform other useful operations. The various functions available are
summarized in the following table.

STRING FUNCTIONS
Call Name Function

ASC (x$) Returns the eight bit internal ASCII code
(0-255) for the one~character string. If the
argument contains more than one character,
then the code for the first character in the
string is returned. A value of 0 is returned
if the argument is a null string (LEN(x$)=0).
(See ASCII codes in Appendix E).

CHR$ (x) Generates a one-character string having the
ASCITI value of x where x is a number greater

than or equal to 0 and less than or equal to
255. Only one character can be generated.

FRE(x$) Returns number of free string bytes. (See
CLEAR statement in 3.11)

LEFT$ (x$,I) Returns left-most I characters of string (x$).
If I>LEN(x$), then x$ is returned.

LEN (x$) Returns the number of characters in the string
x$, with non-printing characters and blanks
being counted.

MID$ (x$,I,Jd) J is optional. Without J, returns right-most
characters from x$ beginning with the Ith
character. If IDLEN(x$), MID$ returns the
null string. With 3 arguments, it returns a
string of length J of characters from x$
beginning with the Ith character. If J is
greater than the number if characters in x$ to
the right of I, MID$ returns the rest of the
string. Argument ranges: 0<I<=z255,
0<=J<=255.

Tovur N (u/N)T Qb

.

Ie tebva (RE, 1) =~ 4

e

£OTO e

-38-

RIGHT$ (x$,I) Returns right-most I characters of string
(x$). If IDLEN(x$), then x$ is returned.

STR$(x) Returns the string which represents the
numeric value of x as it would be printed by a
PRINT statement.

VAL (x$) Returns the number represented by the string
x$. If the first character of x$ is not +, -,
or a digit, then the value 0 is returned.

In the above descriptions, x$ represents any legal string
expression, and I and J represent any legal arithmetic expressions.

NOTE: Unlike the mathematical functions, character string functions
cannot be defined by the user. Similar results can be obtained by the
use of subroutines, as described in Section 5.4,

5.4 Subroutines

A subroutine is a section of a program performing same operation
required at more than one point in the program. Sometimes a complicated
I/0 operation for a volume of data, a mathematical evaluation which is
too complex for a user defined function, or any number of other
processes may be best performed in a subroutine.

More than one subroutine can be used in a single program, in which
case they are best placed one after the other in line number sequence
before the DATA statements. Jt is a useful practice to assign
distinctive line numbers to subroutines. For example, if the main
program uses line numbers up to 199, use 200 and 300 as the first line
numbers of two subroutines. When subroutines are included in a progran,
the program begins execution and continues until it encounters a GOSUB
statement of the form:

GOSUB line number

where the line number following the word GOSUB is that of the first line
of the subroutine. Control then transfers to that line of the
subroutine. For example:

50 GOSUB 200

Control is transferred to line 200 in the user program. The first line
in the subroutine can be a remark or any other valid BASIC statement.

Having reached the ‘line containing a GOSUB statement, control
transfers to the line indicated after GOSUB; the subroutine is processed
until BASIC encounters a RETURN statement of the form:

RETURN

which causes control to return to the statement following the original
GOSUB statement. A subroutine must always be exited via a RETURN
statement.

Before transferring to the subroutine, BASIC internally records the
next sequential statement to be processed after the GOSUB statement; the
RETURN statement is a signal to transfer control to this statement. In
this way, no matter how many subroutines there are or how many times

-39-

A

they are called, BASIC always knows where to transfer control next. The
following program demonstrates the use of GOSUB and RETURN.

1 REM THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
10 DEF FNA(X) = ABS(INT (X))

20 INPUT 4,B,C

30 GOSUB 100

40 A=FNA(A)

50 B=FNA (B)

60 C=FNA(C)

70 PRINT

80 GOSUR 100

S0 END

100 REM THIS SUBROUTINE PRINTS OUT THE SOLUTIONS
110 REM OF THE EQUATION: AX"2 + BX + C = O

120 PRINT "THE EQUATION IS "A "®#X"2 4 m Bn&y 4 ngC
130 D=B#B - L#¥p¥C

140 IF D<>0 THEN 170

150 PRINT"ONLY ONE SOLUTION...X "; -B/(2%A)

160 RETURN

170 IF D<Q THEN 200

180 PRINT "TWO SOLUTIONS...X=";

185 PRINT (-B+SQR(D))/(2%A); ™ AND "; (-B-SQR(D))/(2®%A)
190 RETURN

200 PRINT "IMAGINARY SOLUTIONS...X =(";

205 PRINT ~B/(2%A) "," SQR(~-D)/(2%A) ") AND (";
207 PRINT -B/(2%A) ","; -SQR(-D)/(2%A) ")

210 RETURN

900 END

Subroutines can be nested; that is, one subroutine can call another
subroutine. If the execution of a subroutine encounters a RETURN
statement, it returns control to the statement following the GOSUB which
called that subroutine. Therefore, a subroutine can call another
subroutine, even itself. Subroutines can be entered at any point and
can have more than one RETURN statement. It is possible to transfer to
the beginning or any part of a subroutine; multiple entry points and
RETURN's make a subroutine more versatile.

~}0-

5.5 The ON GOTO and ON GOSUB Statements

The ON...GOTO statement provides another type of conditional
branching. Its form is as follows:

ON expression GOTO line number 1list

After the value of the expression is truncated to an integer in the
range 0-255, say I, the statement causes BASIC to branch to the line
whose number is Ith in the list. If I=0 or is greater than the number
of lines in the list, execution will continue at the next line after the
ON...GOTO statement. If I is less than 0 or greater than 255, a CF
error will result. For example, the following sequence of IF statements
can be replaced by a single ON...GOT(statement. Thus;

100 IF X=1 THEN 1000
110 IF X=2 THEN 2000
120 IF X=3 THEN 3000
130 IF X=4 THEN 4000
140 IF X=6 THEN 6000
150 ¥=10

can be replaced by:

100 ON X GOTO 1000, 2000, 3000, 4000, 150, 6000
150 ¥=10

Note that there was no IF statement for X=5, so in the ON...GOTO
statement the corresponding line number is 150, which is the next line.

Subroutines may be called conditionally by use of the ON...GOSUB
statement. Its form is as follows:

ON expression GOSUB 1line number 1list

The execution is the same as ON...GOTO except that the line numbers are
those of the first lines of subroutines. Execution continues at the
next statement after the ON...GOSUB upcn return from one of the
subroutines.

Note that ON...GOTO and ON...GOSUB statements do not have to be the
last executable statements on a line.

-1

6. ARRAYS

6.1 Introduction to Arrays

Arrays or subscripted variables are most frequently used for
storing lists of information in a program using a single name to refer
to the list as a whole and using subscripts to refer to individual
items. For example, consider the following list of 12 numbers
corresponding to the number of days in each month in a non-leap year:

31, 28, 21, 30, 21, 30, 31, 31, 30, 31, 30, 31

The notion of subscripts follows naturally. For instance, the 5th item
in the list corresponds to the number of days in May. Using an array
(list) of size 12, named M, to refer to all the entries in the list as a
whole, the fifth item of M can be simply denoted as M(5). Similarly,

the number of days in February is denoted by M(2). If the number of
days in the Ith month is desired, then M(I) contains that value.

In the following example, the data values are read into an array
which is dimensioned to size 12 in line 10. (See Section 6.U4)

10 DIM M(12)

20 FOR I=1 TO 12: READ M(I): NEXT I

30 DATA 31, 28, 31, 30, 31, 30, 31, 31, 30, 21, 30, 31
35 REM PRINT THE NUMBER OF THE MONTH AND DAYS IN EACH MONTH
36 REM ADD UP THE NUMBER OF DAYS IN THE MONTHS

40 D=0

50 FOR I=1 TO 12

60 PRINT I, M(I)

70 D=D+M(I)

80 NEXT I

90 PRINT "TOTAL DAYS =", D

The resulting output from this program is:

RUN

1 31
2 28
3 31
4 30
5 31
6 30
7 31
8 31
9 30
10 31
11 30
12 31

TOTAL DAYS = 365

If the above program were expanded past line 90 the values in M would be
accessible at any point during the execution of the program unless they
were changed by an assignment or input statement.

Yo

6.2 Subscripted Variables

The name of a subscripted variable is any acceptable BASIC variable
name followed by one or more integer expressions in parentheses within
the range 0 - 32767. Subscripted variable names follow the same naming
conventions as simple variables with the first 2 characters being
significant. For example, a list might be described as A(I), where I
goes from O to 5 as shown below:

A(0),A(1),A(2),A(3),A(8),A(5)

This allows reference to each of the six elements in the list, and can
be considered a one dimensional algebraic matrix as follows:

A(0)
A(1)
A(2)
A(3)
A(Y)
A(5)

A two-dimensional matrix B (I,J) can be defined in a similar manner:
B(0,0),B(0,1),B(0,2)y...,B(0,d),...B(I,d)
and graphically illustrated as follows:

B(0,0) B(0,1) ... B(0,Jd)
B(1,0) B(1,1) ... B(1,J)

B(I:O) B(I:1) ... B(I,Jd)

Higher dimensional arrays can also be formed. The upper limit is
determined by the size of the input buffer giving a practical limit of
4o.

Subscripts used with subscripted variables throughout a program can
be explicitly stated or they can be any legal expression. If the value
of the expression is non-integer, the value is truncated so that the
subscript is an integer.

It is possible to use the same variable name as both a subscripted
and unsubscripted variable. Both A and A(I) are valid variables and can
be used in the same program. The variable A has no relationship to any
element of the matrix A(I). Subscripted arrays of character strings may
also be defined, and their variable names are distinet. A$(I) bears no
relation to A(I) or A.

-43-

A dimension (DIM) statement is used with subscripted variables to
define the maximum number of elements in a matrix.

If a subscripted variable is used without appearing in a DIM
statement, it is assumed to be dimensioned to length 10 in each
dimension (that is, having eleven elements in each dimension, 0 through
10). However, all matrices should be correctly dimensioned in a
program. :

6.3 Subscripted String Variables

Any list or matrix variable name followed by the $ character
denotes the string form of that variable. For example:

V$(n) M2$(n)
C$(m,n) G1$(m,n)

where m and n indicate the position of the matrix element within the
whole.

The same name can be used as a numeric variable and as a string
variable in the same program with no restriction. Simple variables and
dimensioned variables can also have the same name. For example:

A A(n)
A$ A$(m,n)

can all be used in the same program; however, A(n,m) could not be used,
because it redefines the size of A(n).

String lists and matrices are defined with the DIM statement as are
numerical lists and matrices.

6.4 The DIM Statement

The DIM statement is used to define the maximum number of elements
in a matrix. The DIM statement is of the form:

DIM variable(n), variable(n,m), variable$(n), variable$(n,m)

where variables specified are indicated with their maximum subscript
value (s). For example:

10 DIM X(5),Y(4,2), A(10,10)
12 DIM A4(100), A$(25)

Arrays can be dynamically dimensioned by using numeric expressions
instead of integer constants to define the size of an array. Any number
of matrices can be defined in a single DIM statement as long as they are
separated by commas.

The first element of every matrix is automatically assumed to have
a subsecript of zero. Dimensioning A(6,10) sets up room for a matrix
with 7 rows and 11 columns. This zero element is illustrated in the
following program:

—Yy

10 REM MATRIX CHECK PROGRAM
20 DIM A(6,4)

30 FOR I=0 TO 6

40 A(I,0) = I

50 FOR J=0 TO 4

60 A(0,J) =d

70 PRINT A(I,Jd);

80 NEXT J:PRINT:NEXT I

90 END

RUN
01234
10000
20000
3060¢00
40000
50000
6 0000

Notice that a variable has a value of zero until it is assigned
another vzlue.

Whenever an array is dimensioned (m,n), the matrix is allocated
with (m+1,n+1) elements. Memory space can be conserved by using the Oth
element of the matrix. For example, DIM A(5,9) dimensions a 6 ® 10
martrix which would then be referenced beginning with the A(0,0)
element.

The size and number of matrices which can be defined depend upon
the amount of storage space available,

A DIM statement can be placed anywhere in a multiple statement line
and can appear anywhere in the program. A matrix can only be
dimensioned once. DIM statements must appear prior to the first
reference to an array. DIM statements are generally among the first
statements of a program to allow them to be easily found if any
alterations are later required.

All arrays specified in DIM statements are allocated space when the
DIM statement is executed. All other arrays are declared at the first
reference executed.

~U5-

7. FURTHER SOPHISTICATION

7.1 Formatting the Printout

Often, the purpose of a program will require that results be
printed out in a particular format, rather than simply in a list or line
at the end of a program run. BASIC provides certain facilities for use
in formatting the printout, so that the desired result can be achieved.

When a comma separates a text string from another PRINT list item,
the item is printed at the beginning of the next available print 2zone.
Semicolons separating text strings from other items are ignored. The
screen is divided into 8 print zones of 8 characters each. A comma or
semicolon appearing as the last item of a PRINT list always suppresses
the carriage return/line feed operation. BASIC does an automatic
carriage return/line feed if a string is printed past column 64.
Examples of the use of comma include:

10 A=3
20 B=2
30 PRINT A,B,A+B,A®B, A-B,B-A

When the preceding lines are executed, the computer will print:
3 2 5 6 1 -1

Notice that each character is eight spaces from the next character. Two
commas together in a PRINT statement cause a print zone to be skipped,
as in:

10 A=1
20 B=2
30 PRINT A,B, ,A+B
RUN
1 2 3

READY
If the last item in a PRINT statement is followed by a comma, no
carriage return/linefeed is output, and the next value to be printed (by

a later PRINT statement) appears in the next available print zone. For
example:

~46-

10 A=1:B=2:C=3
20 PRINT A, :PRINT B: PRINT C
RUN
1 2
3
READY

If a tighter packing of printed values is desired, the semicolon
can be used in place of the comma. A semicolon causes no spaces to be
output other than the leading space automatically output with each
non-negative number., A comma causes the cursor to move at least one
space to the next print zone or perform a carriage return/line feed if
the string prints past column 64. The following example shows the
effects of the semicolon and comma.

10 A=1:B=2:C=3
20 PRINT A;B;C;
30 PRINT A+1;B+1;C+1
40 PRINT A,B,C

RUN

1232314

1 2 3
READY

The following example demonstrates the use of the formatting
characters , and ; with text strings:

120 PRINT "STUDENT"X; " GRADE ="G;" AVG. ="4;
130 PRINT " NO. IN CLASS ="N

Assuming that calculations had been done prior to these lines, the
following would result:

STUDENT 119050 GRADE = 87 AVG. = 85.44 NO. IN CLASS = 26
7.1.1 The Tabulator Function; TAB(x)

The TAB function is used in a PRINT statement to write spaces to
the specified column on the output device. The columns on the screen
are numbered 1 to 64. The form of the command is:

PRINT TAB(x)

where (x) is the column number in the range 0 - 255. (If x exceeds 6U,
however, every other consecutive line is tabbed until the number of
specified spaces are printed. If (x) is greater than 255 or negative,
an error message is printed as follows:

CF ERROR
READY

If (x) is non-integer, only the integer portion of the number is used.

If the column number (x) specified is less than or equal to the current
column number, the TAB function has no effect.

-47-

7.1.2 The Space Function; SPC(x)

The SPC function can be used in much the same fashion as TAB in
PRINT statements. This function prints the number of spaces indicated
by (x) which must be in the range 0-255; otherwise a CF error results.

Note that if either a TAB(x) or SPC(x) is the last item in a print
list the carrige return/line feed is suppressed.

7.2 Immediate Mode and Debugging

Immediate mode operation is especially useful for program debugging
{(error removal), and performing simple calculations in situations which
do not occur with sufficient frequency or with sufficient complication
to justify writing a program.

In order to facilitate debugging a program, END statements can be
liberally placed throughout the program. Each END statement causes the
program to halt, at which time the various data values can be examined
and perhaps changed in immediate mode. The command:

GOTO xxxxx

is used to continue program execution (where xxxxx is the number of the
next program line to be executed). GOSUB and IF commands can also be
used. The values assigned to the variables when the RUN command is
executed remain intact until a CLEAR statement or another RUN command is
executed.

When using immediate mode, nearly all of the standard statements
can be used to generate or print results.

If LINEFEED is used to halt program execution, the GOTO xxxx or
CONT command can be used to continue execution. Since CTRL/J or
LINEFEED does print the number of the line where execution stopped, it
is easy to know where to resume the program. Note that if a BASIC
program statement is entered or altered, it is not possible to continue
execution.

7.2.1 Restrictions on Immediate Mode

The INPUT and DEF statements cannot be used in immediate mode and
such use results in the following error message:

ID ERROR
READY

Certain other commands, while not illegal, make no logical sense
when used in immediate mode. Commands in this category are DIM and
DATA.

Although the standard mathematical functions are permissible, user
functions are not defined until the program is executed, and therefore
any references to user defined functions in immediate mode cause an
error unless the program containing the definition was previously
executed.

~48

Thus, the following dialogue might result if a function were
defined in a user program and then referenced in immediate mode.

10 DEF FNA(X) = X"2 + 2®X:REM SAVED STATEMENT
PRINT FNA(1):REM IMMEDIATE MODE

UF ERROR
READY

but if the sequence of statements were:

10 DEF FNA(X) = X"2+2%X:REM SAVED STATEMENT
RUN

READY

PRINT FNA(1)
3

READY

the immediate mode statement would be executed.

7.3 Machine Level Interfaces with DISK BASIC

DISK BASIC has several features that allow the user access to the
machine level input/output of the microprocessor. By using the WAIT and
OUT statements and the INP function, various input /output operations can
be performed. Other machine dependent features allow access to the
memory and assembly language subprograms. (See Appendices D.1 and D.2
for Key Memory Locations and Port Assignments.)

7.3.1 The WAIT Statement

The status of memory ports can be monitored by the WAIT statement
which has the following forms:

WAIT I,J
WAIT I,J,K

where I is the number of the port being monitored, and J and K are
integer expressions. The port status is exclusive OR'ed with K if
present and the result is AND'ed with J. Execution is suspended until a
non-zero value results. In other words, J picks the bits of port I to
be tested and execution resumes at the next statement after the WAIT.
If K is omitted, it is assumed to be zero. I, J, and K must be in the
range 0 to 255; otherwise, a CF error results.

-49-

7.3.2 The OUT Statement
The form of the OUT statement is as follows:
ouT I1,J

where I and J are integer expressions in the range 0 to 255. OUT sends
the 8 bit quantity (byte) signified by J to output port I.

WARNING: If bytes are output to ports on the SMC 5027 CRT chip,
serious damage can result to the COMPUCOLOR II. (See Appendix D.2)

7.3.3 The Input Function; INP(x)

The INP function is the counterpart of the OUT statement. Its form
is as follows:

X = INP(I)

INP reads a byte (8 bit quantity) from port I where I is an integer
expression in the range 0 to 255.

7.3.4 The Peek Function; PEEK (x)
The PEEK Function is called as follows:

Jd = PEX (I) >
where J is the integer value returned in the range 0-255 that is to be
stored in the memory location specified by the integer expression I.
The range of I is -32768 to 65535. If I is negative, then the address
is 65536+I; and if I is positive, the address is I.

7.3.5 The POKE Statement
The form of the POKE statement is as follows:
POKE I,Jd

where J is an integer expression in the range 0 to 255 that is to be
stored in the memory location specified by the integer expression I.
The range of I is -32768 to 65535. If I is negative, then the address
is 65536+I; and if I is positive, the address is I.

7.3.6 The User Call Function; CALL(x)

The CALL function is used for interfacing with 8080 machine
language subroutines, The function can be used in the same manner as
the other mathematical functions. The form is as follows:

Y = CALL(X)

where the assignment x must be in the range -32768 to 65535. The value
Y returned is in the range -32768 to 32767.

The CALL function converts the argument into a 2 byte integer and
stores the result in the 8080's D and E registers (D contains the high
byte, E the low byte.) The BASIC interpreter then executes an 8080 CALL

-50-

:«i-—:—-\\s

instruction to location 33282 (8202 HEX), which, unless modifed by the
user, contains a jump to the CF ERROR message routine. The user must
mocdify the locations 33282 through 33284 so that they contain a JMP to
the desired machine language routine. Upon return, the 2 byte integer
in the L,E registers is converted back into floating point format. The
stack level must be preserved at the same point ct which the user
entered the CALL, and the H and L registers must be preserved. All
other 8080 registers can be modified.

For example, consider the following assembly language subroutine
which negates the contents of the D and E registers.

ORG 08202H ; 33282
JMP NEGATE
ORG C9FFOH ; 4goolLy
NEGATE: MOV A,D ; COMPLEMENT
CML s HIGH
MOV D,4 ; BYTE
Hov £L,E ; CCMPLEMENT
CMA ; LOW
Mov E,A ;BYTE
INX I ; INCREMENT AND FORM 2'S COMPLEMENT
RET :RETURN - HL UNCHANGED
This subtroutine coulc be assembled using the COMPUCOLT . . Assembler cr
"hand" ascemtled and entered using the POKE statemer: TLTTT,
To enter this subroutine in BASIC, the use:r mu.t {.raot kit CPU

RESET then re-enter BASIC by using the ESCAPE W cequcrce. The number
8176 must be entered in response toc the MAXIMUM Ri!" AV~ILABLE prompt.
This leaves 16 bytes free for the machine language subic.i ne. The
following program loads the machine language subroutine znd demcrotrates
the CALL function.

5 REM CHANGE JUMP ADDRESS AT 820% 4 HEX, 8202 CONTAINS JUMP
10 POKE 33283, 240 : POKE 33284, 159

15 REM PROGRAM BYTES AT 9FF0 HEX

20 DATA 122, 47, 87, 123, 47, 95, 19, 201

3C FOR AD = LColL TO 4CO51

40 READ VL: POKE AD, VL

£0 NEXT AD

100 INPUT "ENTER X ";X : Y=CALL(X)

110 PRINT "X = ";Y : GOTO 100

7.4 String Space Allocation

Understanding how the string space is used is important in deciding
how much string space is necessary for the execution of a program.
First, all strings entered in immediate mode or by the INPUT statement
(see Section 4,1) are allocated in the string space because the input
line buffer can be modifed by subsequent inputs.

String functions and the string concatenation operator "+" alwsys
return their results in the string space. Assigning a string a constant
value in a program through a READ or assignment statement does not use
any string space since the string value is part of the program itself.
In general, copying is done when a string value is in the input line
buffer, or it is in the string space and there is an active reference tc

-E1-

it by a string variable. Thus, A$ = B$ will cause copying if B$ has its
string data in the string space. The assignment A$ = STR$(105) (see
Section 5.3 for STR$) will use four bytes of string space to store the
new four character string, " 105", created by the STR$ function, but the
assignment itself does not cause copying since the only reference to the
new string was created as a temporary reference by the formula
evaluator. The temporary references disappear when the assignment is
done. The copying is done in this manner because the string garbage
collection does not allow two references to the same area in the string
space.

=52~

8. DISK FEATURES

8.1 Loading and Saving Programs

Programs and data can be loaded and saved on the COMPUCOLOR 11 so
that they can be stored and used, edited, or updated in the future. The
general forms of the LOAD and SAVE statements are:

LOAD string expression
SAVE string expression

where the string can be a string variable such as A$ or a quoted literal
string such as "NAME", There are three FILE types that can be loaded
and saved. They are BASIC source (BAS), numeric ARRAYS (ARY), and
memory DATA (DAT). If no file type is specified, then the default type
is BAS. The BAS file type can be in the form as shown below. Each of
the following examples will save the same BASIC source.

SAVE "TEST" :REM SAVES BASIC SOURCE WITH NAME TEST ON DISK
SAVE "TEST.BAS"

SAVE "TEST.BAS; 1"

SAVE A$: REM WHERE A$ IS A STRING VARIABLE

SAVE "CD1:" + A$: REM WHERE "CD1:" SPECIFIES OPTIONAL DISK

Each of the following examples will cause a BASIC source program to be
loaded.

LOAD "TEST:REM LOADS A BASIC SOURCE PROGRAM BY NAME OF TEST
LOAD "TEST.BAS"

LOAD "TEST.BAS; 1"

LOAD "CD1:" + A$: REM WHERE "CD1:" SPECIFIES THE SECOND DISK
LOAD A$:REM WHERE A$ IS A STRING VARIABLE

The ARY file type can be in the same form as BAS except that ARY must be
in the string after the file name. Also the file name must be a
dimensioned or previously used array by the same first two letters of
the file name. If a one letter variable name is used, then the file
name must be that letter only.

10 DIM(EE\(QOO,10),T(3),TT(11,15,38)
20 SAVE ®STEST.ARY"
30 SAVE "T.ARY; 1"

40 END

The above program will save the numbered arrays ST and T. The following
program will cause a (100,10) array to be loaded even though it was
originally set at 1200, since 1200 > 101 % 11,

10 DIM ST (1200)
20 LOAD "STEST.ARY": REM DIM ST (100, 10)
30 END

=53~

The DAT file type can be in the same form as ARY. It will look at
the two-byte integer stored in locations 32940 and 32941 (32940 low byte
and 32941 high byte) as a pointer to memory. It adds 1 to this pointer
and takes the next two bytes in memory as the number of bytes to be
loaded into memory or saved on disk. The locations 32940 and 32941
specify the end of BASIC memory space, so all memory above that location
can be used to save data via BASIC using the POKE command. Also note
that only one DAT file may be read in at any one time without changing
the pointers at 32940 and 32941.

Note that it is recommended that programs use the random file
capability of DISK BASIC instead of loading and saving DAT files.

8.1.1 Program Chaining

A series of different programs can be executed as a single program
by using a technique commonly known as program chaining. In DISK BASIC,
two types of program chaining are possible. The first and easiest
method uses the LOAD statement in combination with the RUN command as
follows:

LOAD" PROGRM" : RUN

Executing this statement in either a program or immediate mode causes
the specified BASIC program to be loaded and executed. The RUN command
clears all the variables from the previous program. A line number can
optionally be specified on the RUN command.

The second method uses the LOAD statement in combination with the
GOTO statement as follows:

LOAD"PROGRM":GOTO line number

Executing this statement in a program causes the specified program to be
loaded and executed starting at the specified line number in the GOTO
command. This method does not clear the variables from the previous
program; however, two restrictions must be satisfied to ensure proper
exection of the program. First, the program with the largest source in
the chain must be loaded and executed first. Second, string variables
whose data values were part of the program source will contain incorrect
references when a subsequent program is loaded because the program
source will not be the same as the previous program. If these
restrictions are satisfied, then the series of programs should execute

properly. Clearly, this second method of program chaining is the least

desirable because of the possible difficulties. See Section 7.4 for a
description of how strings are allocated before using this method.

8.1.2 MENU Programs

With the COMPUCOLOR II it is possible to create a program that is
loaded and executed by pressing a single key. The AUTO key
automatically loads and executes a BASIC program called MENU.BAS from
the default device which is the internal COMPUCOLOR II disk drive unless
the default device has been changed. (See Chapter 10 for further
details on device and file specifications.)

The MENU program can be used to run and control a large application
system composed of several programs such as a payroll system. In this
case the MENU program asks which function is to be performed next and
directs the execution to the proper program or section of BASIC code.
Similarly, the MENU program can control a number of unrelated
applications by displaying a "menu" of applications accessible on the
diskette. This technique is used on many of the COMPUCOLOR II diskette
albums. Thus, by depressing the AUTO key, the MENU program is loaded
and executed displaying a "menu" of programs. The user simply selects a
program by number or name, and then the MENU program chains to the
desired program. When the selected program is finished it can chain
back to the MENU program.

For example, consider the following three programs:

MENU.BAS

10 PRINT "MENU PROGRAM"

20 PRINT

30 PRINT" 1 - PRINT TABLE OF POWERS"

40 PRINT®"2 -~ PRINT TABLE OF SINE FUNCTIONS"
50 PRINT

60 INPUT "ENTER NUMBER OF DESIRED PROGRAM"; N
70 N = INT(N)

80 IF N<1 OR N>2 THEN 60

90 ON N GOTO 100,200

100 LOAD "POWERS":RUN : REM EXECUTE POWERS
200 LOAD "SINE": RUN : REM EXECUTE TRIG
999 END

POWERS.BAS
10 PRINT "N" ,"NA on ’nN"3n
30 FOR N = 1 TO 10
40 PRINT N,N"2,N"3
50 NEXT N
60 PRINT

~ 100 LOAD "MENU":RUN:REM RETURN TO MENU

SINE.BAS

10 PI = 3.14159265: REM BASIC ROUNDS TO APPROX. 7 PLACES
20 PRINT "DEG","SINE"

30 PRINT
40 FOR DEG = 0 TO 360 STEP 15
50 RAD = DEG * PI/180
60 PRINT DEG,SIN (RAD)
70 NEXT DEG
80 PRINT
“~ 100 LOAD "MENU":RUN :REM RETURN TO MENU

To try this example the user must first enter and save each of the
three programs, being careful to remember to reinitialize BASIC before

-55~

entering a new program after saving the old one. After saving all three
programs the AUTO key must be struck. This causes MENU to be loaded and
executed. MENU then asks for either 1 or 2 and executes the selected
program. Note that these programs return back to the MENU program after
they have performed their specified function. This makes the MENU
program an effective tool for controlling and demonstrating a system or
diskette of programs.

8.2 Using the File Control System Through BASIC oo

The PRINT STRING command preceded by PLOT 27 and PLOT 4 or PLOT 68"
(ESC,D for FCS DISK) will enable the user to exercise all of the FCS
disk commands through BASIC. Therefore, every command available to the
File Control System is also available to BASIC, by letting the string
become the FCS command. The following examples show how to retrieve ga
disk directory through BASIC. (For a description of the PLOT statement,
see Section 9.1)

10 PLOT 27,4
20 PRINT "DIR"
40 END

or e
10 PLOT 27:PRINT"DDIR"

>

10 PLOT 27:PLOT 68:PRINT A$:REM WHERE A$ IS A
20 REM STRING VARIABLE EQUAL TO DIR.

or

If the directory of the disk were as follows:

TEST.ARY; 01
TEST.ARY; 02

then the BASIC program below would delete version 1 of the TEST.ARY
file, rename version 2 to version 1, update the array, and save it as
version 2 so it can be used again.

5 DIM TEST(1000)

10 LOAD "TEST.ARY; 2"

20 PLOT 27:PLOTY4:REM SELECT FCS MODE

30 PRINT "DELETE TEST.ARY; 1"

50 PRINT "RENAME TEST.ARY;2 TO TEST.ARY 1"

60 PLOT 27:PLOT 27:REM SELECT VISIBLE CURSOR MODE
80 :REM UPDATE TEST ARRAY
90 SAVE "TEST.ARY"

All string functions that are available to BASIC can be used in the
PRINT statement containing the FCS command.

~56-

To escape from the File Control System and return to one of the
other CRT modes, an escape sequence must be given; such as ESC,ESC for
visible CRT cursor mode. The FCS responds only to printing ASCII
characters and the following control codes:

11 ERASE LINE

13 CARRIAGE RETURN
26 CURSOR LEFT

27 ESCAPE

All other control codes will cause an FCS error if they appear in a
string. A complete description of the FCS commands appears in Chapter
10 and Appendix B. 1.

8.2.1 Loading and Saving Displays in BASIC

The FCS interface with BASIC makes it very easy to load and save
screen displays. To save displays generated by a BASIC program, the
COMPUCOLOR II should first be in page mode (see Section 9.4); otherwise,
if the screen has scrolled at all then the saved display will be wrapped
around. After the display has been generated, the user simply includes
a sequence of statements similar to that shown below.

900 PLOT 27,4 : REM ENTER FCS
910 PRINT "SAVE SCREEN.DSP 7000 1000"
920 PLOT 27,27 : REM RETURN FROM FCS

Line 910 saves a copy of screen refresh memory which is located from
7000 HEX to T7FFF HEX in a file called SCREEN.DSP. The display can now
be loaded at any time by executing the following sequence of
statements.

1000 PLOT 12 : REM UNROLL SCREEN MEMORY BY ERASE PAGE
1010 PLOT 27,4 : REM ENTER FCS

1020 PRINT"LOAD SCREEN.DSP"™ : REM LOAD DISPLAY

1030 PLOT 27,27 : REM RETURN FROM FCS

These two sequences can be tailored to fit any needs by simply changing
the line numbers and name of the file containing the display.

Displays that are generated in CRT mode can also be saved using
BASIC. Before creating a display, the user should enter the following
one line BASIC program.

0 PLOT 27,4: PRINT "SAVE SCREEN.DSP 7000 1000" : END

When this line is executed it will save the current display. After the
display is finished, the cursor should be moved to a section of the
display on the left-hand side that is composed of a few short lines of
blanks. Set the background color and foreground colors to the
background color of the blanks (see Secton 9.2) and then re-enter BASIC
by typing ESC E. A READY message will be returned but it will be
invisible because the foreground and background colors are the same.
Next type RUN. The RUN command executes the one line BASIC program that
saves the display.

8.2 Introduction to Random Files

-57-

[\

\

\ 2% \?u‘{w ‘- /’,“

COMPUCOLOR II DISK BASIC has three statements which implement a
powerful random access file capability. The FILE statement performs
various functions including creating, opening and closing random files.
The GET and PUT statements read, write, and update records in a random
file. '

Randgm files are organized into physical blocks containing a fixed
number of fixed length records. If a physical block is not a multiple
of 128, ther the excess length up to the next multiple of 128 is not
used. The blocking factor and record size of a file can be changed to
allow different types of access. For example, a 100 record file of 80
byte records with a blocking factor of 3 will use only the first 240
bytes of 256 available in 2 disk sectors. The last 16 bytes are unused.
Logical records do not cross physical block boundaries. Thus, for the
100 record file 2% 34=6f sectcocrs arce necoded. In this case a 102 record
file could have been allocated in the same amount of disk space,

There can be up teo 127 random files open simultaneously subject to
memory limitations. Memory space for files is allocated dynamically

from the user's workspece. Each file can contain from 1 to 32767

records and the record size range is 1 to 32767 bytes. The record size
must be small enough to fit into the user's workspace giving a practical
maximum of 30000 bytes. The default filename type for random files is
.RND.

o104
8.4 The FILE Statement Koo
e
The basic form of the FILE statement is: A

FILE "string expression", extra information

The FILE statement is a versatile statement that has the ability to
perform a number of functions. The first character of the string
expression determines what the FILE statement will do. The following
sections describe the FILE statement's uses and functions.

8.4.1 Random File Creation

The Random File Creation statement is of the form:

FILE "N", filename, records, record size, blocking factor

where '{filename! is a strire enr-sssion containing a valid FCS filename;
'records' is the number of logical records (1-32767); 'record size! is
the size in bytes of logical records (1-32767); and 'blocking factor' is
the number of logical records per physical block (1-255).

The specified file must not exist. If no version number is
specified, then FCS will choose the next larger version number. The
user is responsitle for choosing proper values of the parameters. Any
of the file specifications can be overridden when the file is opened
with the FILE "R" statement. For example:

FILE "N", "CHECK3", 200, 32, 8

creates a file containing 200 22-byte records with 8 records per block.

@y vz = 256 Bate: Aceh

-58~

. PW\)\ endukl

. %e 3“
\00 ﬁ\’/ %‘}"‘3
e 24
z > eé‘t"’/
ka
225 l s
\5\'(,"/ | !
15(4 _,(,,‘r}/b\ [S
z T
P Qa2
o 2L 6
VoY Do T A3
.23 - oLk
oA xizg T8
oS T 8T
%—1OA
LE B san

8.4.2 Random File Open
The form of the Random File Open statement is:
FILE "R",file,name,buffers<;records,rec size,blocking factor>

where 'file' is the logical number of the file (1-127), 'name' is a
string expression containing a valid FCS filename, and 'buffers' is the
number of buffers in memory (1-255).

The items between the angle brackets are optional and redefine the
file size. The elements are: 'records', which is the number of logical
records (1=-32767); ‘'rec size', which is the size in bytes of logical
records (1-32767); and 'blocking factor', which is the number of logical
records per physical block (1-255). :

The specified file must already exist. It is possible to open any
type of file, but they are best created with the FILE "N" statement.
Files not created in BASIC can be accessed by overriding the number of
records, the record size, and the blocking factor, but the directory
will not contain valid information about the number of records, record
size, or blocking factor. For example:

FILE "R",1,"CHECKS", 2

opens the file "CHECKS.RND" and allocates enough buffer space for 2
physical blogkg or 16 records. \Lx 22 = 52 an\uff ,e,.%y%

8.4.3 Random File Close
The Random File Close statement is of the form:
FILE n"C", file 1 <,...,file N>

where 'file!' is the number of the file to be closed. The items between
the angle brackets are optional, and merely describe the format for
closing more than one file at a time.

Each file that has been opened must be closed to ensure that the
buf fers in memory are written to the disk if they have been modified.
Closing a file frees up its buffer space in memory. For example:

FILE ®C", 1
closes file 1.
8.4.4 Dump File Buffers
The form of the Dump File Buffers statement is:

FILE "D", file 1 <,...,file N>

where 'file' is the number of the file (1-127); and the optional items
between the angle brackets are other files that can be included in the
same statement.

This statement writes any modified buffers to the disk for the
specified files. It can be used to ensure that modifications to a file
are recorded immediately. It is similar to FILE "C" except that the
buffer space is not freed up and the file remains open. For example:

-59-

a— e

FILE "D",4,6

writes any modified buffers back to the disk for files 4 and 6.

8.4.5 File Attributes

o g

The form of thé ?ile Attributes statement is:
FILE "A",file,cur record <,records,rec size,bléaﬁfﬁgxfueﬁ§g>

where 'file' is the number of the file (1-127); and 'cur record' is the
variable that is assigned the most recently accessed record number.
The items between the angle brackets are optional and include 'recordst,
which is the variable that is assigned the number of records in the
file; 'rec size', which is the variable that is assigned the record size
in bytes; and 'blocking factor', which is the number of logical records
per physical block (1-255).

This statement is used when the file size and other attributes of a
file are unknown. For example, the attributes of file 1 may be
determined as follows:

FILE "A", 1, CR, NR, RS, BF

8.4.6 File Error Trapping
The form of the File Error Trapping statement is:
FILE "T" <,line number>

where the optional line number is a line number in the range 0 to
65529.If the file "T" statement is executed with the line number
specified, then when a disk error occurs it will be trapped and
execution will continue at the specified line number. All information
about nested GOSUB's and FOR-NEXT loops will be lost. In most cases
this will not be a problem. In the other cases, assuming good
programming practices, the disk error will probably be a hardware
failure which requires some type of special recovery procedure. If the
line number is not specified, then the error trapping facility will be
disabled. For example:

FILE "T", 32000

causes the program to go to line 32000 whenever a disk error occurs.

-60-

8.4.7 File Error Determination
The form of the File Error Determination statement is:
FILE "E", file, error, line number

where 'file' is the file number at the time of the error (this number
may be incorrect for bad file name errors and errors within the FILE "N"
statement); ‘'error' is the disk error number (for explanations see
Appendix A.6); and 'line number'! is the line number in which the error
occurred.

This statement lets the user determine what type of disk error

occurred. It is used in conjunction with the FILE "T" statement.> For
example:

Ties "TY 25O %
25o FILE "E", FL, ER, LN

returns the file, error, and line number of the current random file
error.

8.5 The GET Statement
The GET statement is of the form:
GET file <,record <,first>> ; variable 1list

where 'file! is the logical file number (1-127); and the 'variable list!
contains one or more of the following entries:

numeric variable ~ reads 4 bytes into the numeric variable;

string variable [byte count] - reads the specified number of
bytes into the string variable. The byte count range
is 1 to 255.

The items between the angle brackets are optional and include 'record!',
which is the record number to be read (if 0 or amitted, then the record
number is 1 greater than that used for the last access to the file); and
'first', which is the first byte of the record to be read (1-record
size). If no value is given for 'first', then first defaults to 1.

The GET statement allows a file to be randomly accessed. By using

the “first" field, different parts of the record can be immediately
accessed. For example:

GET 1,R; ACCOUNT,AMOUNT,DATE, PAYEE$[20]

will read ACCOUNT, AMOUNT, and DATE as numeric entries, and PAYEE as a
20 byte string.

-61=

8.6 The PUT Statement
The PUT statement is of the formn:

PUT fale <{record <,first>> ; expression list
where 'file' is the logical file number (i-127); and the 'expression
list' contains 1 or more of the following entries:

numeric expression - writes 4 bytes containing the value of
the expression;

string expression [byte count] - writes the specified number

cf byvtes. The value of the string expression is

truncated or blenk filled on the right. The byte

& is 1-PE5

e

Items between the angle brackets are optional and include: 'record!,
the record number to be written or updated (if C or omitted,
record number is 1 greater than that used for the last access
i Y; and 'firstf, which is the first byte of record to be
written (1-record size). If nc value is given, then first defaults to
1.
The PUT statement allows random records to be written or updated.
For example:

PUT, 1,R, 13; "MORTGAGE COMPANY" [20]

updates 20 bytes of record R starfing at the 13th byte.

8.7 Improving Fiie Access

The randcocm files in DISK BASIC are oriented towards fast random
reads and updates. Sequential file input and output can easily be
simulated; however, there is a time penalty for sequential output
because the PUT statement updates information on a record. The file
accessing time in a program can of'ten be greatly reduced if the program
takes advantage of the flexibility offered.

The file accessing scheme in DISK BASIC is different from the
random accessing scheme commonly used in most microcomputers. When a
record iz accessed that is not present in one of the buffers in memory,
the physical block containing the logical record is read into memory in

] , 1 all buffers are in use, the least recently used
(LRU) bufifer. I the least recently used buffer has been modified, it
isk before the next block is read into the buffer.

ali vnusea but.er uor

is rewritten to dis
This type of a buffer management scheme is very similar to the LRU
virtual memory paging schemes used on large computers.

The first method of Improving file access is by increasing the
number of file buffers allocated in the FILE "R" statement. Changing
this number from 1 to a larger number does not alter the results of
execution; it only alters the number of times the disk has to be
physiczlly accessed. The difference in time can be quite substantial.
However, for sequential access or random access which uniformly accesses
all parts of 2 lerge file there is little advantage to be gained by
increasing the number of buffers beyonrd 1.

The cecond method of improving file access 1s by varying the record
size anrd blocking factor of a file. Ideally, the record size should be

-62-

a power of 2. By choosing an appropriate blocking factor the block size
will be a multiple of 128. For example, a 32 byte record can be blocked
4, 8, or 12, giving block sizes of 128, 256, or 384 bytes, respectively.
For sequential access a blocking factor of 1 allocates 1 record to a
physical block. Thus, to read records sequentially, 1 physical access
and disk read is necessary for each record. With a blocking factor of
8, physical disk access is only necesary for every 8 records read, which
is 1/8 as many disk accesses as necessitated by a blocking factor of 1.

If the record sizes are not a power of two, the blocking factor
should be chosen carefully. For example, with 80 byte records a
blocking factor of 1 will waste 48 bytes of disk space for each record
because the 80 byte record is contained in a 128 byte disk sector. By
using a blocking factor of 3, only 16 bytes (256-3*80) will be wasted
for every 2 128 byte sectors. Again, with a blocking factor of 8, 640
bytes are used with no wasted space because 5 disk sectors hold exactly
640 bytes. Whether or not to choose 1, 3, or 8 should be determined by
the type of application for which the file is used. If the program is
large and uses most of the workspace, either 1 or 3 would be best. If
the program is small, allocating 678 (34+4+640) bytes may be quite
acceptable and improve the speed of the program. Choosing the best
values for the number of buffers, record size, and blocking factor is
often difficult. The user is following a reasonable guideline if he
allocates 1 buffer for sequential files with a larger blocking factor
and more buffers with smaller blocking factors for random files. For
often used applications a little experimentation and fine tuning of the
parameters can improve the disk access time.

8.8 Storage Requirements Qv g\«rs\
Y

When random files are used, they/gre allocated from the user's free
workspace. The storage requirements in bytes are as follows:

error trapping - 10 bytes

open files =

4+30}BUF*(M+128*INT((RECSIZ*BLKFAC+127)/128)) bytes
where

BUF = the number of allocated physical block buffers,
RECSIZ = the number of bytes per record,
BLKFAC = the number of records per block.

Thus, opening a file with 80 byte records and a blocking factor of 3 and

1 buffer requires 34 + 1 % (U44256) = 294 bytes. With 4 buffers the
requirement is 34 + 4 % (44256) = 1074 bytes.

-63

9. COLOR, GRAPHICS, AND OTHER TERMINAL FEATURES

9,1 The PLOT Statement

The PLOT Statement is used to output the 8 bit value of an
expression to the screen. The form of the PLOT statement is as
fcllows:

PLOT expression
or
PLOT expression,expression,...,expression

The expressions in the expression list must evaluate to a quantity in
the range 0 to 255. Other values will cause a CF error.

For example, the following statement will cause the letters ABCDEF
to be displayed on the screen.

PLOT 65,66,67,68,69, 70

The PLOT statement is usually used to send control codes, escape codes,
and other graphics information to the screen. For further examples, see
the following sections in this chapter, and for information about CRT
commands and ASCII codes, see Appendices C, E, and F.

G.2 Color

The color displays that can be achieved on the COMPUCOLOR II are an
important feature of the machine. The color controls are easy to
operate and add a new dimension to traditional programming.

Both the foreground and background can be set to a desired color.
The foreground can be made to blink, and in addition, characters may be
either single or double height. =

Color, blink and character size can each be set in one of tw0 Ways.
The first method involves the use of the color and special keys. To set
the background color, the BG ON key is pressed. Then the actual color
is set by simultaneously striking the CONTROL key and the letter key
corresponding to the desired color. They are as follows:

BLACK: P BLUE: T
RED: Q MAGENTA: U
GREEN: k CYAN: v
YELLOW: S WHITE: W

On the deluxe and extended keyboards, the color keys are in a
separate pad and are simply struck to select color.

The foreground can be set by depressing the FG ON key and selecting
a color as for the background.
The BLINK ON key sets the blink in motion and the BL/AT7 OFF key

-6l

turns it off. The double-height characters can be set by the ATON key
and small characters are reset by the BL/AT COFF key. Because this key
controls both blink and character height, if the user wishes to turn the
blink off while using the larger characters, and continue typing in
large characters, the BL/A7 OFF key and the A7 ON key must be struck in
immediate succession.

While these codes can be used in the CRT mode to test color
combinatons and display appearances, etc., the characters will only be
accepted in BASIC if they are contained in gqucted strings or REMARK
statements. If not so contained, they will cause a syntax error (SN).

Color can be selected without being contained in a quoted string by
the second method of setting color, blink and character height. This is
done through the use of the PLOT statement, as zhown below:

PLOT 2¢ (sets foreground color)

PLOT 30 (sets background color)

PLOT 31 (sets blink on)

PLOT 14 (sets large characters)

PLOT 15 (sets blink and large characters of f)

The individual colors are selected by PLCT statements using the internal
code of each color key, as shown below:

PLOT 16 (black) PLCT 20 (blue)
PLOT 17 (red) FLOT 21 (magenta)
PLOT 18 (green) PLCT 22 (ecyan)
PLOT 15 (yellow) PLOT 23 (white)

Because blink off and standard character height are controlled by the
same code, retaining double character height while turning off the blink
will require PLOT 15 and PLOT 14 statements in immediate sequence. The
PLOT commands can be used in a BASIC program to set the color of the
screen output.

The PLOT character set, BLINK, BACKGROUND CCOLOR, and FOREGROUND
COLOR can also be selected by means of the CCI Contrcl Code or PLOT 6
statement. The general form in BASIC is as shown:

PLOT 6,number

where number must be an integer between 0 and 255 representing the
visible CCI status. This number is represented in binary up to eight
bits long and arranged in a table as shown below. (Also shown in
Appendix C.2)

AT A6 AS Al A3 A2 A1 AO

BACKGROUND FORECROUND
PLOT | BLINK

BLUE GREEN RED BLUE GREEN RED

The foreground and background colors are formed, as in a color
television, by combinations of the blue, red, and green color guns.
When the binary number is placed in the eight bit location, a 1 in any
position turns that bit on., The formulea for determining the desired
number in decimal is:

-65-

LB

K

PLOT®* 128 + BLINK* 64 + BACKGROUND*8 + FOREGROUND

The program below illustrates the various results that can be achieved
with the PLOT 6 command.

10 PLOT 6,6:REM SET CYAN FOREGROUND AND BLACK BACKGROUND
20 PRINT "PLOT(0-1),BLINK (0-1),BCKGRD (0-7),FORGRD (0-7): ";
25 INPUT "";PL,BL,BG,FG

30 PLOT 6,PL* 128+BL* 64+BG*8+FG

4o REM 30 SETS THE COLOR INFORMATION YOU SELECTED

50 PRINT “THIS IS WHAT YOU SELECTED";:PLOT6,6: PRINT

60 REM RESET COLOR BEFORE LINEFEED

70 GOTO 20

9.3 Special Characters

The COMPUCOLOR II has 64 special characters which are actually two
groups of 32 special characters. A group is selected depending upon the
condition of the Flag Bit. If the Flag Bit is off, then the ASCII codes
from 96 to 127 are not changed when they are placed in the CRT refresh
memory. If the Flag Bit is on, then these codes have 96 subtracted from
them before they are replaced in the CRT refresh memory. Therefore,
they are mapped into 0 to 31 within the refresh memory.

The characters in the range 96 to 127 are generated by changing the
shift of the alphabetic characters @, A, ..., Z, [, \, 1, °, and _. 1If
the CAPS LOCK key is down, then the SHIFT key will also have to be
depressed to generate these characters. If the CAPS LOCK key is up,
then these special characters are generated whenever an alphabetic key
is struck.

The condition of the Flag Bit is changed by depressing either the
FG ON/FLAG OFF key or the BG ON/LAG ON key. Thus, if the FG ON/FLAG
OFF key is struck, the characters in columns 6 and 7 in the COMPUCOLOR
II Character Set (shown in Appendix F) are displayed whenever ASCII
codes in the range 96 to 127 are received. If the BG ON/FLAG ON key is
struck, the characters in columns 0 and 1 are selected.

In BASIC the two sets of special characters can be selected as
follows:

PLOT CODE KEY CHARACTER SET
PLOT 29 FG ON/FLAG COFF COLUMNS 6 AND 7
PLOT 30 BG ON/FLAG ON COLUMNS O AND 1

The COMPUCOLOR II has an alternate set of 256 characters. These
characters are used for the graphics plot modes where each character
position is composed of eight plot blocks - four high by two wide.
These plot blocks can also be accessed through the character plot via
color pad mode entered by the ESC B sequence. This mode uses the eight
color keys to intensify each of the eight plot blocks within a
character. The one to one correspondence between the U4 x 2 color select

pad on the extended and deluxe keyboards and the U4 x 2 character plot
blocks is shown below.

-66-

T ;_5 xv’\)'i'

£ o

roddes

N
—‘r\foq’:‘"
P

A

CHARACTER PLOT BLOCK ARRAY WITH CORRESPONDING COLOR CODES
BLACK BLUE
RED MAGENTA
GREEN CYAN
YELLOW WHITE

This mode is designed especially for use by the keyboard to simplify the
drawing of graphs or the correcting of graphs. Once this mode is entered
a block at the top right hand corner of the present cursor position can
be intensified by depressing the BLUE key at the top right hand corner
of the color selection pad or CONTROL T (20).

Once a plot block is intensified, any other plot block in the same
character positon can also be intensified since the cursor does not
automatically advance. If a color key corresponding to an intensified
plot block is pressed, the plot block is turned off. This allows plot
blocks to be erased. After all the desired plot blocks have been
intensified or extinguished, the cursor can be moved using the cursor

control keys without leaving this mode. In fact, all of the control
codes are effective while in this mode except for the color select

control codes, and any of the ASCII text characters (32 to 127) can be
entered and displayed. Any code that requires a two key or more
sequence (such as CURSOR X-Y, CCI, and ESC) terminates this mode. It
should be noted that the ASCII text characters when entered and
displayed advance the cursor. Therefore, when a character position has
been used to display plot blocks, a cursor command must be given to
advance the cursor to the next character positon.

9.4 Cursor Controls

The COMPUCOLOR II has two cursor modes available to the user. The
most commonly used mode is the visible cursor mode where the blinking
cursor on the screen shows the current visible cursor position. In this
mode all the cursor control features of the COMPUCOLOR II are available.
A second cursor mode, called the blind cursor mode, allows the use of a
second invisible cursor with only XY cursor position allowed. The two
modes are described in the following sections.

9.4.1 Visible Cursor Mode

In the visible cursor mode the following PLOT statements move the
visible cursor on the screen:

PLOT 10 CURSOR DOWN / LINEFEED
(moves the cursor 1 space down)
PLOT 25 CURSOR RIGHT
(moves cursor one space to the right)
PLOT 28 CURSOR UP
(moves cursor one space up)
PLOT 26 CURSOR LEFT

(moves cursor one space to the left)

-67-

PLOT 8 HOME

(moves cursor to topmost left of screen)
PLOT © TAB

(moves cursor to start of next print zone)

The X,Y position of the visible cursor can be changed using the
CURSOR X,Y control code sequence or the following PLOT statement:

PLOT 3,X,Y

where X and Y are the desired X,Y coordinates. The range for X is 0 to
64 and the range for Y is 0 to 31. VWhere X=0 and Y=0 is the HOME
position at the upper left hand corner of the screen. The X coordinate
determines the column position and the Y coordinate determines the line
on the screen.

If the cursor is positioned at X=64, then the blinking visible
cursor will disappear. But if a character is typed, it will be
positioned at the beginning of the line specified by Y+1, and the cursor
then reappears in character position (X=1). Any cursor movement command
forces the cursor to reappear at the proper position relative to
character position 0, line Y+1.

If the X value is greater than 64, then the blind cursor
addressing mode is entered.

£i§3*5299’ which is entered from the keyboard via ESC X, writes
characters left to right, and does not scroll the screen. From BASIC it
is entered with a PLOT 27,24 statement.

§££g££m§gge, which is entered via ESC K, writes left to right and
scrolls the screen for a continuous readout. It is entered in BASIC by
PLOT 27,11.

Vertical mode, which is entered via ESC J writes top to bottom in
one column only. It does not scroll the display. This mode can be
reached through BASIC by the PLOT 27,10 statement.

ERASE PAGE code replaces the contents of the entire screen with
spaces that have the same color and composite status as the present
visible CCI status. Both the visible and blind cursors are positioned
at HOME. In BASIC a PLOT 12 erases the screen.

The ERASE LINE code does a carriage return and replaces the line
containing the visible cursor with spaces having the same color and
composite status as the present visible CCI status. The cursor is sent
to the beginning of the line. The current line is erased through BASIC
by PLOT 11. The following program illustrates the use of some cursor
controls.

10 DEF FNR(X) = INT (X*RND (1))

20 FOR I = 0 TO 3: READ D(I): NEXT I

30 DATA 10,25,28,26: REM CURSOR CONTROL VALUES

40 PLOT 6,0,12,27,24: REM ERASE PAGE AND SET PAGE MODE

50 PLOT 3, FNR(64), FNR(32): REM SELECT RANDOM STARTING POINT
60 FOR I = 1 TO 1000

70 PLOT 6, (FNR(7)+1)%8: REM SET VISIBLE BACKGROUND COLOR
80 PLOT 20,26: REM OQUTPUT SPACE, THEN BACKSPACE

90 PLOT D(FNR(4)): REM OUTPUT A RANDOM DIRECTION

100 NEXT I

110 PLOT 6,2,8: REM SET COLOR AND RETURN HOME

120 END

-68-

9.4,2 Blind Cursor Mode

The blind cursor mode can be entered in two ways. The first is by
using the CURSOR X,Y control sequence. If the X value is 65 or larger,
then the terminal ignores this as the visible cursor X value and sends
the unit into the blind cursor addressing mode. Once in the blind
cursor X,Y addressing mode, three additional bytes must be sent. They
are the blind cursor X value, the blind cursor Y value, and the blind
status word. The blind X value must be in the range 0-t3 and the blind
Y value must be in the range 0-31. The blind status word has the same
format as that required for the CCI code (PLOT 6) as described in
Section 9.2.

The Blind A7 Bit will be set on by sending values from 128 to 255
instead of 65 to 127 when going from the visible cursor X,Y mode to the
blind cursor X,Y mode. The Blind A7 Bit is set of f when a value from 65
to 127 is used.

It should be noted that the X and Y cursor values are masked to
0-63 ad 0-31 respectively.

After receiving the five byte blind cursor X,Y sequence, the
terminal is left in the blind cursor mode for whatever input device
caused the mode to be entered. After CPU RESET, the keyboard and
RS-232C serial port are placed in visible cursor mode. If the keyboard
causes the blind cursor XY to be addressed, then the keyboard will be
left in the blind cursor mode while the RS-232C serial is still in the
visible cursor mode. This allows the keyboard and the RS-232C to use
two different cursors.

It is important to note that most of the control codes affect only
the visible cursor mode including all of the cursor positioning codes
except, of course, CURSOR X,Y, which can affect both modes, and ERASE
PAGE which resets both the visible and blind cursor to the home position
(0,0). The setting of the Flag Bit is used by both the blind and
visible cursor modes to select the proper special characters.

The blind cursor mode can also be entered by using the ESC 4
sequence, and ESC ESC returns the input to the visible cursor mode
without changing the cursor address, composite color status word, or A7
Bit of the two cursor modes.

In BASIC the blind cursor X,Y addressing is used as follows:

PLOT 3, BC, X, Y, CL

where BC is in the range 65 to 127 for A7 OFF and small characters, and
from 128 to 255 for A7 ON and large characters. X and Y are the cursor
positions, and CL is the color status word (0-255). Blind cursor mode
can be exited and visible cursor mode entered by:

PLOT 27,27 (ESC ESC)
and blind cursor mode can be re-entered by:
PLOT 27,1 (ESC 4)
With the two cursor modes, the COMPUCOLOR IT offers a great deal of
flexibility as a color display device and a terminal. The blind cursor
mode is useful for generating displays in character mode without the

cursor interfering with the display. For example, the differences are
shown by the hunter and turkey program below:

-69-

OR
10
20
30
4o
50
60
61
62
63
70
71
72
73
T4
75
76
77
78
79
90

EM TURKEY AND THE HUNTER

REM VISIBLE AND BLIND CURSOR DEMONSTRATION

PLOT 6,2,12: INPUT "VISIBLE OR BLIND CURSOR (V/B)2";A$
BC=MID$ (A$,1,1)="B": VC=MID$ (A$,1,1)="V"

IF BC+VC<>-1 THEN 20

REM DRAW BORDER AROUND SCREEN

PLOT 27,24:REM PAGE MODE

PLOT 15:REM A7 OFF - SMALL CHARACTERS

PLOT 6,0:REM SET COLOR - BLACK FG/BLACK BG
PLOT 12:REM ERASE PAGE

PLOT 6,15:REM SET COLOR -~ WHITE FG/RED BG

FOR I=1 TO 64:PLOT 32:NEXT:REM DRAW TOP LINE
PLOT 3,0,31:REM MOVE CURSOR TO BOTTOM LINE

FOR I=1 TO 64: PLOT 32:NEXT:REM DRAW BOTTOM LINE
PLOT 27,10:REM WRITE VERTICAL MODE

PLOT 8:REM MOVE CURSOR TO HOME

FOR I=1 TO 32: PLOT 32:NEXT:REM DRAW LEFT SIDE
PLOT 3,63,0:REM MOVE CURSOR TO TOP RIGHT

FOR I=1 TO 32: PLOT 32:NEXT:REM DRAW RIGHT SIDE
PLOT 27,24 REM PAGE MODE

PLOT 3,64,0:REM MOVE BLINKING CURSOR OFF SCREEN

100 REM SET UP GAME PARAMETERS

110 HX=1: HY=1: REM HUNTER INITIAL POSITION
120 TX=32: TY=16: REM TURKEY INITIAL POSITION
130 TS=2:REM TURKEY SPEED

150 HC=39: TC=15

180

REM DEFINE FNR TO RETURN RANDOM INTEGER IN RANGE -X TO X

190 DEF FN R(X)= -X+INT((2#X+1)*RND(1))
200 REM MOVE CURSOR TO TURKEY'S OLD POSITION

201

IF VC THEN PLOT 3,TX,TY,6,0: REM VISIBLE

202 IF BC THEN PLOT 3,127,TX,TY,0: REM BLIND

210

TX=TX+FNR(TS):REM CHANGE TURKEY X POSITION

220 TY=TY+FNR(TS):REM CHANGE TURKEY Y POSITION
230 IF TX<1 OR TX>62 OR TY<1 OR TY>30 THEN 1000:REM ESCAPE!
240 PLOT 32:REM CLEAR TURKEY'S LAST POSITION

250
251

252

REM MOVE CURSOR TO TURKEY'S NEW POSITION
IF VC THEN PLOT 3,TX,TY,6,TC:REM VISIBLE

IF BC THEN PLOT3,127,TX,TY,TC:REM BLIND

260 PLOT ASC("T"):REM OUTPUT TURKEY SYMBOL

300
301

302

REM MOVE CURSOR TO HUNTER'S OLD POSITION
IF VC THEN PLOT 3,HX,HY,6,0:REM VISIBLE
IF BC THEN PLOT 3,127,HX,HY,0:REM BLIND

310 REM RANDOM SELECT HUNTER'S MOVE IN X OR Y DIRECTION
320 IF RND(1)>(ABS(TY~HY)+1)/(ABS(TY-HY)+ABS(TX-HX)+2)THEN500
400 HY=HY+SGN(TY-HY): REM MOVE TOWARD TURKEY IN Y DIRECTION

410

GOTO 600

500 HX=HX+SGN (TX-HX): REM MOVE TOWARD TURKEY IN X DIRECTION
600 PLOT 32:REM CLEAR HUNTER'S LAST POSITION
700 REM MOVE CURSOR TO HUNTER'S LAST POSITION

701

IF VC THEN PLOT 3,HX,HY,6,HC: REM VISIBLE

702 IF BC THEN PLOT 3,127,HX,HY,HC: REM BLIND

710

PLOT ASC("H"): REM OUTPUT HUNTER SYMBOL

720 IF HX=TX AND HY=TY THEN 2000: REM HUNTER CATCHES TURKEY
800 GOTO 200
1000 REM TURKEY ESCAPES

101

0 PLOT 27,27:REM VISIBLE CURSOR MODE

1020 PLOT 6,2: REM SET COLOR - GREEN FG/BLACK BG

-70~

1030 PLOT 8:REM CURSOR HOME

1040 PRINT "TURKEY ESCAPES 111! "

1050 GOTO 3000

2000 REM HUNTER CATCHES TURKEY

2010 PLOT 27,27:REM VISIBLE CURSOR MODE

2020 PLOT 6,2:REM SET COLOR - GREEN FG/BLACK BG
2030 PLOT 8:REM CURSOR HOME

2040 PRINT "GOBBLE GOBBLE "

3000 FOR I=1 TO 1000:NEXT : REM DELAY FOR A WHILE
3010 RUN

9.5 Vector Graphics

The vector graphics capability of the COMPUCOLOR II allows the user
to draw almost any desired display. The vector graphics are enabled by
entering the graphic plot mode by depressing CONTROL B (binary 2) from
the keyboard when in the CRT mode, or by executing PLOT 2 in BASIC.
While in the graphic plot submode the user can choose from sixteen (16)
plot submodes that perform a variety of graphic functions. The initial
plot submode is the XY Point Plot mode. In this mode the user can turn
on and off individual plot blocks on the screen. Other plot submodes
can easily be entered by a binary code from 240 to 2565.

An additional feature is available to allow a graphic plot to be
erased by simply setting the FLAG bit on before entering the plot mode.
This causes a logical XOR function to be used in setting the plot
blocks. Thus, if the same point is plotted a second time, it is erased.
Also, any plot submode may be entered from any other plot submode except
Character Plot mode. The various submodes and their interactions are
explained in detail below.

Colors may be defined on a character by character basis only and
the color of an individual plot block as well as other intensified plot
blocks within a character will be the most recent color defined when a
new plot block within that character is turned on. To change color, it
is necessary to exit the current plot submode, set the new color, and
re-enter the plot mode.

The character grid on the screen is 64 characters wide and 32
characters high. The zero reference point for all plotting is the lower
left hand corner of the screen. Each character is further subdivided
into 8 plot blocks =-- 2 blocks wide and 4 blocks high. This gives a 128
by 128 grid of plot blocks which may be individually set. All plot
submodes operate on this grid size and have the same reference point
(0,0). Positive directions are up and to the right, and negative
_directions are down and to the left.

All plot submodes and the general Plot Mode are terminated or
exited by the binary code 255. When ever this code is issued, the plot
mode is terminated and must be re-entered by issuing a CONTROL B or
binary 2.

On the deluxe keyboards there are sixteen (16) special functions
keys labelled FO through F15. Using these keys the various plot
submodes can be entered directly in the CRT mode (not in BASIC.) The FO
key produces a binary 240 code, F1 a 241, etc., up to the F15 key which
produces a 255. In BASIC these plot submodes are entered by using the
PLOT statement as described below.

-71=

Plot Mode Escape - (255 binary)

This code is used to exit from the Plot Mode or any of the plot

submodes. On the deluxe keyboards the F15 function key performs a Plot
Mode Escape.

Character Plot ~ (254 binary)

The Character Plot Submode is entered by a 254 after the general
Plot Mode is entered. All subsequent characters issued are treated as
plot characters except for 255 which is the Plot Mode Escape. Thus,
other plot submodes can not be entered directly from this mode. The
plot characters are constructed by ORing together the selected plot
blocks to form the composite character as follows:

01 HEX 10 10 HEX 01
00 00
00 00
00 00
02 HEX 00 20 HEX 00
10 01
00 00
00 00
04 HEX 00 40 HEX 00
00 00
10 01
00 00
08 HEX 00 80 HEX 00
00 00
00 00
10 01

The Character Plot causes the the 6 wide by 8 high dot matrix to be
divided into 8 blocks organized 2 blocks wide and 4 blocks high. Each
block consists of a dot matrix 3 dots wide and 2 dots high. Each block
corresponds to an individual bit of the 8 bit plot character. Large
characters may also be formed by using the plot blocks in several

character positions to create a large 5 by 7 matrix or any other desired
size.

X Point Plot - (binary 253)

The X Point Plot is automatically entered upon receipt of the
general Plot Mode code, binary 2 or CONTROL B. It may also be entered
directly from any of the other plot submodes. After entering the X
Point Plot submode, the next byte received defines the X value of the
block that is desired to be plotted. The X value may range from 0 to
127 and all other values will cause 128 to be subtracted from the value
of X.

The X Point Plot may be terminated by the code 255 which also
causes the the general Plot Mode to be terminated. Any of the other
plot submodes may be entered directly from the X Point Plot by simply
entering the appropriate plot submode codes from 240 to 255.

, , ~72-

This page intentionally left blank.

-73

It should be noted that this plot submode does not cause a plot
block to be intensified, it only defines the X value. Once the X value
is received, the COMPUCOLOR II is automatically placed in the Y Point
Plot mode. Thus, the next code sent will be the Y value which may range
from 0 to 127.

The procedure for entering and exiting the X Point Plot mode is
shown below:

Function Code
Plot Mode 2
X1 Value 0 to 127
Y1 Value 0 to 127
Xn Value 0 to 127
Yn Value 0 to 127
Plot Escape 255

or
Plot Submode 240 to 254

The X Point Plot in conjunction with the Y Point Plot allows any
block on a 128 by 128 block matrix to be intensified. Thus, in BASIC
the above sequence becomes:

PLOT 2,X1,Y1, ... ,XN,YN,255

The following statement will plot points at the screen's four corners:
pLOT 2, 0,0, 0,127, 127,127, 127,0, 255

Y Point Plot - (binary 252)

The Y Point Plot is entered by a binary 252 code after the general
Plot Mode is entered or automatically from the X Point Plot submode
after the X value has been sent. The next byte received after entering
the Y Point Plot submode defines the Y value of the block to be plotted
and intensifies that block. If the new block is within a character
position that contains an ASCII character, then the ASCII character is
replaced completely by the new block and its associated color.

XY Incremental Point Plot - (binary 251)

The XY Incremental Point Plot submode is entered by a binary 251
code while in the general Plot Mode. The next byte defines the next two
(2) increments as shown below. This byte may take on values in the
range 0 to 239 since the binary codes from 240 to 255 are used for the

plot submodes.

b7 b6 b5 b4 b3 b2 b1 bO

[x 1T [y 1 [x] [Y]
1 1 2 2

Plot Block 1 Plot Block 2

—Th-

The U4 two bit codes are defined as follows:

0 No change
1 Negative increment
2 Positive increment
3 No change

If b0 through b3 are "O"s, then the plot block will not plot, but
will still increment according to the coding of bl through b7. This
allows skipping a plot increment by plotting an "invisible"™ block. The
XY Incremental Plot mode may be terminated by the Plot Mode Escape code
255. The following sample program will do a random walk using the
Incremental Point Plot mode.

10 DEF FNR(X)=INT (X®*RND (1))

20 PLOT 12,6,6 : REM CLEAR SCREEN AND PLOT IN LIGHT BLUE

30 PLOT 2,63,63 : REM PLOT POINT IN THE MIDDLE OF THE SCREEN
40 PLOT 251 : REM ENTER INCREMENTAL POINT PLOT MODE

50 FOR I=1 TO 1000

60 INC=FNR(3)® 64+FNR(3)* 16+FNR(3)* 4+FNR(3)

70 REM USE ONLY THE FIRST THREE DIRECTION CODES

75 IF (INC AND 15)=0 THEN 60 :REM NO ALLOW INVISIBLE BLOCKS
80 PLOT INC

90 NEXT I

100 PLOT 255 : REM ESCAPE FROM PLOT MODE

110 END

X Bar Graph, X0 Value - (250 binary)

The X Bar Graph, X0 Value plot submode is entered by a binary 250
code after the general Plot Mode is entered. It may also be entered
directly from any of the other plot submodes except for Character Plot.
After entering the X Bar Graph, X0 Value submode, the next byte defines
the X0 value or the left horizontal start block of the horizontal bar
graph. The X0 may range in value from 0 to 127 and all other values
have 128 subtracted giving a new X0 value in the range 0 to 127.

Upon receiving the X0 value, the value of X0 is stored in memory
and the COMPUCOLOR II is automatically placed in the X Bar Graph, Y
Value plot submode (249 binary.) After receiving the next byte as the Y
value, the COMPUCOLOR II is autamatically placed in the X Bar Graph, X
Max Value plot submode (248 binary.) After receiving the X Max value
the horizontal bar graph is drawn on the screen and the COMPUCOLOR II is
placed back in the X Bar Graph, Y Value plot submode ready to receive
new Y and X Max value pairs until a new plot submode is entered. Note
that once an X0 value is defined it is unnecessary to respecify it for

each horizontal bar in the graph. This process is shown in the
following example.

-T5=

Function Code

Plot Mode 2

or
Plot Submode 240 to 253
X Bar Graph, X0 Value 250
X0 value 0 to 127
Y value - line 1 0 to 127

X Max value - line 1 0 to 127

Y value - line n 0 to 127
X Max value - line n 0 to 127
Plot Escape 255
or
Plot Submode 240 to 254

For example, from BASIC a horizontal bar graph plotting a sine
function can be drawn as follows:

1C PLOT 6,6,12 :REM SET COLOR TG CYAN AND CLEAR SCREEN
20 X0 = 10 :REM SET X0 VALUE

30 PLOT 2,250,X0: REM ENTER X BAR GRAPH SUBMODE - SET X0
40 FOR Y=0 TO 127 STEP 2 :REM SET Y VALUES

50 PLOT Y,X0+50% (1+SIN(Y/10)) :REM SCALE SINE FUNCTION
60 NEXT Y

70 PLOT 255 :REM PLOT ESCAPE

As can be seen from the above examples, once in the X Bar Graph, X0
mode, it is necessary to define only two points for each new bar graph.
The bar graph is drawn after receiving the X Max value. Any of the
other plot submodes can be entered directly from the three X Bar Graph
submodes. Multiple colored bar graphs can be drawn by leaving plot
mode, changing the color, and re-entering the X Bar Graph, Y Value
submode (249 binary.) In this case the original X0 value would be
preserved, Bars drawn in this mode are one plot block wide; thicker
bars can be drawn by changing the Y value by 1 and replotting it along
with the same X Max value or using the X Incremental Bar Graph submode.

X Bar Graph, Y Value - (249 binary)

The X Bar Graph, Y Value plot submode is entered by a binary 249
code or automatically from the X Bar Graph, X0 Value plot submode.
After entering this submode the next byte is used as the Y value of the
next bar in the graph to be plotted, and the COMPUCOLOR II is
automatically placed into the X Bar Graph, X Max Value plot submode (248
binary.) Any of the other plot submodes can be entered directly from

this submode. For more information on this submode see the description
of the X Bar Graph, X0 Value submode (250 binary.)

-76-

X Bar Graph, X Max Value - (248 binary)

The X Bar Graph, X Max Value plot submode is entered by a binary
248 code or automatically from the X Bar Graph, Y Value plot submode.
After entering this submode the next byte is used as the X Max value of
the bar in the graph. The bar is plotted, and the COMPUCOLOR II is
automatically placed into the X Bar Graph, Y Value plot submode (249
binary) which allows the next bar to be defined and drawn. Any of the
other plot submodes can be entered directly from this submode. For more
information on this submode see the description of the X Bar Graph, XO
value submode (250 binary.)

X Incremental Bar Graph - (247 binary)

The X Incremental Bar Graph plot submode is entered by a binary 247
code. After entering this submode the next byte defines the next two
horizontal and vertical increments for two horizontal bar graphs. Thus,
it is possible to position a bar graph on either side of the present
location by adding or subtracting an increment to the bar graph
previously defined. The coding and composition of the incremental
direction code is the same as that defined in the XY Incremental Point

Plot submode (251 binary.) Any of the other plot submodes can be
entered directly from this submode.

Y Bar Graph, YO Value - (246 binary)

The Y Bar Graph, YO Value plot submode is entered by a binary 2Ub6
code after the general Plot Mode is entered. It may also be entered
directly from any of the other plot submodes except for Character Plot.
After entering the Y Bar Graph, Y0 Value submode, the next byte defines
the Y0 value or the bottom vertical start block of the vertical bar
graph. The Y0 may range in value from 0 to 127 and all other values
have 128 subtracted giving a new Y0 value in the range 0 to 127.

Upon receiving the Y0 value, the value of Y0 is stored in memory
and the COMPUCOLOR II is automatically placed in the Y Bar Graph, X
Value plot submode (245 binary.) After receiving the next byte as the X
value, the COMPUCOLOR II is automatically placed in the Y Bar Graph, Y
Max Value plot submode (244 binary.) After receiving the Y Max value
the vertical bar graph is drawn on the screen and the COMPUCOLOR II is
placed back in the Y Bar Graph, X Value plot submode ready to receive
new X and Y Max value pairs until a new plot submode is entered. Note
that once a YO0 value is defined, it need not be respecified for each
vertical bar in the graph. This is shown in the following example.

-77-

Function Code

Plot Mode 2
or
Plot Submode 240 to 253
Y Bar Graph, YO Value 246
YO value 0 to 127
X value - line 1 0 to 127

Y Max value - line 1 0 to 127

X value - line n 0 to 127
Y Max value - line n 0 to 127
Plot Escape 255
or
Plot Submode 240 to 254

For example, from BASIC a vertical bar graph plotting the area
under a random function can be drawn as follows:

10 PLOT 6,6,12 :REM SET COLOR TO CYAN AND CLEAR SCREEN
20 YO = 10 :REM SET YO0 VALUE

30 PLOT 2,246,Y0:REM ENTER Y BAR GRAPH SUBMODE - SET YO
40 FOR X=0 TO 127 STEP 2:REM SET X VALUES

50 PLOT X,YO+100®RND(1) :REM SCALE RANDOM FUNCTION

60 NEXT X

70 PLOT 255 :REM PLOT ESCAPE

As can be seen from the above examples, once in the Y Bar Graph, YO
mode, it is necessary to define only two points for each new bar in the
graph. The bar graph is drawn after receiving the Y Max value. Any of
the other plot submodes can be entered directly from the three Y Bar
Graph submodes. Multiple colored bar graphs can be drawn by leaving
plot mode, changing the color, and re-entering the Y Bar Graph, X Value
submode (245 binary.) In this case the original Y0 value is preserved.
Bars drawn in this mode are one plot block wide; thicker bars can be
drawn by changing the X value by 1 and replotting it along with the same
Y Max value or using the Y Incremental Bar Graph submode.

Y Bar Graph, X Value - (245 binary)

The Y Bar Graph, X Value plot submode is entered by a binary 245
code or automatically from the Y Bar Graph, YO Value plot submode.
After entering this submode the next byte is used as the X value of the
next bar to be plotted, and the COMPUCOLOR II is automatically placed
into the Y Bar Graph, Y Max Value plot submode (244 binary.) Any of the
other plot submodes can be entered directly from this submode. For more
information on this submode see the description of the Y Bar Graph, YO
Value submode (246 binary.)

-78~

Y Bar Graph, Y Max Value - (244 binary)

The Y Bar Graph, Y Max Value plot submode is entered by a binary
24} code or automatically from the Y Bar Graph, X Value plot submode.
After entering this submode the next byte is used as the Y Max value of
the bar in the graph. The bar is plotted, and the COMPUCOLOR II is
automatically placed into the Y Bar Graph, X Value plot submode (245
binary) which allows the next bar to be defined and drawn. Any of the
other plot submodes can be entered directly from this submode. For more
information on this submode see the description of the Y Bar Graph, YO
value submode (246 binary.)

Y Incremental Bar Graph - (243 binary)

The Y Incremental Bar Graph plot submode is entered by a binary 243
code. After entering this submode the next byte defines the next two
vertical and horizontal increments for two vertical bar graphs. Thus,
it is possible to position a bar graph on either side of the present
location by adding or subtracting an increment to the bar graph
previously defined. The coding and composition of the incremental
direction code is the same as that defined in the XY Incremental Point

Plot submode (251 binary.) Any of the other plot submodes can be
entered directly from this submode.

X0 Vector Plot ~ (242 binary)

The X0 Vector Plot submode 1s entered by a binary 242 code after
the general Plot Mode is entered. After entering the X0 Vector Mode the
next byte defines the X0 point of the vector being drawn. The vector
mode requires two endpoints to be defined (i.e. X0,Y0 and X1,Y1.) The
X1,Y1 values should be previously defined by way of the X and Y Point
Plot submodes (253 and 252 binary.) Upon receiving the X0 value the
COMPUCOLOR II 1is automatically placed into YO0 Vector Plot submode.
After receiving the Y0 value the COMPUCOLOR II plots the best fitting
straight line between X0,Y0 and X1,Y1 using the plot blocks and returns
to the X0 Vector Plot submode, ready to plot vectors between successive
X0,Y0 pairs. This process is shown below:

Function Code
Plot Mode 2
or

X Point Plot 253

X1 Vector point 1 0 to 127
Y1 Vector point 1 0 to 127
X0 Vector Plot 242

X0 Vector point 1 0 to 127
YO Vector point 1 0 to 127
X0 Vector point n 0 to 127
YO Vector point n 0 to 127

-79-

Plot Escape 255
or
Plot Submode 240 to 254

Thus, in BASIC the above sequence becomes

100 PLOT 2, X1,Y1
110 PLOT 242

120 FOR I=1 TO N

130 PLOT X0(I),Y0(I)
140 NEXT I

150 PLOT 255

To plot a rectangle around the entire screen simply execute the
statement

pPLOT 2, 0,0, 242, 0,127, 127,127, 127,0, 0,0, 255
YO Vector Plot - (241 binary)

The YO Vector Plot submode is entered by a binary 241 code after
the general Plot Mode is entered. After entering this submode the next
byte defines the YO value of the vector being drawn. There is no
restriction on Y0 except that it must be in the range 0 to 127. Upon
receiving the YO value a vector is plotted from X1,Y1 to X0,Y0 with
X0,Y0 replacing the old X1,Y1 endpoint. If the next vector has a X1,Y1
value equal to the old X0,Y0 value, then only the new X0,Y0 values need
be sent. This effectively draws a vector from the present XO0,Y0
position to the new X0,Y0 position. For more information on this submode
see the description of the X0 Vector Plot submode (242 binary.)

Incremental Vector Plot ~ (240 binary)

The Incremental Vector Plot submode is entered by a binary 240 code
after the general Plot Mode is entered. After entering this submode the
next byte defines the increments in the X0,Y0 and X1,Y1 values for the
vector from X1,Y1 to X0,Y0. The values for the increments are defined
as follows:

b7 b6 b5 b4 b3 b2 b1 bO

[x 1 [y 1 [x 1 [Y]
1 1 0 0

The 4 two bit codes for the increments are defined as follows:

No change
Negative increment
Positive increment
No change

WN = O

~80-

The incremental direction codes are similar to those used for the other
increment plot submodes. Furthermore, if either half of the word is all
zeroes, then the corresponding X,Y values will be changed but no vector
will be drawn. This allows endpoints for the vectors to be skipped.
The only time a vector is drawn is when both halfs of the word are
non-zero. The Incremental Vector Plot submode does not automatically
transfer control to any other plot submode. Therefore, a series of
incremental movements in both X1,Y1 and X0,Y0 can be made by sending
consecutive incremental direction codes.

9.6 RS-232C Interface

The RS-232C interface allows the user to connect any RS-232C
compatible device to the COMPUCOLOR II. For instance, this enables most
serial printers to be interfaced without any additional software.

The RS-232C port is controlled by several escape codes which set
the baud rate of the serial output and direct all output to the serial
port. The default baud rate of the serial port is 9600 baud with 1 stop
bit. This rate can be changed by using the ESC R sequence. The setting
of the A7 Bit determines the number of stop bits when the ESC R sequence
is given., A7 OFF gives 2 stop bits (normal for 110 baud) and A7 ON
gives 1 stop bit. The baud rate is selected by issuing the sequence ESC
R followed by a character in the range 1 through 7 which specifies the
baud rate as shown in the table below.

BAUD RATE SELECTION
NUMBER KEY 1 2 3 ! 5 6 7

BAUD RATE 110 150 300 1200 2400 4800 9600

After the baud rate has been properly set, data can be transmitted to
the RS-232C serial port by executing an ESC M sequence. Once this
escape sequence has been issued, all inputs to the CRT display drives
(including all keyboard inputs and BASIC outputs) are directed to the
RS-232C port instead of the CRT screen. Thus, the only way to break out
of this mode from the CRT mode is via the CPU RESET key or in Disk BASIC
by executing a POKE 33265,0 statement which resets the BASIC Output Flag
to send characters to the screen in visible cursor mode. 1In BASIC the
COMPUCOLOR ITI can be reset to the previous output mode by saving the
contents of the BASIC Output Flag with an X=PEKK (33265) function before
issuing an ESC M sequence and then restoring the BASIC Output Flag by
executing the statement POKE 33251,X as follows:

-81-

10 REM SET BAUD RATE = 300, 1 STOP BIT

20 PLOT 14,27,18,3,15

100 GOSUB 9000: REM DIRECT OUTPUT TO RS~232C PORT
110 FOR I=1 TO 10

120 PRINT "THIS IS AN RS~-232C TEST"

130 NEXT

140 GOSUB 9500: REM RESET OUTPUT TO CRT

150 PRINT "BACK TO THE CRT"

160 END

9000 TMP = PERKX (33265): REM SAVE BASIC OUTPUT FLAG
9010 PLOT 27,13: REM OUTPUT TO RS-232C

9020 RETURN

9500 POKE 33265, TMP:REM RESET OUTPUT TO CRT

9510 RETURN

Several other control and escape codes interact with the RS-232C
serial port. The ESC C sequence transmits the cursor and color status

to the RS-232C port using the following sequence:
3, X, Y, 6, Status, ASCII Character, 13

The X,Y values are the current cursor position, Status is the color
status word of the ASCII Character stored at the cursor position. Using

the CONTROL X code, every text character on the screen is transmitted to
the RS-232C port from the visible cursor to the end of the page or until
an FF,00 sequence is found in the screen refresh RAM. The text
characters are sent in lines terminated by a linefeed and carriage
return. The color status is not transmitted.

NOTE - When interfacing any device to the RS-232C serial port it may be
necessary to switch the transmit and receive data lines at device end of
the cable (lines 2 and 3). See Appendix D.l4 for pin assignments on the
COMPUCOLOR 1I1I.

9.7 Using the COMPUCOLOR II as a Terminal

The COMPUCOLOR II can be used as a data communications terminal
with the RS-232C interface. To enter the terminal mode, the user must
strike CPU RESET, which places the COMPUCOLOR II into CRT mode or
terminal mode.

Initially, the CRT is placed in local mode where all keyboard
inputs are echoed to the screen. At this point the correct baud rate
should be set. Half-duplex mode and full-duplex mode may be entered by
striking the ESC H and ESC F sequences, respectively. In half duplex
mode all keyboard inputs are echoed both to the CRT and to the RS-232C
port. In full duplex mode all keyboard inputs are directed only to the
RS-232C port. By striking the BREXK key, full duplex mode can be exited
and half duplex mode entered.

NOTE - When interfacing a modem or acoustic coupler to the RS-232C
serial port, it usually is not necessary to switch the transmit and
receive data lines because the RS-232C port is configured as if the
COMPUCOLOR II were a data communications terminal. On some computer
systems using 7 bit ASCII codes, correct parity is required. The
COMPUCOLOR II is set up to transmit and receive 8 bit ASCII characters
and data which precludes parity checking. In this case proper

-82-

communications will require a special communications program that
executes in the user's RAM workspace.

Another problem that may be encountered is due to the fact that the
COMPUCOLOR II responds to almost every ASCII control code and escape
sequence. If the host computer sends control codes other than NULL,
CARRIAGE RETURN, LINEFEED, and ERASE PAGE, then the COMPUCOLOR II may
respond in an unexpected fashion. In these cases it is probably best if
the host computer treats the COMPUCOLOR II as a TELETYPE instead of a
CRT dislay terminal.

9.8 Miscellaneous Escape Codes

The COMPUCOLOR II has several additional escape codes to test the
display, and jump to fixed and user defined memory locations. A test
pattern can be generated on the CRT screen using the ESC Y test mode
sequence. By issuing an ESC Y followed by a character, the entire
screen is filled with that character using the current visible status
word as the visible status word for each character on the CRT screen.

Several of the remaining ESCAPE codes have been pre-programmed to
execute JMP's to certain memory locations as outlined below.

ESCAPE CODE MEMORY LOCATION
HEX DECIMAL

I 9000 36864

S A000 40960

T 8200 33280

81BF 33215
The ESC © is a user definable escape code. By POKEing an 8080 JMP

instruction into the three bytes starting at 33215 a jump to any
location in memory can be defined.

-83-

10. FILE CONTROL SYSTEM

10.1 Introduction to FCS

The File Control System, or FCS, is used to manage the diskettes
which store programs. The File Control System enables the user to store
and save programs, screen displays, and arrays.

To enter FCS the user must first type ESC D, then the message
prompt FCS> will appear. Once in the File Control System, commands
should be entered after the FCS> prompt. For example, the command DIR
should be used for listing the directory of a diskette. To change from
one drive to another, the command DEV0O: must be typed for the internal
drive, and DEV1: must be typed for the external disk drive. Machine~
code programs may be in either one of two different FCS file types:

FILE TYPE .PRG

A .PRG type file is created with the FCS SAVE command. It is a
machine~-code program in "Memory image"™ form. The information in the
file is a contiguous memory image of the program. The RUN command will
load a .PRG file into memory starting at the specified Load Address in
the file's directory entry, and begir execution at the Start Address
specified in the file's directory entry. A .PRG file is loaded into
memory much faster than an .LDA file. Therefore, once a program is
working, it should be saved in .PRG form with the SAVE command, so that
subsequent RUN's of the program will be quicker.

FILE TYPE .LDA

An .LDA type file is created by the COMPUCOLOR 8080 Assembler. The
file consists of one or more data records and is terminated by one end
record. Each data record specifies a load address for the record, and
one or more data bytes to be loaded sequentially into memory starting at
the load address. The end record specifies the starting (execution)
address for the program (the operand of the END statement in the source
program).

FCS can also be entered via the ESC G sequence. In this mode all
outputs are sent to the RS~232C serial port and the prompts and inputs
are echoed to the CRT screen. The ESC ESC sequence will exit FCS.

In BASIC FCS can be called by issuing a PLOT 27,4 (or PLOT 27,7 for
output to the RS-232C port). All subsequent outputs from BASIC are
treated as inputs to FCS. This mode is exited by executing a PLOT 27,27

statement which returns control of BASIC's output back to BASIC. See
Section 8.2 for further details.

10.2 The FCS Commands

The FCS system has a number of commands which enable the user to
manipulate records as desired. A list of commands appears in Appendix
B.1. The following commands are used as explained below. Before any of
these commands may be used, the user must first enter the File Control
System by typing ESC D as described above, In the following
descriptions of commands, angle brackets, <>, will be used to denote an

—8l=

O g+

element of a statement that is optional. The 'Device Name' refers to
the name and number of the disk drive being used. The COMPUCOLOR II has
an internal disk drive, CDO, and an optional external disk drive, CD1.
The 'File Spec' is the name that the user has assigned to the file
followed by the file type (.PRG, .LDA, .BAS, etc.) and, optionally, a
semicolon (;) followed by a version number in the range 01 to FF HEX.
If the specified file is being read, then the default version is the
file with the largest version number. With files being written, the
default version number is one higher than the largest version number of
an existing file on the specified device. If no file currently exists on
the disk with the specified name, then the default version number is 01.
The 'Memory Spec' is the 'Start Address' in HEX followed by the number
of bytes or followed by hyphen (-) and the 'End Address'. Only the
first three letters of any command are required.

CAUTION: When a COPY, DELETE, or DUPLICATE command is executed, the
screen memory is used, and any screen display will be lost. A brief
character display will appear during the exucution of these commands.

COPY

The COPY command allows the user to copy a file, possibly to
another disk drive, and is of the form:

COPY <Device Name:> File Spec TO <Device Name:> File Spec
For example:

COP O0:TEST.PRG TO 1:ABC

When entered, this command will copy the latest version of TEST.PRG on

device O gg file name ABC.PRG on device 1. The COPY command used the
screen memory as a temporary buffer.

DELETE

The DELETE command allows for the deletion of any file on the
diskette, and is of the form:

DELETE <Device Name:> File Spec
For example:

DEL TEST.BAS; 1

DEL 1:TEST.PRG; 2
DEL CD1:NAME.RND; 1

The complete File Spec is needed to delete a file. This form of file
protection is provided to prevent accidental erasures. The DELETE

command repacks the disk and directory by using the screen memory as a
temporary buffer.

DEVICE

The DEVICE command allows the user to change the default device or

-85-

drive, and is of the form:
DEVICE <Device Name:>

If the Device Name is not specified, then the current default device is
listed. For example:

DEV CDO:
will change the default device to the COMPUCOLOR II internal disk
drive.
DIRECTORY

The DIRECTORY command lists all the programs on the diskette on any
device, and is of the form:

DIRECTORY <Device Name: >
For example:

DIR
DIR CD1:

A directory listing may be halted by striking the BREAK key, and it
may be resumed by striking the RETURN key. If the LINEFEED key is
struck after the BREAK key, the directory is stopped and the machine is
ready to receive another command.

DUPLICATE
The DUPLICATE command allows all the files on one diskette to be
copied to another diskette. The two specified devices must be of the
same type, but have different numbers. The command is of the form:
DUPLICATE Device Name: TO Device Name:
For example:

DUP 0: TO 1:

The DUPLICATE command uses the screen memory as a temporary buffer.

-86-

INITIALIZE

The INITIALIZE command allows the user to give a diskette a
ten-letter name and optionally assign the number of allotted directory
blocks. This command clears all the directory information on a
diskette, effectively deleting all files on the diskette. It should
only be used when a "clean" diskette is desired. It is of the form:

INITIALIZE <Device Name:> Volume Name No. of DIR blocks

For example:

INI CDO: SAMPLENAME
INTI CD1: TESTDISKO1 10 (the 10 is optional)

The COMPUCOLOR II Disk directory size defaults to 6 blocks which can
hold 34 files. Each directory block can hold information on 6 files;
however, 2 entries are neccesary for the Volume Name and free space
entries, i.e. 34 = 6% 6 - 2,

LOAD

The LOAD command allows the user to load any type file into any RAM
memory location he may wish. This indicates that the user may bring a
display to the screen which is correct. LOAD command uses the same
guide lines as the SAVE command. The LOAD command operates differently
depending on the file type loaded. The default type is .LDA.

To LOAD a file type other than .LDA, the command is of the form:

LOAD <Device Name:> File Spec <Load Address)>

The file 1s assumed to be a "memory image™ file and is loaded
contiguously into memory starting either at the load address in the
file's directory entry or at the load adress specified in the command
line.

To load a file of type .LDA, the command is of the form:

LOAD <Device Name: > File Spec <Lowest Address <Memory Spec>>

Each data record in the file is loaded into memory. If Lowest Address
and Memory Spec are not specified, then each record is loaded at the
address specified in the record.

If Lowest Address and Memory Spec are specified, the default Memory
Spec is AOOO-FFFF. A "memory range" will be determined as follows:

1. If the Memory Spec is omitted, the range will be AQOO-FFFF.

2. If one number, i.e. C000, is given for the Memory Spec, then
the range will be specified by the given number as the low
limit and FFFF as the high limit of the range.

3. If two numbers, separated by a hyphen are given for the Memory
Spec, then the range is specified by those numbers.

i, If two numbers, separated by a space or comma, are given for
the Memory Spec, then the first number will be the low limit
of the range, and the second number is the byte count used to
calculate the high limit of the range. For example, D000 400
will give a range DOQO-D FF.

-87-

An "offset"™ will be calculated as "low limit of memory range" minus
"Lowest Address™. Each data record will then be loaded at the address
specified in the record plus the "offset". Data will be loaded only
within the "memory range" as determined above. NOTE: BASIC programs
must be LOADed and SAVEd in BASIC, not in FCS.

READ

The READ command allows retrieval of information on any part of the
diskette without regard to the directory or program boundaries. The
command is of the form:

READ <Device Name:> Start Block Memory Spec
For example:
READ CDO: 20 7000-TFFF
reads 4096 bytes (1000 HEX) from the internal disk drive starting at
block 32 (20 HEX) into the display memory at T7000-7FFF.
RENAME N

The RENAME command allows the user, in one step, to change the file

name, file, type and the version number separately or collectively

without changing the information stored in the program. The statement
is of the form:

RENAME <Device Name:> File Spec TO File Spec
For example:
REN TEST.PRG; 1 TO NWTEST.PRG; 2

renames the file TEST.PRG; 1 to NWTEST.PRG; 2.

RUN

The RUN command is used to load and execute machine-code programs.
Only two files are permitted with the RUN command: .PRG and .LDA. The
default file type is .PRG. To execute an .LDA file the .LDA extension
mist be specified. The RUN command is of the form:

RUN <Device Name:> File Spec
For example:
RUN CHESS
loads and executes a file CHESS.PRG from the default device.

SAVE

The SAVE command allows the user to save any type of data, program,

-88-

or display in a file on a diskette. The command is of the form:

SAVE <Device Name:> File Spec Memory Spec Start Address
Actual Address

For example:

SAVE SCREEN.DSP 6000 1000
or

SAVE SCREEN.DSP 6000-6FFF

will save the screen display in a file called SCREEN.DSP.

WRITE

The WRITE command allows information to be written anywhere on the

diskette without regard to the directory or previous program boundaries,
and is of the form:

WRITE <Device Name:> Start Block Number Memory Spec

NOTE: It is possible to destroy the FCS directory information using the
WRITE command. Care should always be taken when using this command.

-89-

APPENDICES

A. DISK BASIC

A.1 BASIC Statements

The following summary of BASIC statements defines the general
format for each statement and gives a brief explanation. Optional items
are enclosed in angle brackets, '<' and '>'. The following items in the
syntax descriptions are used to represent different types of variables
and expressions:

STATEMENT

CLEAR

CONT

DATA

DEF

DIM

END

FILE "N"

FILE "R"

var - numeric or string variable
nvar - numeric variable

svar - string varaible

expr - numeric or string expression
nexpr - numeric expression

sexpr - string expression

SYNTAX AND DESCRIPTION

CLEAR <nexpr>
Clears all variables and optionally sets the string space size
to nexpr bytes.

CONT
Continues execution after CTRL/J or ¥ (LINEFEED).

DATA value list
Defines data values to be read using the READ statement.

DEF FN §var (nvar) = nexpr
Defines a user function to be used in the program.

DIM var (nexpr <,...,nexpr>) <,...>
Reserves space for lists and tables according to subscripts
specified after variable name. Up to 255 dimensions.

END
Terminates program execution.

FILE "N",filename,records,record size,blocking factor

Creates a new random file with the specified number of records
(1-32767), record size (1-32767 bytes), and blocking factor
(1-255). File name is a string expression containing a valid
FCS file name.

FILE "R",filenumber,filename,buffers <;records,record size,
blocking factor>

-90-

FILE

FILE

FILE

FILE

FILE

FOR

GET

GOSUB

GOTO

I'Cl'

I'Dl'

I'El'

Opens a random file with the specified file number (1-127) and
number of buffers (1-255).

FILE "A",file,current record <,records, record size, blocking
factor>
Finds the attributes for the specified file.

FILE "C",file1 <{5ecs?
Closes the specified files and releases the buffer space.

FILE "D",file1 <5404
Writes any modified buffers for the specified files
immediately to the corresponding devices.

FILE "T" <,line number>

Causes file errors to trap to the specified line number. No
line number turns the file error trapping off.

FILE "E",file,error,line number

Finds the disk error number and location of the last file
error.

FOR nvar = nexpr1 TO nexpr2 <STEP nexpr 3>
Sets up a loop to be executed the specified number of times.

GET file<,record<,first>>;nvar,svar[byte count],...

Reads from the record in the file starting from the first byte
into the variables in the list. String variables must have a
byte count (1-255).

GOSUB line number
Used to transfer control to the specified line number of a
subroutine,

GOTO line number

Used to unconditionally transfer control to the specified line
number,

IF nexpr GOTO line number

IF nexpr THEN line number

Used to conditionally transfer control to the specified line
number.,

IF nexpr THEN statement <:statement:...>
Used to conditionally execute BASIC statements

-91=

INPUT

LIST

LOAD

NEXT

ON

ouT

PLOT

PCKE

PRINT

INPUT <"string";> var <,vary.e.>
Used to input data from the terminal, prompts with either "2?"

or the optional quoted string as the prompt.

LIST <line number>
Prints the user program currently in memory on the CRT
display, optionally, starting from the specified line number.

LOAD filename

Loads the specified file. If no extension is specified, then
a BASIC program is loaded; otherwise, the .ARY extension loads
the specified numeric array, and the .DAT extension loads the
specified data into memory after BASIC's workspace.

NEXT <nvar <,nvar,;...>>

Placed at the end of a FOR loop to return control to the FOR
statement.

ON nexpr GOSUB line number <,line number,...>
Multiple GOSUB statement. Transfers control to the line
number specified by nexpr.

ON nexpr GOTO line number <,line number,...>

Multiple GOTO statement. Transfers control to the line number
specified by nexpr.

OUT port,nexpr

Outputs the specified nexpr (0-255) to the 8080 port (0-255).
CAUTION: Do not output to the CRT controller chips ports
(96-111).

PLOT nexpr <,nexpr,...>

Sends the one byte results (0-255) of the expressions to the
CRT display.

POKE location,nexpr

Causes the one byte result of nexpr to be placed in the
specified memory location (-32768 to 65535).

PRINT expr <,expr,...>

PRINT expr <;exXprj...> :

Prints the results of the expressions in the list. Commas are
used for normal spacing, and semicolons are used for
compressed spacing. If either a comma or a semicolon is the
last item in the print 1list, the carriage return is
suppressed.

PRINT SPC (nexpr)

Prints the specified number of spaces. May be placed anywhere
in the print list.

-92-

PUT

READ

REM

RESTORE

RE TURN

RUN

SAVE

WAIT

PRINT TAB(nexpr)

Tabs to the specified column. May be placed anywhere in the
print list.

Equivalent to the keyword PRINT.

PUT file <,record<,first>>; nexpr,sexpr[byte count] <,...>
Writes the expressions in the list to the record in the file
starting from the first byte. String expressions must have a
byte count.

READ var <,var,...>
Used to assign the values in DATA statements to the variables
specified in the list.

REM comment
Used to insert explanatory comments in a BASIC progranm.

RESTORE <line number>

Resets the data pointer to either the first DATA statement or
optionally to the specified line number.

RETURN
Returns program control to the statement following the last
executed GOSUB statement.

RUN <line number>
Executes the BASIC program in memory, optionally, starting at
the specified line number,

SAVE filename

Saves the specified file. If no extension is specified, the
current BASIC program in memory is saved; otherwise, the .ARY
extension saves the specified numeric array, and the .DAT
extension saves the data in memory after BASIC's workspace.

WAIT port, nexpr1 {,nexpr2>

Reads from the specified 8080 port and exclusive OR's the
result with nexpr2 (0 if not present), and then AND's with
nexpr1. The program waits until the result is zero before
continuing.

statement : statement < : statement : ... >

A colon is used to separate statements in a multiple statement
line.

A.2 BASIC Operators

SYMBOL FUNCTION

= Assignment or equality test (DISK BASIC does not allow
the LET statement)

- Negation or Subtraction

+ Addition or String Concatenation

* Multiplication

/ Division

. Exponentiation

NOT Logical or One's complement (2 byte integer)

AND Logical or Bitwise AND (2 byte integer)

OR Logical or Bitwise OR (2 byte integer)

=,4<,>,<=, Relational tests (result is TRUE = -1 or FALSE = 0)
=<{,>=,=>,

<O

The precedence of operators is:
1. Expressions in parentheses
2. Exponentiation (A"B)
3. Negation (-X)
L Y
5. Fy-

6. Relational Operators (=,<>,<,>,<{=,>=)

Te NOT
8. AND
9. OR

-9

A.3 Standard Mathematical Functions

BASIC provides functions to perform certain standard mathematical
operations such as square roots, logarithms, etc.

These functions have three or four letter call names followed by a
parenthesized argument. They are predefined and may be used anywhere in

a program.

CALL NAME
ABS(x)

ATN (x)

CALL(x)

COS(x)
EXP (x)
FRE(x)
INT (x)

INP(x)

LOG (x)

PEEK (x)
POS(x)

RND (x)
SGN (x)
SIN(X)

SPC(x)

SQR(x)

TAB(x)

TAN (x)

FUNCTION

Returns the absolute value of x.

Returns the arctangent of x as an angle in radians in
range 1 71/2), where 7\ = 3.14159.

Call the user machine language program at decimal
location 33282. (8202 HEX) D,E registers have value

of X and D,E registers must have Y on return from
machine language routine.

Returns the cosine of x radians,

Returns the value of &* where e = 2,71828.

Returns number of free bytes not in use.

Returns the greatest integer less than or equal to x.

Returns a byte from input port x. The range for x is
0 to 255.

Returns the natural logarithm of x.

Returns a byte from memory address -32768<x<65535; if
x is negative the memory address is 65536+x.

Returns the value of the current cursor position
between 0 and 63.

Returns a random number between 0 and 1.
Returns a -1, 0, or 1, indicating the sign of x.
Returns the sine of x radians.

Causes x spaces to be generated. (Valid only in a
PRINT statement).

Returns the square root of x.

Causes the cursor to space over to column number x.
(Valid only in a PRINT statement).

Returns the tangent of x radians.

The argument x to the functions can be a constant, a variable, an

-95-

expression, or another function. Square brackets cannot be used as the
enclosing characters for the argument x, e.g. SIN[x] is illegal.
Function calls, consisting of the function name followed by a
parenthesized argument, can be used as expressions anywhere that
expressions are legal.
Values produced by the functions SIN(x), COS(x), ATN(x), SQR(x),
EXP(x), and LOG(x) have six significant digits.

A.4 Standard String Functions

Like the intrinsic mathematical functions (e.g., SIN, LOG), BASIC
contains various functions for use with character strings. These
functions allow the program to access parts of a string, determine the
number of characters in a string, generate a character string
corresponding to a given number or vice versa, and perform other useful

operations. The various functions available are summarized in the
following table.

CALL NAME FUNCTION

ASC (x$) Returns the eight bit internal ASCII code (0-255) for
the one-character string. 1If the argument contains
more than one character, then the code for the first
character in the string is returned. A value of 0 is
returned if the argument is a null string (LEN(x$) =
0). See ASCII codes in Appendix E.

CHR$ (x) Generates a one-character string having the ASCII
value of x where x is a number in the range 0 to 255.
Only one character can be generated.

FRE (x$) Returns number of free string bytes. (See CLEAR
statement in 3.11)

LEFT$ (x$,1) Returns left-most I characters of string (x$). If
I>LEN (x$), then x$ is returned.

LEN(x$) Returns the number of characters in the string x$,
with non-printing characters and blanks being
counted.

MID$ (x$,I,J) J is optional. Without J, returns right-most

characters from x$ beginning with the Ith character,
If I>LEN(x$), MID$ returns the null string. With 3
arguments, it returns a string of length J of
characters from x$ beginning with the Ith character.
If J is greater than the number if characters in x$ to
the right of I, MID$ returns the rest of the string.
Argument ranges: 0KI<=255, 0<=J<=255.

RIGHT$ (x$,I) Returns right-wost I characters of string (x$). If
I>LEN(x$), then x$ is returned.

STR$ (x) Returns the siring which represents the numeric value
of x as it would be printed by a PRINT statement.

«~96~

VAL (x$) Returns the number represented by the string x$. If
the first character of x$ is not +, -, or a digit,
then the value 0 is returned.

In the above example, x$ and y$ represent any legal string
expressions, and I and J represent any legal arithmetic expressions.

A.5 BASIC Error Codes

After an error occurs, BASIC returns to command level and types
READY. Variable values and the program text remain intact, but the
program cannot be continued and all GOSUB and FOR context is lost.

When an error occurs in a statement executed in immediate mode, no
line number is printed.

Format of error messages:

Stored BASIC statement XX ERROR IN YYYY
Immediate mode statement XX ERROR

In both of the above examples, "XX" is the error code. The "YYYY"
is the line number in which the error occurred in the indirect
statement.

The following are the possible error codes and their meanings:

ERROR ME ANING

BS Bad Subscript. An attempt was made to reference a matrix
element which 1s outside the dimension of the matrix. This
error can occwr 1f the wrong number of dimensions is used in a
matrix reference. For instance, A (1,1,1)=Z when A has been
dimensioned DIM A(2,2).

DD Double Dimension. After a matrix was dimensioned, another
dimension statement for the same matrix was encountered. This
error often occurs if a matrix has been given the default
dimension 10 because a statement like A(I)=3 is encountered
and then later in the program a DIM A(100) is found.

CF Call Function error. The parameter passed to a mathematical
or string function was out of range. CF errors can occur due
to:

1« a negative matrix subscript (A(-1)=0)

2, an unreasonably large matrix subscript (>32767)

3. LOG with a negative or zero argument

y, SQR with a negative argument

5. A°B with A negative and B not an integer

6. a CALL(x) before the address of the machine language
subroutine has been patched in

7. calls to MID$, LEFT$, RIGHT$, INP, OUT, WAIT, PEEK, POKE,
PLOT, TAB, SPC or ON...GOTO/GOSUB with an improper
argument

o Illegal Direct. You cannot use an INPUT or DEF statement in
immediate mode.

-97-

oD

oM

ov

SN

RG

Us

/0

CN

LS

0S

SL

ST

™

NEXT without FOR. The variable in a NEXT statement
corresponds to no previously mentioned FOR statement.

Out of Data. A READ statement was executed but all of the
DATA statements in the program have already been read. The
program tried to read too much data or an insufficient number
of data values were included in the program.

Out of Memory. Program too large, too many variables, or too
many FOR loops, too many GOSUB's, too complicated an
expression, or any combination of the above.

Overflow. The result of a calculation was too large to be
represented in BASIC's numeric format. If an underflow
occurs, zero is given as the result and execution continues
without any error message being printed.

Syntax error. Missing parenthesis in an expression, illegal
character in a line, incorrect punctuation, etc.

RETURN without GOSUB. A RETURN statement was encountered
without a previous GOSUB statement being executed.

Undefined Statement. An attempt was made to GOTO, GOSUB, or
THEN to a statement which does not exist.

Division by Zero.

Continue error. Attempt to continue a program when none
exists, an error occurred, or after a new line was typed into
the program.

Long String. Attempt was made by use of the concatenation
operator to create a string more than 255 characters long.

Out of String Space. Use the CLEAR X statement to allocate
more string space or use smaller sStrings or fewer string
variables.

SAVE/LOAD error. (From disk operation.) Other error messages
may also appear from the File Control System. See Appendix
B.2.

String Temporaries. A string expression was too complex.
Break it into two or more shorter expressions.

Type Mismatch, The left hand side of an assignment statement
was a numeric variable and the right hand side was string, or
vice versa, or, a function which expected a string argument
was given a numeric one or vice versa.

Undefined Function. Reference was made to a user defined
function which was never defined.

A.6 BASIC Random File Error Codes

~98-

ERROR

EV

BF

NO

AQ

FS

RO

co

cc

RE

NUMBER MEANING

10

12

14

16

18

20

No error vector. No file error trap line number has
been set with a FILE "T" statement.

Bad file name. Improper FCS file name.

File not open. The specified file number is not
open.

File already open. The specified file number is
already in use.

File size error. The file being created with the FILE
"N" statement is too large or the file parameters on
the file being opened with the FILE "R" statement are
improper.

Record overflow. Too many data bytes were either read
from or written to the current record.

End of file. Tried to read or write past the end of
the file.

Cant't open file. The specified file does not exist
on the specified device. (Possibly a Sof-Disk or
hardware problem.)

Can't close file. The specified file can not be
closed. (Usually a disk or hardware problem.)

FCS READ error. (Usually a disk or hardware
problem.)

FCS WRITE error. (Usually a disk or hardware
problem.)

B. FCS (File Control System)

B.1 FCS Commands

The File Control System is entered by pressing (ESC) then D from
the keyboard, or PLOT 27,4 from BASIC. (Only tlie first three letters of
the command need to be typed in.) If (ESC), D is from the keyboard then
BASIC is terminated and must be re-entered by (ESC), E key sequence.

The
commands:

()
L]

following definitions will be used to describe the FCS

denotes mandatory element;
denotes optional element and if not specified, will result in
the default type.

(Device name:) = [Device type] [Number] (:)

Device type is CD for COMPUCOLOR II Disk and number is either
0 or 1.

(Memory spec) = (Load address)(byte count) or (-end address)

All memory addresses are in HEX format.

(File Spec.) = (File name) [.Typel [;Version]

CAUTION:

File name is any 6 characters. Type can be any three
characters and PRG is the default type. Version is 0 to FF
HEX. NOTE: After a default device type has been selected only
the number of the device is required. The default device for
the COMPUCOLOR II is CDO.

The COPY, DELETE, and DUPLICATE commands use the screen memory

as a temporary buffer while performing the specified function,

COMMAND

COPY

DELETE

DEVICE

DIRECTORY

SYNTAX AND DESCRIPTION

COPY [Device Name:] (File Spec) TO [Device Name:]
[File Spec]

Copies the specified file, usually, to another device.
It uses the screen memory as a temporary buffer.

DELETE [Device Name:] (File Spec)

All File Spec options are required. Deletes the
specified file, and repacks the disk and directory
using the screen memory.

DEVICE [Device Name:]
Sets and displays the current default Device Name.

DIRECTORY [Device Name:]

Lists the directory for the default or specified
device.

~100-

DUPLICATE DUPLICATE (Device Name:) TO (Device Name:)
Duplicates all the files on one disk to another
disk on a second disk using the screen memory as a
temporary buffer.

EXIT "FCS® ESC ESC or ESC E to return to BASIC., In BASIC, use
PLOT 27,27 .
L"O!Z (..vr,
INITIALIZE 3 INITIALIZE (Device Name:) (Volume Name) [No. Dir.
TrIT ©bd:ivell Blocks]

Initializes the directory on the disk currently in the
specified device with the given Volume Name and number

of directory blocks.

LOAD LOAD [Device Name:] (File Spec) [Low Addr [Memory
Spec]]
Loads memory with a program. Defaults to .LDA type
files written by the COMPUCOLOR II Assembler. (See
Section 10.2 for complete details.)

READ READ [Device Name:] (Start Block No.) (Memory Spec)
Reads into memory from anywhere on the disk starting
at any block and ending where specified, without
regard to program boundaries.

RENAME RENAME [Device Name:] (File Spec) TO (File Spec)
Allows any file to be renamed without changing any
information in the file itself.

RUN RUN [Device Name:] (File Spec)
Loads and executes the specified program. The default
type is .PRG.

4 ,n SAVE | \ SAVE [Device Name:] (File Spec) (Memory Spec) [Start

'f o e Address [Actual Address]]

[,y ol R Saves memory image in the specified file. The Start
Lo Y Address and Actual Address default to the lower limit

i ‘ of the Memory Spec.

WRITE WRITE [Device Name:] (Start Block No.) (Memory Spec)
Writes memory image to the specified block on a
disk without regard to the FCS directory information
and file boundaries. CAUTION: It is possible to
destroy the FCS directory and file information on a
disk with this command.

~101-

B.2 FCS Error Codes

The numbers to the right of the code meanings refer to the list of
error solutions that follows the code list,

MESSAGE MEANING

EBLF BAD LOAD FILE SPEC, 2

EBLK INVALID BLOCK NUMBER, 2
ECOP ERROR DURING COPY, 1 & 3
ECFB CAN'T FIND BLOCK, 3

EDCS DATA CRC ERROR, 3

EDEL DELETE ERROR, 1 & 3

EDFN DUPLICATE FILE NAME, 2

EDIR DIRECTORY ERROR, 1 & 2

EDRF - DIRECTORY FULL, 4

EDSY DATA SYNC CHARACTER ERROR, 1 & 3
EDUP ERROR DURING DUPLICATE, 1 & 3
EFNF FILE NOT FOUND, 2

EFRD FILE READ ERROR, 3

EFWR FILE WRITE ERROR, 3

EHCS HEADER CRC ERROR, 3

EIVC INVALID COMMAND, 2

EIVF INVALID FUNCTION, 2

EIVD INVALID DEVICE, 2

EIVP INVALID PARAMETERS, 2

EIVU INVALID UNIT, 2

EKBA KEYBOARD ABORT, 4

EMDV MISSING DEVICE NAME, 2
EMEM MEMORY ERROR DURING READ, 4
EMFN MISSING FILE NAME, 2

EMVN MISSING VOLUME NAME, 2

-102-

EMVR
ENSA
ENVE

ERSZ

ESIZ

ESKF
ESYN
EVFY
EVOV
EWRF

EWSF

MISSING VERSION, 2
NO START ADDRESS, 2
NO VOLUME ENTRY IN DIRECTORY, 5

FILE TOO LARGE TO READ INTO ALLOCATED MEMORY, 2 & 4

DEVICE SIZES NOT SAME, 1

SEFX FAILURE, 1

SYNTAX ERROR, 2

VERIFY FAILURE DURING WRITE, 3
VERSION NUMBER OVERFLOW, 4
WRITE FAILURE, 3

FILE TOO LARGE TO WRITE ON DISK, 2 & 4

Descriptions of Solutions to FCS Errors

1.

Mechanical Problem--Jammed READ/WRITE head, loose disk drive,
internal I/0 connectors. Refer to COMPUCOLOR II Maintenance
Manual.

Invalid User Input--Incorrect entry from user. Refer to FCS
Commands, Section B. 1.

Disk Failure--Try a different disk.

Error Message is self-explanatory.

Disk Not Initialized--you need to initialize the disk and possibly
purchase a formatted COMPUCOLOR II blank disk.

=103

C.1 Control Codes

C. CRT COMMANDS

To enter a control code, hold down the CONTROL key while depressing

the desired character key.

CONTROL
CODE

0

1

10

11

12

CONTROL
KEY

e

A

SECT ION

9.4

9.2

9.4

9.4

9.4

9.4

9.4

EXPLANATION
NULL-Has no effect.

AUTO =~ Loads and runs a BASIC program
named "MENU" from the disk drive.

PLOT ~ Enters graphic plot mode (see plot
submodes), not allowed as a BASIC input
character.

CURSOR X,Y - Enters X-Y cursor address
mode for either visible cursor or blind
cursor, used to go from BASIC to CRT MODE
when typed as a BASIC input character.

Not used.
Not used.

CCI - The following character provides the
8 bit visible status word., Specifies
Foreground, Background, Blink and Plot.
(See Appendix C.2)

Not used.

HOME - Moves the cursor to top left corner
of display.

TAB - Causes cursor to advance to next
column~~-the tab columns are every 8
characters.

CURSOR DOWN or LINEFEED -~ Causes a break
in BASIC execution of a program, causes
the cursor to move down one line.

ERASE LINE -~ Causes the cursor to return
to the beginning of the line and causes
the complete line to be erased. Also

causes the BASIC input line to be
ignored.

ERASE PAGE - Causes the complete screen to

be erased and the cursor to be moved to
the home position. BASIC input ignores

-104-

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28

9.4

9.2

9.2

9.2

9.2

9.2

9.2

9.2

9.2

9.2

9.2

9.6

9.)'"

9.4

9.1‘

this character.

CARRIAGE RETURN - Causes the cursor to
move to the beginning of the line it is
presently on. Causes BASIC input to
accept the typed line and process as a
statement or input data.

A7 ON - Turns the A7 flag on. (2x
character height and also stop bit.)

BLINK /A7 OFF - Turns the blink bit and AT
flag off.

BLACK KEY -~ Sets foreground color black if
flag is off and background black if flag
is on. (See codes 29 and 30 below.)

RED KEY ~ Same as above with color red.

GREEN KEY - Same as above with color
green,

YELLOW KEY - Same as above with color
yellow.

BLUE KEY - Same as above with color blue.

MAGENTA KEY - Same as above with color
magenta.

CYAN KEY - Same as above with color cyan.

WHITE KEY - Same as above with color
white.

XMIT - Causes data to be transmitted from
the visible cursor to the end of the page
or until an FF,00 sequence 1is found in
refresh RAM. Sends text characters with a
linefeed and carriage return at end of
each line. NOTE: Color status is not
sent.

CURSOR RIGHT - Causes the cursor to move
right 1 position, On BASIC input displays
previous character input.

CURSOR LEFT - Causes the cursor to move
left 1 position. On BASIC input deletes
previous character from input buffer.

ESC - Provides an entry to the escape code
table -- must be followed by one or more
codes for proper operaton.

CURSOR UP - Causes the cursor to move up

~-105-

29

30

31

9.2

9.2

C.2 STATUS WORD FORMAT

one line.

FG ON/FLAG OFF -~ Sets the flag bit off.
If followed by one of the color keys it
will set the foreground to that color.
Also, does not change input codes in the
range 96 to 127 that are to be stored in
the display memory, i.e. the shifted
alphabetic characters are displayed as
shown in columns 6 and 7 in the COMPUCOLOR
II character set in Appendix F. In plot
mode OR's "ON" bits.

BG ON/FLAG ON - Sets the flag bit on. If
followed by one of the color keys it will
set the background to that color. With
the FLAG on the shifted alphabetic
characters 96 to 127 are converted into 0O
to 31 when stored in the display memory,
i.e, the characters displayed are shown in
columns 0 and 1 in Appendix F. In plot
mode XOR's "ON" bits.

BLINK ON -~ Turns on the blink bit which
will blink the foreground color against
the backround color.

AT

A6

A5

Ay A3 A2 A1 AQ

PLOT

BLINK

BACKGROUND COLOR

FOREGROUND COLOR

BLUE

GREEN RED BLUE GREEN RED

-106~

C.3 ESCAPE CODES

To enter an escape code sequence, depress the ESC key followed by
the desired character key.

ESCAPE

CODE KEY SECTION EXPLANATION

0 e Used for terminal control--not available
for any other use.

1 A 9.4 Blind cursor mode.

2 B 9.3 Plot via color pad.

3 C 9.6 Transmit cursor X,Y position to RS-232C
port.

y D 10. 1 Enters Disk File Control System (FCS) with
CRT as output.

5 E 1.2 Re~entry to DISK BASIC.

6 . F 9.7 Sets full duplex mode, not functional when
in BASIC. The BREAK key restores to half
duplex when in terminal mode.

7 G 10.1 Enters Disk File Control System (FCS) with
RS-232C port as output.

8 H 9.7 Sets half duplex mode.

9 I 9.8 Causes a program jump to location 36864.
(9000 HEX)

10 J 9.4 Sets write vertical mode.

11 K 9.4 Sets scroll up and write left to right
mode.

12 L 9.7 Sets local mode.

13 M 9.6 Sends all output to the RS=232C port.

L N Set to ignore all inputs., In BASIC POKE
must be used to reset back to normal, or
hit CPU RESET.

15 0 Not used.

16 P Not used.

17 Q Not used.

18 R 9.6 Baud rate selection mode. A7 on = 1 stop

bit, AT off = 2 stop bits. See Appendix
C.4 below for the next key to specify the

-107-

19 S
20 T
21 U
22 v
23 W
2y X
25 Y
26 z
27 0
28 /
29]
30 -
31 -

C.4 BAUD RATE SELECTION

Number Key 1

Baud Rate 11

9.8

9.8

1.2

9.)'"

9.8

9.4

9.8

0

baud rate.

Causes a program jump to location 40960.
(A000 HEX)

Causes a program jump to location 33280.
(8200 HEX) .

Not used.
Not used.

Initiglizes and transfers control to DISK
BASIC 8001.

Sets terminal to page mode and write left
to right mode.

Test mode -- fill page with next
character.

Not used.

Visible cursor mode. Also used to exit
FCS.

Not used.
Not used.

User definable escape code. Causes a
program jump to locaton 33215. (81BF HEX)

Transfer control to the CRT mode.

3 4 5 6 7

300 1200 2400 4800 9600

- 108~

C.5 GRAPHIC PLOT SUBMODES

DISK BASIC PLOT

or
RS-232C CODE

255
254
2532
t252

251

o
)

248

247
246

2“5)
C..
243
242
C2u1)

240

For incremental plot submodes see the format of the incremental

PLOT SUBMODE

Plot Mode Escape
Character Plot

X Point Plot

Y Point Plot

X-Y Incremental Point Plot
X0 of X Bar Graph

Y of X Bar Graph

X max of X Bar Graph
Incremental X Bar Graph
Y0 of Y Bar Graph

X of Y Bar Graph

Y max of Y Bar Graph
Incremental Y Bar Graph
X0 Vector Plot

Y0 Vector Plot

Incremental Vector Plot

direction codes below.

C.6 INCREMENTAL DIRECTION CODES

OPTIONAL
FUNCTION
KEYBOARD

AX1 AY1 AX2 AY2
AT A6 A5 Al A3 A2 A1 A0
+ - + - + - + -
80 40 20 10 8 4 2 1

-109-

F

F

F

15
14
13
12
11

10

0

D.1 Key Memory

24576
28672
32940
32980
32982
32984
32986
33209
33210
33211
33215
33218
33221
33224
33228
33247
33249
33251
33265
33272
33273
33278
33279
33282
33285
33289
33433
65535

Lo

to
to

D. INTERNAL FEATURES

cations

28671 = Screen refresh RAM (Fast) 6000-6FFF HEX
32767 = Screen refresh RAM (Slow) T000-7FFF HEX

Points to maximum RAM used by BASIC
Points to start of BASIC source

Points to end of source and start of variables
Points to end of variables and start of arrays

Points to end of arrays

0 to 59 seconds of Real Time Clock
0 to 59 minutes of Real Time Clock
0 to 23 hours of Real Time Clock
User ESCAPE jump vector

User output FLAG jump vector

User input FLAG jump vector

User timer no 2 jump vector
External output port buffer
Keyboard FLAG.

FCS output FLAG

Input port FLAG

BASIC output FLAG

Output port FLAG

LIST output FLAG

Keyboard character

Keyboard character ready FLAG
Location of CALL(x) jump

BASIC output vector location
Number of characters on terminal output
Start of BASIC source code

Maximum Amount of RAM

D.2 PORT ASSIGNMENTS

PORT #

HEX

10
20
60
70
80

-
]

A 8%

I/0 PORT ADDRESS

IMS 5501

TMS 5501 Duplicate Addresses

Not Assigned

SMC 5027 /Ns pov
SMC 5027 Duplicate Addresses '
Not Assigned .

~-110-

Ouneut T T

PORT # TMS 5501 I/0 CHIP (See Appendix G.2)

HEX DEC

0-0 Read Serial Data in from RS=-232C interface

1 -1 Read Parallel Data from keyboard and disk

2 - 2 Read Interrupt Address on TMS 5501

3-73 Read Status on TMS 5501

y - 4 Issue Discrete Command

5-«5 Set Baud Rate on Serial I/0

6 - 6 Transmit Serial Data to RS-232C interface

7-17 Transmit Parallel Data to keyboard and disk
controls Disk R/W)

8 -8 Load Interrupt Mask Register

9 -9 Interval Timer #1

A - 10 Interval Timer #2

B - 11 Interval Timer #3

C -12 Interval Timer #14

D - 13 Interval Timer #5

E - 14 No Function

F - 15 No Function

PORT # SMC 5027 CRT CHIP (See Apperdix G.3)

HEX DEC

60 - 96 Load Register 0 - Don't Load

61 - 97 Load Register 1 - Don't Load

62 - 98 Load Register 2 - Don't Load

63 - 99 Load Register 3 - Don't Load

64 - 100 Load Register 4 - Don't Load

65 -~ 101 Load Register 5 -~ Don't Load

66 - 102 Load Register 6 - Roll Register#

67 - 103 Processor Load Command - Don't Use

68 - 104 Read Cursor X Register

69 - 105 Read Cursor Y Register

70 - 106 Issue Reset Command - Don't Issue

6B - 107 Scroll up 1 line

6C - 108 Load Cursor X Register

6D ~ 109 Load Cursor Y Register

6E - 110 Load Start Timing - Don't Load

6F - 111 Self Load Commad - Donft Use

WARNING: Do not output any values to the SMC 5027 CRT chip.

~111=

(also

D.3 COMPUCOLOR Fifty Pin Bus

PIN DESIGNATION PIN DESIGNATION
1 +12V 26 D2 BUS
2 R 27 A2

3 W 28 . D3 BUS
y IO W 29 A3

5 P2 (+12V) 30 D7 BUS
6 $2 TTL 31 Al

7 $1 (+12V) 32 D6 BUS
8 17.9712 Miz 33 D4 BUS
9 SYNC 34 D5 BUS
10 RESET 35 A6

11 -5V 36 DO 8080
12 +5V 37 AT

13 GND 38 D1 8080
14 I/0 i 39 A8

15 A10 40 D2 8080
16 READY 41 A1y

17 NO CONNECTION 4o D3 8080
18 NO CONNECT ION 43 D4 8080
19 HOLD 4y A9

20 A5 45 A13

21 A11 46 D7 8080
22 DO BUS 47 A12

23 A0 48 A15

24 D1 BUS 49 D5 8080
25 A1 50 D6 8080

D.4 RS-232C INTERFACE

CPU EDGE RS-232C SIGNAL NAME

CONNECTOR # PIN # AND LINE

1 1 AA Protective Ground

3 2 BA Transmitted Data

5 3 BB Received Data

7 y CA Request to Send

14 7 AB Signal Ground

15 20 CD Data Terminal Ready

~112=

DECTIMAL

00C

0C1
ocz
GO3
oo
005
006
ao7
one
000
c10

t
Ciz
015

ey

[I
015
016
G117
C16
01¢
CzG
021
0z2
023
Oz
0z5
coL
027
02k
02c
030

1

Cad Ly Ly ey Lidfin

™Y OO DO D
S TR 3Ty N

CHARACTER

NULL

AUTG

PILOT

CURSOR X, Y
(not used)
(not used)
CCI

(nct used)
HOME

TAB
LINEFEED
ERASE LINE
ERASE PAGE
RETURN

A7 CN

BLINK /A7 QFF
BLACK KEY
RED KEY
GREEN KEY
YELLCOW KEY
BLUE KEY
MACENTA KEY
CYAN KEY
WHITE KEY
MIT

CUESOR RIGHT
CURSCR LEFT
ESC

CURSOR UP

FG ON/FLAG OFF

BG ON/FLAG ON
ELIKK CN
SPACE

!

"

o~ = R pa o I

+

. ASCIT VALUES

PECIMAL

cu8
049
080
051
052
053
054
L
056

057
058
059
060
061
062
063
céy
065
066
067
(68
069
c70
071
072
073
o74

075
076

077
078
07¢
080
081

082
083
084

085
086

087
088
086
090G
091

0ge
093
09y
09&

CHARACTER

—_

W O e Y

PN PN KXY 5 < O DO TOZICOARACGCHAIOOTEHUOE DD 1 A e

=113~

DECTIMAL

096
097
no8
099
100
101
102
103
104
105
106
1G7
106
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

CHARACTER

~

T

SR M0 20

v s N M 5 < &l 3000 58 R e b

DEL

i

S3dWHS viimmo ALY
Nz a1 v ow| | flam
20z 04 n uv.z a4 ha'oz

ry lor*t oA

u's e £

/

/ N

T
i
| _%
L™
e]
Fdl=]
EH:”EJE]

_ =
oD O A DR .._.,“mmﬂ., = EDE@ME-E
, ; EATE (77
ﬂdﬂ\../ﬂ& 0's} Uu vi i/l eafC[D)re n.un/vg a3 vi‘s E-E-Eﬂm
SRR Ll Bl L

R=fHB

S R SN KR A S o ALnds

L
E

ezzz sviN| e (3] 2 -1 3] ,.</ 83"

LJl—

8%

5

T
all
Li_
N
[

Jime W NP o N boowe P n E m m m

ITIRAENL]

LA Wﬂ,ﬁ.ﬁ v ILTI__ [- L I

HH

i

2]

=

]
JTFE W RS
g e e g W

o 1”7

L g I 't o.z*llu_n_.!
2o aul | S o H‘_W: v _V\ ez'ot @

A
Ll

L

N 9'02 ER] _TE 3 sz AN

w

n

L 4

L2}

o

o

1.1

1.2

1.3

TMS 8080 MICROPROCESSOR

APPENDIX G.1

ARCHITECTURE
INTRODUCTION

The TMS 8080 is an 8-bit parallel central processing unit (CPU) fabricated on a single chip using a high-speed N-channel
silicon-gate process. {See Figure 1). A complete microcomputer system with a 2-us instruction cycle can be formed by
interfacing this circuit with any appropriate memory. Separate 8-bit data and 16-bit address buses simplify the interface
and allow direct addressing of 65,536 bytes of memory. Up to 256 input and 256 output ports are also provided with
direct addressing. Control signals are brought directly out of the processor and all signals, excluding clocks, are TTL
compatible.

THE STACK

The TMS 8080 incorporates a stack architecture in which a portion of external memory is used as a pushdown stack for
storing data from working registers and internal machine status. A 16-bit stack pointer (SP) is provided to facilitate
stack tocation in the memory and to allow almost untimited interrupt handling capability. The CALL and RST (restart)
instructions use the SP to store the program counter (PC) into the stack. The RET (return) instruction uses the SP to
acquire the previous PC value. Additional instructions allow data from registers and flags to be saved in the stack.

REGISTERS

The TMS 8080 has three categories of registers: general registers, program control registers, and internal registers. The
general registers-and program control registers are listed in Table 1. The internal registers are not accessible by the
programmer. They include the instruction register, which holds the present instruction, and several temporary storage
registers to hold internal data or latch input and output addresses and data.

ADDRESS ' DATA
BuUS 8US (1/0)
8 ¥
8, .8,
7
sk
Vg
%6l
A
Ly FLAG
4 REGISTER
8co
¥ correcr s
s HIGH-ORDER s V
@y<p| REGISTER ~ 2
16 FILE 8 8
2z s ya 8 CONSTANT
- ACCUM 8
7 ” ULATOR =7 GENERATOR [—4 X
6 | 16 8, REGISTER aLu
Wi pa 7 .,
s LOW-ORDER s . X operator ¥
49 REGISTER 7~
INCREMENTER/ FILE 8, v
DECREMENTER s 7 REGISTER
" 8
-1 A
+0
INSTRUCTION REGISTER
TMEAND |
CONTROL A

FIGURE 1--TMS 8080 FUNCTIONAL BLOCK DIAGRAM

14

15

16

17

THE ARITHMETIC UNIT

Arithmetic operations are performed in an 8-bit paraile! arithmetic unit that has both binary and decimal capabilities.
Four testable internal flag bits are provid d to facilitate program control, and a fifth flag is used for decimal
corrections. Table 2 defines these flags and their operation. Decimal corrections are performed with the DAA
instruction. The DAA corrects the result of binary arithmetic operation on BCD data as shown in Table 3.

STATUS AND CONTROL

Two types of status are provided by the TMSB080. Certain status is indicated hy dedicated control fines. Additional
status 1s transmitted on the data bus during the beginning of each instruction cycle (mechine cycle). Tabie 4 ndicates
the pin functions of the TMS8080. Table 5 defines the status information that is presented duting the beginning of cach
machine cycle (SYNC time) on the data bus.

1/0 OPERATIONS

input/output operations {1/0) are performed using the IN and OUT instructions. The second by te of these mstructions
indicates the device address (256 device addresses). When an [N instruction is executed, the mput device addiess
appears in duplicate on A7 through A0 and A15 through A8, along with WO and INP status on the data bus. The
addressed input device then puts its input data on the data bus for entry into the accumu'aror. When an OUT
instruction is executed, the same operation occurs except that the data bus has OUT status and then has output <lata.

Direct memory access channels (DMA)} can be OR-tied directly with the data and address buses through the use of the
HOLD and HLDA {(hold acknowledge) controls. When a HOLD request is accepted by the CPU, HLDA goes high, ihe
address and data lines are forced to a high-impedance or “floating” condition, and the CPU stops untit the HOLD
request is removed.

Interfacing with different speed memories is easily accomplished by use ot the WAIT and READY pins. During each
machine cycle, the CPU polls the READY input and enters a wait condition until the READY iine becomes true. Wher;
the WAIT output pin is high, it indicates that the CPU has entered the wait state.

Designing interrupt driven systems is simplified through the use of vectored interrupts. At the end ot each instruction,
the CPU polis the INT input to determine if an interrupt request is being made. This action does not occur if the CPU isin
the HOLD state or it interrupts are disabled. The INTE output indicates if the interrupt logic is enabled (INTE 15 high).
When a request is honored, the INTA status bit becomes high, and an RST instruction may be inserted to force the CPU
to jump to one of eight possible locations. Enabling or disabling interrupts is controtled by special instructions (El or
D1). The interrupt input is automatically disabled when an interrupt request is accepted o0 when a RESET signal is
received.

INSTRUCTION TIMING

The execution time of the instructions varies depending on the operation required and the number of memory
references needed. A machine cycle is defined to be a memory referencing operation and is either 3, 4, or 5 state timas
long. A state time (designated S) is a full cycle of clocks ¢1 and ¢2. (NOTE: The exception to this rule is the DAD
instruction, which consists of 1 memory reference in 10 state times). The first machine cycle {designated M1} is either 4
or 5 state times fong and is the “instruction fetch” cycle with the program counter appearing on the address bus. The
CPU then continues with as many M cycles as necessary to complete the execution of the instruction {up to a
maximum of 5). Thus the instruction execution time varies from 4 state times (several including ADDi 10 18 (XTHL).
The WAIT or HOLD conditions may affect the execution time since they can be used to control the machine (for
example to “‘single step”) and the HALT instruction torces the CPU to stop until an interrupt is received. As the
instruction execution is completed (or in the HALT state) the INT pin is polled for an interrupt. In the event of an
interrupt, the PC will not be incremented during the next M1 and an RST instruction can be inserted.

TABLE 1
TMS 8080 REGISTERS

NAME DESIGNATOR LENGTH PURPOSE
Accumulator CA 8 . Used for arithmetic, logical, and !/O operations
B Registar B 8 - Genarel or most significant 8 bits of double register BC
C Register c 8 General or laast significant 8 bits of double register BC
D Register D 8 General or most significant 8 bits of double register DE
E Register E 8 General or least significant 8 bits of double register DE
H Register H 8 General or most significant 8 bits of double register HL
L Register L 8 General or least significant 8 bits of double register HL
Program Counter PC 16 Contains address of next byte to be fetched
Stack Pointar SP 16 Contains address of the last byte of data saved in

the memory stack

Flag Register F 5 Five flags (C, Z, S, P, C1)

NOTE: Registers B and C may be used together as a single 16-bit register, likewise, D and £, and H and L.
TABLE 2

FLAG DESCRIPTIONS

SYMBOL TESTABLE DESCRIPTION

[o] YES ' Cis the carry/borrow out of the MSB (most significant bit) of the ALU (Arithment Logic
Unit). A TRUE condition (C = 1} indicates overflow for addition or underflow for
subtraction.

z YES A TRUE condition (Z = 1) indicates that the output of the ALU is equal to zero,

S YES A TRUE condition (S = 1) indicates that the MSB of the ALU output is equa! to a one {1).

P YES A TRUE condition {P =1} indicates that the output of the ALU has even parity (the
number of bits equal to one is even),

c1 NO C1 is the carry out of the fourth bit of the ALU (TRUE condition). C1 is used only for BCD
correction with the D AA instruction.

 TABLE 3

FUNCTION OF THE DAA INSTRUCTION

Assume the accumuiator (A) contains two BCD digits, X and Y

7 4 3 0
AcCC X L Y 7
ACCUMULATOR ACCUMULATOR
BEFORE DAA AFTER DAA

C |A7...A4| C1 |A3... A9 C Az ...A4(C1 Az...Ap
0 X <10 0 Y <10 0 X 0 Y
0 X <10 1 Y <10 0 X 0 Y+6
0 X<9 0 Y =10 0 X +1 1 Y+6
1 X <10 0 Y <10 1 X +6 0 Y
1 X <10 1 Y <10 1 X+6 0 Y+6
1 X <10 0 Y =10 1 X +7 1 Y+6
0 X =10 0 Y <10 1 X+6 0 Y
0 X=10 1 Y <10 1 X+6 0 Y+6
0 X=9 0 Y >10 1 X+7 1 Y+6

NOTE: The corrections shown in Table 3 are sufficient for addition.
condition that can occur and give erroneous results. The most straight forward method is to set A = 99, and carry = 1. Then
add the minuend to A after subtracting the subtrahend from A.

For subtraction, the programmer must account for the borrow

TABLE 4
TMS 8080 PIN DEFINITIONS

SIGNATURE | PIN 1/0 DESCRIPTION

A15 (MSB) 36 ouT A15 through A0 comprise the address bus. True memory or 1/O device addresses appear on

Al14 39 ouT this 3-stete bus during the first state time of each instruction cycle.

A13 38 ouT

A12 37 ouT

All 40 OU.T

A10 1 QuUT

A9 35 ouT

A8 34 ouT

A7 33 ouT

A6 32 ouT

A5 31 ouT

A4 30 ouT

A3 29 ouT .

A2 27 ouT

Al 26 ouT

AO (LSB) 25 ouT

D7 (MSB) 6 | injouTt D7 through DO comprise the bidirectional 3-state data bus. Memory, status, or /O data is

D6 5 [IN/OUT .
transferred on this bus.

D5 4 | IN/OUT

D4 3 | INnJOUT

D3 7 IN/OUT

D2 8 IN/OUT

D1 9 IN/OUT

DO (LSB) 10 IN/OUT

Vss 2 Ground reference

Veg 1 Supply voltage (—5 V nominal)

Vee 20 Supply voltage (5 V nominat)

VoD 28 Supply voltage {12 V nominal)

o1 22 IN Phase 1 clock.

02 15 IN Phase 2 clock. See page 19 for ¢1 and ¢2 timing.

RESET 12 IN Reset. When active (high) for a minimum of 3 clock cycles, the RESET input causes the
TMS 8080 to be reset. PC is cleared, interrupts are disabled, and after RESET, instruction
execution starts at memory location 0. To prevent a fockup condition, a HALT instruction
must not be used in location 0.

HOLD 13 IN Hold signal. When active {(high) HOLD causes the TMS 8080 to enter a hold state and float
{put the 3-state address and data bus in a high-mpedance state). The chip acknowledges
entering the hold state with the HLDA signal and will not accept interrupts until it leaves
the hold state.

INT 14 IN Interrupt request. When active (high) INT indicates to the TMS8080 that an interrupt is
being requested. The TMS8080 polls INT during a HALT or at the end of an instruction.
The request will be accepted except when INTE is low or the CPU is in the HOLD
condition.

INTE 16 ouT Interrupts enabled. INTE indicates that an intertupt will be accepted by the TMS 8080
unless it s the hold state. INTE is set to a high logic level by the E} {Enable Interrupt)
instruction and reset to a low logic level by the DI (Disable tnterrupt) instruction. INTE is
also reset when an interrupt is accepted and by a high on RESET.

DBIN 17 ouT Data bus in. DBIN indicates whether the data bus is in an input or an outpur mode.

{high = input, low = output),

2.2.2 ACCUMULATOR GROUP INSTRUCTIONS

M CYCLES/
MNEMONIC OPERANDS BYTES STATES
ACI bo 2 217
ADC M i 2/7
ADC ra 1 1/4
ADD M 1 217
ADD ra 1 1/4
AD! by 2 217
ANA M 1 217
ANA ra 1 1/4
AN bo 2 217
CMA 1 1/4
CcMC 1 1/4
CMP M 1 2/7
cmP ra 1 1/4
CPI bo 2 2/7
DAA 1 1/4
DAD b 1 110
LDA babo 3 4/13
LDAX re 1 2/7
ORA M 1 2/7
ORA 'a 1 1/4
OR! by 2 2/7
RAL 1 1/4
RAR 1 1/4
RLC 1 1/4
RRC 1 1/4

DESCRIPTION
(A}~ (A) + <bop -+(carry), add the second byte of the
instruction and the contents of the carry flag to register A and
place m A. {CZSPCt}

{A) — (A) + (M) + (carry). { CZ,SPCT}
(A) < (A} + (ry) + lcarry]. {C,ZSPCT}
{A) — (A} + (M}, add the contents of M to register A and place in
A jczspPC1}
(A) — {A) + {rg).iC,z8P.C1}
(A} < (A} + by~ {C,Z,8PC1}
(A} - (A) AND (M), take the logical AND of M and register A
and place in A, The carry flag will be reset low. | C,Z,5,P,C1}
{A) - (A) AND (ry). {C,25P,C1}
{A) — (A) AND <bp>.{C,Z,$PC1!
(A) ~- (A), complement A,
(carry) - (carry), complement the carry flag. {c }
(A} — (M), compare the contents of M to register A and set the
flags accordingly, { C,Z2,5,P,C1}

(A) = (M) Z=1

(A) = (M) 2=0

(A) < (M) Cc=1

(A) > (M) cC=0
{A) — (rg). {C,2,5PC1|
(A)—<by>. {c,z,5,PC1}
(A)<BCD correction of {(A). The 8 bit A contents is corrected to
form two 4 bit BCD digits after a binary arithmetic operation. A
fifth filag C1 indicates the overflow from A3. The carry flag C
indicates the overflow from Ay (See Table 3). %C,Z,S,P,C1 }
(HL) « (HL) + (rp), add the contents of double register ryy to
double register HL and place in HL. ’.C}
1A)<>[<b3\-’ <§b2>]
(A)—llrc}]
(A} < {A) OR (M}, take the logical OR of the contents of M and
register A and place in A. The carry flag will be reset.
{czspci}
(A} - (A} OR (ry).4C,Z,S,P,C1}
{A) = (A} OR <bp>. {C,Z2,SPC1}
Am+1-Am. Ag—lcarry}, (carry)« (A7}, Shift the contents of
register A to the left one bit through the carry flag. {C }
Amc<Am*1, Ay—{carry), {carry)«<Aqg.{ C !
Am+1-Am. Ag—A7 (carry)<(A7). Shift the contents of register
A to the left one bit. Shift A7 into A and into the carry
flag. {C |
Am<Am+1, A7—Ag, lcarry)~(Ag). {C |

2.2 INSTRUCTION SET DESCRIPTION

Operations resulting from the execution of TMS 8080 instructions are described in this section. The flags that are affected by
each instruction are given after the description.

2.2,1 INSTRUCTION SYMBOLS

SYMBOL DESCRIPTION
<bo> Second byte of instruction
<bz> Third byte of instruction
ra Register # Register Name
000 B
001 C
010 D
011 E
100 H
101 L
111 A
b . Register = Register Name
00 BC
01 . DE
10 HL
1 SP
re) Register £ Register Name
0 BC
1 DE
rd Register # Register Name
00 BC
01 DE
10 HL
rdL Least significant 8 bits of rg
rdH Most significant 8 bits of rg
f Flags True condition
Zero (Z) Result is zero
Carry (C) Carry/borrow out of MSB is one
Parity (P) Parity of result is even
Sign (S) MSB of result is one
Carry 1{C1) Carry out of fourth bit is one
M Memory address defined by registers H and L
() Contents of specified address or register
[1] Contents at address contained in specified register
- Is transferred to
had Exchange
Am Bit m of A register (accumulator)
{) Flags affected
b2 Single byte immediate operand
babo Double byte immediate operand

{(nnn)g {nnn) is an octal (base 8) number

2.2.2 ACCUMULATOR GROUP INSTRUCTIONS

MCYCLES/
MNEMONIC OPERANDS BYTES STATES
ACI bo 2 217
ADC M 1 2/7
ADC ra 1 1/4
ADD M 1 217
ADD fa 1 1/4
ADI b 2 2/7
ANA M 1 217
ANA ‘s 1 1/4
ANI by L2 2/7
CMA 1 1/4
CMC 1 1/4
CMP M 1 217
cMP fa 1/4
cPl bo 2 2/7
DAA 1 1/4
DAD b 1 110
LDA b3bso 3 4/13
LDAX re 1 2/7
ORA M 1 217
ORA ‘s 1 1/4
ORI by 2 217
RAL 1 1/4
RAR 1 1/4
RLC 1 1/4
RRC 1 1/4

DESCRIPTION
(A) <~ (A} + <bp=+(carry}, add the second byte of the
instruction and the contents of the carry flag to register A and
place in A. {C,ZSP.C1}

(A) = (A) + (M) + (carry). | C,2,5P,C1}
(A) < (A} + (ry) + (carry) {C,Z,S,P,C1 }
(A) < (A) + (M)}, add the contents of M to register A and place in
A. fczspctd
(A} — (A) 4 (rg).1C,Z5,P,C1}
(A) < {A) + <bp> . {C,ZS.PC1}{
(A) = (A) AND (M)}, take the logical AND of M and register A
and place in A. The carry flag will be reset low. | C,Z,S,P,C1}
{A) - (A} AND (r). {C.ZSP.C1}
{A) ~— (A) AND <bp> {C,ZSPC1}
{A) «- (A}, complement A,
(carry} « (carry}, complement the carry flag. {c}
(A} — (M), compare the contents of M to register A and set the
flags accordingly.}C,Z,SP,C1}

(A) = (M) Z2=1

(A) = (M) Z2=0

(AY < (M) C=1

(A) > (M) C=0
(A) — (rg). {CZ8PC1}
{Al—<bp>. {C,z5,PCl}
{A)«BCD correction of (A). The 8 bit A contents is corrected to
form two 4 bit BCD digits after a binary arithmetic operation. A
fifth flag C1 indicates the overflow from A3. The carry flag C
indicates the overflow from A7 (See Table 3). {C,Z,S,P,C1 }
(HL) «- (HL) + (rp), add the contents of double register rp, to
double register HL and piace in HL. ’,C}
(A}« [<bg> <bp>]
(Al{{rel]
(A} «- (A) OR {M), take the logical OR of the contents of M and
register A and place in A, The carry flag will be reset.
{czspci)
(A} « LA) OR (ry).C,Z2,5,P,C1}
(A} < (A) OR <bp. {CZSPC1}
Am+1+Am, Agelearry), lcarry)«(A7). Shift the contents of
register A to the left one bit through the carry flag. {C }
Am+—Amt1, Ap—{carry}, (carry}—Ag.{ C}
Am+1<Am, Ap—A7z {carry)«(A7). Shift the contents of register
A to the left one bit. Shift A7 into A and into the carry
flag. {C |
Am=Am+1, A7-AQ, (carry)—(Ag). {C }

M CYCLES/

MNEMONIC OPERANDS BYTES ST\TES
SBB M 1 217
SBB fa 1 1/4
SBi by 2 2/7
STA bzbo 3 4,13

STAX fe 1 2/7
STC 1 1/4
sus M 1 2/7
SuUB Ta 1 1/4
Sut bo 2 2/7
XRA M 1 2/7
XRA fa 1 1/4
XRI bo 2 2/7
223 INPUT/OUTPUT INSTRUCTIONS
M CYCLES/
MNEMONIC OPERANDS BYTES STATES
N b2 2 3/10
ouT bo 2 3/10
2.2.4 MACHINE INSTRUCTIONS
M CYCLES/

MNEMONIC OPERANDS BYTES STATES
HLT 1 2/7
NOP 1 1/4

DESCRIPTION

(A}e—{A)—{M)—{carry), subtract the contents of M and the

contents of the carry flag from register A and place in A, Two'’s

complement subtraction is used and a true borrow causes the

carry flag to be set {underflow condition}. {C,Z,S,P,CH

(A)—(A)—(rg)—(carry). {C,Z,3,P.C1}

(A} {A)- <by>—(carry). |C,2,SP,C1}

[<bz> <bp>]«(A), store contents of A in memory address

given in bytes 2 and 3.

[{rc}] <{A), store contents of A in memory address given in BC

or DE.

{carry}—1, set carry flag to a 1 {true condition).

(A} (A)--(M}, subtract the contents of M from register A and

place in A. Two's complement subtraction is used and a true

borrow causes the carry flag to be set (underflow condition}.

{c.zspctl

(A)—(A)—irg){c,zspCt}

(A)e-(A)—<bp:. {C,2,5,PC1}

{A)—(A} XOR (M), take the exclusive OR of the contents of M

and register A and place in A. The carry flag will be reset,
{c.zspcit

(A)—(A)} XOR iry). {C,Z28PCT}

{A)—(A) XCR <bp>. {C,2,S,P,C1!

DESCRIPTION
(A)—(input data from data bus), byte 2 s sent on bits A7-AQ
and A15-A8 as the input device address. INP status is given on
the data bus.
(Output data)«-{A}), byte 2 is sent on bits A7-AQ and A15-A8 as
the output device address. OUT status is given on the data bus.

DESCRIPTION
Halt, all machine operations stop. All registers are mamtained.
Only an interrupt can return the TMS 8080 to the run mode,
Note that a HLT should not be placed in location zero,

otherwise after the reset pin is active, the TMS 8080 will enter a
nonrecoverable state {until power is removed), i.e., in halt with

interrupts disabled. This condition also occurs if a HLT s
executed while interrupts are disabled. HLTA status is given on
the data bus.

(PC)—(PC)+1, no operation.

2.2.5 PROGRAM COUNTER AND STACK CONTROL INSTRUCTIONS

M CYCLES/
MNEMONIC OPERANDS BYTES STATES
CALL baby 3 5/17
Conditional call instructions for true flags:
(f) 5/17 {Pass)
CC lcarry} bsbo 3 3/11 (Fail)
CPE (parity) babp 3
CM (sign) b3by 3
CZ ({zero) bsbo 3
Conditional call instructions for false flags:
(f) 5/17 (Pass)
CNC (carry) b3bo 3 3/11 (Fail)
CPO (parity) b3by 3
CP (sign) b3bp 3
CNZ (zero) " bgbo 3
Dt 1 1/4
El 1 1/4
JMP bsby 3 3/10
Conditional jump instructions for true flags:
() 3/10
JC (carry) babo 3
JPE (parity) baby 3
JM (sign} bsbo 3
JZ (zero) bsbo 3
Conditional jump instructions for false flaas:
(f) 3/10
JNC (carry) bzbo 3
JPO (parity) bsby 3
JM - (sign) bsby 3
JNZ (zero) bsby 3
PCHL 1 1/5
POP PSW 1 3/10
POP rq 1 3/10
PUSH PSW 1 3/11
PUSH rq 1 3/11
RET 1 3/10

DESCRIPTION
[(SPY—-1] [(sP)—2]—(PC), (SP)~(SP)—2, (PCl=<b3> <bp -,
transfer PC to the stack address given by SP, decrement SP
twice, and jump unconditionally to address given in bytes 2 and
3.

If (f) =1, {{SP)-1] [{SP}-2]--(PC), (SP)—(SP}) -2, (PS)--- by
<bp ™, otherwise (PC)- (PC)+3, If the flag specified, f, 15 1, then

execute a call. Otherwise, execute the next instruction.

If (f) =0, [(SP)—1} [{SP}-2]--(PC}, {SP)--(SP} -2, (PC)- - b3y
<b7>, otherwise (PC}—(PC)+3.

Disable interrupts. INTE s driven false to indicate that no
interrupts will be accepted.

Enable interrupts. INTE is driven true to indicate that an
interrupt will be accepted. Execution of this instruction s
delayed to allow the next instruction to be executed before the
INT input s polied.

(PC)<b3> <bp>, jump unconditionally to address given in
bytes 2 and 3.

If {f} = 1, (PC)«<bg><bp>>, otherwise (PC)~ (PC)+3. If the ftag
specified, f, is 1, execute a JMP. Otherwise, execute the next

instruction,

£ {f) =0, (PC)«<b3> <hp>, othewise {PC)«(PC}+3.

(PC)—(HL)

(F)=[{SP)], (A)[{SP)+1], (SP)<(SP)+2, restore the last
stack values addressed by SP into A and F. Increment SP twice.
(rgL)< ((SP)], (rqu}{{SP)+1], (SP}—(SP}+2.

[(SP)—1](A), [{SP)—2]«(F)}, (SP)+(SP)—2, save the contents
of A and F into the stack addressed by SP. Decrement SP twice.
[(SPY—1}+lrqL), [(SP)—=2]«(rgn), (SP)(SP)-2.

{(PC)<{(SP)] [ISP)+1], (SP)«(SP}+2, return to program at
memory address given by last values in the stack. The SP is
incremented by two.

M CYCLES/
MNEMONIC OPERANDS BYTES STATES

Conditional return instructions for true flags:

() 3/11 (Pass)
RC (carry) C 1 1/5 (Fail)
RPE (parity) P 1
RM (sign) S 1
RZ (zero) z 1
Conditional return instructions for talse flags:
(f} 3/11 (Pass)
RNC {carry) Cc 1 1/5 (Fail)
RPO (parity) P 1
RP (sign) S 1
RN2Z (zero) z 1
RST 1 3/11
SPHL 1 1/5

2.2.6 REGISTER GROUP INSTRUCTIONS

M CYCLES/
MNEMONIC OPERANDS BYTES STATES
DCR ™M 1 3/10
DCR ra 1 1/5
DCX b 1 1/5
INR M 1 3/10
INR fa 1 1/5
INX o 1 1/5
LHLD b3by 3 5/16
LX1 rpb3by 3 3/10
MVt M, b 2 3/10
MV rab2 2 217
MOV Mr, 1 217
MoV raM 1 2/7
MOV ra1ra2 1 1/5
SHLD bzbo 3 5/16
XCHG 1 1/4
XTHL 1 5/18

DESCRIPTION

It () =1, (PC)—[(SP)] [(SP+1], (SP)—{SP)+2. If the flag
specified, f, is 1, execute a RET. Otherwise, execute the next

instruction,

(1) = 0, (PC)<[(SP)} [{SPI+ 1], (SP)- (SP)+2.

[{SP)—1] [(SP)—2] <« (PC) {SP)--{SP)—-2, {PC)--0000R0g where
R is a 3 byt field in RST (RST=3R7g). Transfer PC 1o the stack
address given by SP, decrement SP twice, and jump to the
address specified by R.

(SP}(HLJ.

DESCRIPTION

(M)—~(M)—1, decrement the contents of memory location
specified by H and L. {2,5,P,C1}
{rgl{rg)—1, decrement the contents of reqister ry. §Z,5,P,C1}
{rp)«~(rpt—1, decrement double registers BC, DE, HL, or SP.
{M}—({M}+1, increment the contents of memory location
specified by H and L.} 2,S,P,C1 |
(rad—{ra)+1, increment the contents of register ry. ;Z,S,P,Cﬂ
{rpt{rp)+1, increment double registers BC, DE, HL, or SP.
(LY~ [<b3z> <bo>]; (H)~ |<bz> <by>+1], load registers H
and L with contents of the two memory locations specified
by bytes 3 and 2.
lrpH)=<b3z>; {rpL)«<b2>>, load double registers BC, DE, HL,
or SP immediate with bytes 3, 2, respectively.
(M}—<bp>, store immediate byte 2 in the address specified by

HL
(ra)e=<by>, toad register r; immediate with byte 2 of the mstruc-
tion. .
(M}({r5), store register ry in the memory location addressed by
Hand L.
(ra}{M), load register r5 with contents of memory addressed by
HL.
(ra1)+(rg2), load register ry1 with contents ot ryp, ryp contents
remain unchanged.
[<bz> <hp>] «(L); [<bz> <bp>+1)]+(H), store the contents
of H and L into two successive memory focations specified by
bytes 3 and 2.
(H)~(D); (L)~{E), exchange double registers HL and DE
(L) [(SP)], (H}—[{SP)+1], (SP}={(SP}, exchange the top of the
stack with register HL.

2.3 INSTRUCTION SET OPCODES ALPHABETICALLY LISTED
POSITIVE-LOGIC

REGISTER HEX OPCODE CLOCK
MNEMONIC BYTES DESCRIPTION AFFECTED ﬁGD_tt/ \ D3-D0/, CYCLES*

ACt 2 Add immediate to A with carryt C E 7
ADC M 1 Add memory to A with carry? 8 E 7
ADCr 1 Add register to A with carry‘r B 8 8 4

C 8 9

D 8 A

E 8 B

H 8 Cc

L 8 D

A 8 F
ADD M 1 Add memory 10 AT 8 6
ADDr 1 Add register to AT B 8 0

C 8 1

D 8 2

E 8 3

H 8 4

L 8 5

A 8 7
ADI 2 Add immediate 1o At C 6 7
ANA M 1 AND memory with AT A 6
ANAr 1 AND register with At B A 0 4

C A 1

D A 2

E A 3

H A 4

L A 5

A A 7
AN 2 AND immediate with At E 6 7
CALL 3 Call unconditional C D 17
cC 3 Call on carry D C 11/17
CM 3 Call on minus F o 11/17
CMA 1 Complement A 2 F
cMC 1 Complement carry ¥ 3 F
CMP M 1 Compare memory with AT B E
CMP r 1 Compare register with A

B B 8 4

C B 9

D B A

E B - B

H B Cc

L B D

A B F
CNC 3 Call on no carry D 4 11/17
CNZ 3 Call on no zera C 4 11/17
CP 3 Call on positive F 4 11/17
CFE 3 Call on parity even E C 11/17
CPI 2 Compare immediate with AT F E 7
CPO 3 Call on parity odd E 4 11/17
Ccz 3 Call on zero C C 11/17
DAA 1 Decimal adjust AT 2 7 4

*Two possible cycle times (11/17) indicate instruction cycles dependent on condition tlags.
YAl flags (C, Z,S, P, C1) atfected.
L0nly carry flag affected.

POSITIVE-LOGIC

REGISTER HEX OPCODE CLOCK
MNEMONIC BYTES DESCRIPTION AFFECTED D7-DA D3-DO CYCLES
DESCRIPTION AFFECTED \D7°04, \D3-D0, CYCLES

DAD B 1 Add B&C to H&L 0 9 10
DADC 1 Add D&E to H&LY 1 9 10
DAD H 1 Add H&L to H< 2 9 0
DAD SP 1 Add stack pointer to H&L ¥ 3 9 10
DCR M 1 Decrement Memorv§ 3 5 10
DCR ¢ 1 Decrement Regtster ¥ B [¢] 5 s

C 0 D

D 1 5

E 1 D

H 2 5

L 2 D

A 3 D
DCX B 1 Decrement B&C 0 B 5
DCX D 1 Decrement D&E 1 B R
DCX H 1 Decrement H&L 2 B C
DCX SP 1 Decrement stack pointer 3 8 5
DI 1 Disable interrupts F 3 I
El 1 Enable interrupts F 8] 4
HLT 1 Halt 7 6 li
IN 2 Input D B iU
INR M 1 tncrement memorv§ 3 4 10
INR r 1 increment register§ B 0 4 S

(o} 0 C

D 1 4

E 1 C

H 2 4

L 2 C

A 3 C
INX B 1 Increment B&C register ¢} 3 5
INX D 1 increment D&E register 1 3 5
INX H 1 Increment H&L register 2 3
INX SP 1 Increment stack pointer 3 3 IS
JC 3 Jump on carry D A 10
JM 3 Jump on minus F A 10
JMP 3 Jump unconditional C 3 10
JNC 3 Jump on no carry D J 10
JNZ 3 Jump on no zero (o} 2 10
JP 3 Jump on positive F 2 10
JPE 3 Jump on parity even E Q 10
JPO 3 Jump on parity odd E 2 10
Jz 3 Jump on zero C A 10
LDA 1 Load A direct 3 A 13
LDAX B 1 Load A indirect 0 A 7
LDAX D 1 Load A indirect 1 A 7
LHLD 3 Load H&L direct 2 A 16
LX1 B 3 Load immediate register pair B&C 0 1 10
LXI D 3 Load immediate register pair D&E 1 1 10
LXI H 3 Load immediate register 2 1 10
LX1t spP 3 Load immediate stack pointer 3 1 10

Yonly carry fiag affected.
2 an flags except carry affected.

MNEMONIC

BYTES

MOV M,r

MOV r,M

MOV rq,r9

1

DESCRIPTION

Move register to memory

Move memory to register

Move register to register

REGISTER
AFFECTED

rIMOO ®» - IMQOgO®

@®™ @ @
Do w?®

B.E
B.H
B,L
B.A
c.B
c.c
c.D
C.E
CcH
c.L
C.A
D8
D,C
D.D
D,E
D,H
H,L
D,A
€8
EC
E.D
EE

]

EH
E,L
E.A
H,B
H.C
H,D
H.E
H,H
HL
H.A

v

LB

POSITIVE-LOGIC

HEX OPCODE

\RZ; D4/

DOy nd b S DA BN LADLDDDLDDED AN OOD D NN

\D3-DY/

0~ U B WRN =0 TUODOB» OO 9O HWRN=OTMTIO TP OO E&EWN-=OMMOOMO MO N H WKN = O

CLOCK

CYCLES

7

MNEMONIC
MOV rq, 1o

MVI M
MV

NOP
ORA M
ORAr

ORI
ouT
PCHL
POP B
POP D
POP H
POP PSW
PUSH B
PUSH D
PUSH H
PUSH PSW
RAL
RAR

RC

RET
RLC

RM

RNC
RNZ

RP

BYTES

1

N S L)

1
1
2
1
1
1
1
1
1
1
1
1
1

DESCRIPTION

Move register to register {continued)

Move immediate memaory

Move immediate register

No operation
OR memory with At
OR register with A1

OR immediate with At

Output

H&L to program counter

Pop register pair B&C off stack
Pop register pair D&E off stack
Pop register pair H&L off stack
Pop A and flags off stackt
Push register pair B&C

Push register pair D&C

Push register pair H&L on stack
Push A and Flags on stack
Rotate A left through carry +
Rotate A right through carry
Return on carry

Return

Rotate A leftt

Return on minus

Return on no carry

Return on no zero

Return on positive

REGISTER

AFFECTED

LC
LD
L,E
LH
LL
LA
AB
AC
AD
AE
AH
AL
AA

H p I I MO O®

>Pr-rIMOO®

*Two possible cycles times (11/17} indicate instruction cycies dependent on condition flags.

T_Au flags (C, Z, S, P, C1) affected.
L Oniy carry flag affected.

POSITIVE-LOGIC
HEX OPCODE

\D7-D4,
6

MO QO MTOo OO0 = =T mMmDIO TMODOOMDDMTM®EDI P D OO0 OWNRN= =2 OO0 W-NSNSNNSNSNSNSOOOOO

\D3-DO/

9

T OO ® P 0o MmO O3 P

[o20 o))

= = o DWW N D W =200 Mmoo Mo T

[So e s B S SRR VRS) BENG LN O L I o)

© O O W

CLOCK

CYCLES*

16

10
10
10
10
1
11
11
1M

5/11
10

511
511
511
5/11

MNEMONIC

BYTES

RPE
RPO
RRC
RST

R2
SBB M
SBB r

SBf
SHLD
SPHL
STA
STAX B
STAX D
STC
sug M
SUB r

SUl
XCHG
XRA M
XRATr

XRI
XTHL

1
1
1
1

P A TN A I N

a2 a AN

2
]

DESCRIPTION

Return on parity even
Return on parity odd
Rotate A right?

Restart

Return on Zero

Subtract memory from A with borrow?

Subtract register from A with borrowT

Subtract immediate from A with borrow?

Store H&L direct

H&L to stack pointer
Store A direct

Store A indirect

Store A indirect

Set carry &

Subtract memory from Al

Subtract register from At

Subtract immediate from At
Exchange D&E, H&L registers
Exclusive OR memory with AT

Exclusive OR register with AT

Exclusive OR immediate with AT
Exchange top of stack H&L

REGISTER

AFFECTED

PC<-00001¢
PC—00081¢
PC—00101g
PC—00181g
PC-00201¢
PC-00281¢
PC—00301¢
PC<00381g

P - I mgO®

P rITmMmgO®

> I mQOO®®

* Two possible cycles times (11/17) indicate instruction cycles dependent on condition fiags.

TAll flags (C, Z, 8, P, C1) affected.

+Only carry flag affected.

POSITIVE-LOGIC

HEX OPCODE
\D7-D4, \D3-DO/
E 8
E 0
0 F

O YW W= 0 wWTNIJDTwWwOwwwwwowuwowooOTMTT mmogooOoOo

mmMmD» > P > > > > MO OO O OC OO

MO O @ P © 0 MOOW™TNTu T T ~ N

WM T OO mP O© O MBPOOA N U H WN =2 OO NNNNONM

CLOCK
CYCLES*

5/11

5/11
4
IR

5/11

DN D NN

DN ODd N

1.1

APPENDIX G.2

TMS 5501 MULTIFUNCTION INPUT/OUTPUT CONTROLLER

INTRODUCTION
DESCRIPTION

The TMS 5501 is a multifunction input/output circuit for use with Tl's TMS 8080 CPU. it is fabricated with the same
N-channel silicon-gate process as the TMS 8080 and has compatible timing, signal levels, and power supply
requirements. The TMS 5501 provides a TMS 8080 microprocessor system with an asynchronous communications
interface, data 1/0Q buffers, interrupt control logic, and interval timers.

SYNC CE X1 x0
8 %
l H—i 8
1
INT
INPUT OUTPUT
CONTROL STATUS PORT PORT
AQ A3 Hp
a
8 8 8
Ve { g
8 8
DO-D7 @yp| BUFFER b

1)
’I
8 8
s A)4
| |'NTERRUPT L
| ADORESS 1 |
8

8 l
4
INTERV AL 5 | PRIORITY RECEIVER RATE :,?TAYNESL
TIMERS LOGIC BUFFER ! REGISTER BUFFER
5 ' 8
| :
18 1 L 1 1
| e
INTERRUPT MASK RECEIVER || revoxmr LTYA}NESR
REGISTER 8 REGISTER)
EGISTE . REGISTER EGISTE ! CONTROL REGISTER
T T * i
SENS —_ v
v XMT

FIGURE 1-TMS 5501 BLOCK DIAGRAM

The 1/0 section of the TMS 5501 contains an eight-bit parallel input port and a separate eight-bit parallel output port
with storage register. Five programmable interval timers provide time intervals from 64 us to 16.32 ms.

The interrupt system allows the processor to effectively communicate with the interval timers, external signals, and the
communications interface by providing TMS 8080-compatible interrupt logic with masking capability.

Data transfers between the TMS 5501 and the CPU are carried by the data bus and controlled by the interrupt, chip
enable, sync, and address lines. The TMS 8080 uses four of its memory-address lines to select one of 14 commands to
which the TMS 5501 will respond. These commands allow the CPU to:

- read the receiver buffer
- read the input port
---- read the interrupt address
---- read TMS 5501 status
- issue discrete commands
- load baud rate register
---- load the transmitter buffer
- load the output port
- load the mask register
--- load an interval timer

1.2

The commands are generated by executing memory referencing instructions such as MOV (register to memory) with the
memory address being the TMS 5501 command. This provides a high degree of flexibility for I/0 operations by letting
the systems programmer use a variety of instiuctions.

SUMMARY OF OPERATION
Addressing the TMS 5501

A convenient method for addressing the TMS 5501 is to tie the chip enable input to the highest order address line of
the CPU’s 16-bit address bus and the four TMS 5501 address inputs to the four lowest order bits of the bus. This, of
course, limits the system to 32,768 words of memory but in many applications the full 65,536 word memory
addressing capability of the TMS 8080 is not required.

Communications Functions

The communications section of the TMS 5501 is an asynchronous transmitter and receiver for serial communications
and provides the following functions:

Programmable baud rate — A CPU command selects a baud rate of 110, 150, 300, 1200, 2400, 4800, or 9600 baud.

Incoming character detection — The receiver detects the start and stop bits of an incoming character and places the
character in the receive buffer.

Character transmission — The transmitter generates start and stop bits for a character received from the CPU and
shifts it out.

Status and command signals — Via the data bus, the TMS 5501 signals the status of: framing error and overrun error
flags; data in the receiver and transmitter buffers; start and data bit detectors; and end-of-transmission (break) signals
from external equipment. It also issues break signals to external equipment.

Data Interface

The TMS 5501 moves data between the CPU and external devices through its internal data bus, input port, and output
port. When data is present on the bus that is to be sent to an external device, a Load Output Port (LOP} command from
the CPU puts the data on the XO pins of the TMS 5501 by latching it in the output port. The data remains in the port
until another LOP command is received. When the CPU requires data that is present on the External Input (X{) lines, it
issues a command that gates the data onto the internal data bus of the TMS 5501 and consequently onto the CPU’s
data bus at the correct time during the CPU cycles.

Interval Timers

To start a countdown by any of the five interval timers, the program selects the particular timer by an address to the
TMS 5501 and loads the required interval into the timer via the data bus. Loading the timer activates it and it counts
down in increments of 64 microseconds. The 8-bit counters provide intervals that vary in duration from 64 to 16,320
microseconds. Much longer intervals can be generated by cascading the timers through software, When a timer reaches
zero, it generates an interrupt that typically will be used to point to a subroutine that performs a servicing function
such as polling a peripheral or scanning a keyboard. Loading an interval value of zero causes an immediate interrupt. A
new value loaded while the interval timer is counting overrides the previous value and the interval timer starts counting
down the new interval. When an interval timer reaches zero it remains inactive until a new interval is loaded.

13

Servicing Interrupts

The TMS 5501 provides a TMS 8080 system with several interrupt control functions by receiving external interrupt
signals, generating interrupt signals, masking out undersired interrupts, establishing the priority of interrupts, and

external interrupt can be received on pin 32, X17, if selected by a discrete command from the TMS 8080 (See
Figure 4). The TMS 5501 generates an interrupt when any of the five interval timers count to zero. Interrupts are aiso
generated when the receiver buffer is loaded and when the transmitter buffer is empty.

When an interrupt signal is received by the interrupt register from a particular source, a corresponding bit is set and
gated to the mask register, A pattern will have previously been set in the mask register by a load-mask-register command
from the TMS 8080. This pattern determines which interrupts will pass through to the priority logic. The priority logic
allows an interrupt to generate an RST instruction to the TMS 8080 only if there is no higher priority interrupt that
has not been accepted by the TMS 8080. The TMS 5501 prioritizes interrupts in the order shown below:

1st — Interval Timer &1

2nd ~- Interval Timer #2

3rd — External Sensor

4th — interval Timer #3

5th — Receiver Buffer Loaded

6th — Transmitter Buffer Emptied

7th — Interval Timer #4

8th — Interval Timer #5 or an External Input {XI 7)

The highest priority interrupt passes through to the interrupt address logic, which generates the BST instruction to be
read by the TMS 8080. See Table 3 for relationship of interrupt sources to RST instructions and Figures 6 and 8 for
timing relationships.

The TMS 5501 provides two methods of servicing interrupts; an interrupt-driven system or a polled-interrupt system. In
an interrupt-driven system, the INT signal of the TMS 5501 is tied to the INT input of the TMS 8080. The sequence of
events will be: (1) The TMS 5501 receives (or generates) an interrupt signal and readies the appropriate RST
instruction. (2} The TMS 5501 INT output, tied to the TMS 8080 INT input, goes high signaling the TMS 8080 that an
interrupt has occured. {3) If the TMS 8080 is enabled to accept interrupts, it sets the INTA (interrupt acknowledge)
status bit high at SYNC time of the next machine cycle. (4) If the TMS 5501 has previousiy received an interrupt-
acknowledge-enable command from the CPU (see Bit 3, Paragraph 2.2.5), the RST instruction is transferred to the data
bus. B
In a polied-interrupt system, INT is not used and the sequence of events will be: (1) The TMS 5501 receives (or
generates) an interrupt and readies the RST instruction. (2) The TMS 5501 interrupt-pending status bit (see Bit 5,
Paragraph 2.2.4} is set high (the interrupt-pending status bit and the INT output go high simultaneously). (3) At the
prescribed time, the TMS 8080 polls the TMS 5501 to see if an interrupt has occurred by issuing a read-
TMS 5501-status command and reading the interrupt-pending bit. (4) if the bit is high, the TMS 8080 will then issue a
read-interrupt-address command, which causes the TMS 5501 to transfer the RST instruction to the data bus as data for
the instruction being executed by the TMS 8080.

APPLICATIONS
Communications Terminals

The functions of the TMS 5501 make it particularly useful in TMS 8080-based communications terminals and generally
applicable in systems requiring periodic or random servicing of interrupts, generation of control signals to external
devices, buffering of data, and transmission and reception of asynchronous serial data. As an example, a system
configuration such as shown in Figure 2 can function as the controller for a terminal that governs employee entrance
into a plant or security areas within a plant. Each terminal is identified by a central computer through ID switches. The
central system supplies each terminal’s RAM with up to 16 employee access categories applicable to that terminal.
These categories are compared with an employee’s badge character when he inserts his badge into the badge sensor. I a

match is not found, a reject light will be activated. If a match is found, the terminal will transmit the employee’s badge
number and access category to the central system, and a door unlock solenoid will be activated for 4 seconds. The
central computer then may take the transmitted information and record it along with time and date of access.

The TMS 4700 is a 1024 x 8 ROM that contains the system program, and the TMS 4036 15 a 64 x 8 RAM that serves as
the stack for the TMS 8080 and storage for the access category information. TTL circuits control chip-enable information
carried by the address bus. Signals from the CPU gate the address bits from the ROM, the RAM, or the TMS 5501 onto
the data bus at the correct time in the CPU cycle. The clock generator consists of four TTL circuits along with a crystal,
needed to maintain accurate serial data assembly and disassembly with the central computer.

The TMS 5501 handies the asynchronous serial communication between the TMS 8080 and the central system and
gates data from the badge reader onto the data bus. It also gates control and status data from the TMS 8080 to the door
fock and badge reader and controls the time that the door lock remains open. The TMS 5501 signals the TMS 8080
when the badge reader or the communication tines need service. The functions that the TMS 5501 is to perform are
selected by an address from the TMS 8080 with the highest order address line tied to the TMS 5501 chip enable input
and the four lowest order lines tied to the address inputs.

2. OPERATIONAL AND FUNCTIONAL DESCRIPTION
This detailed description of the TMS 5501 consists of:
INTERFACE SIGNALS -- a definition of each of the circuit’s external connections
COMMANDS — the address required to select each of the TMS 5501 commands and a description of the response to
the command. :
2.1 INTERFACE SIGNALS
The TMS 5501 communicates with the TMS 8080 via four address lines: a chip enable line, an eight-bit bidirectional
data bus, an interrupt line, and a sync line. [t communicates with system components other than the CPU via eight
external inputs, eight external outputs, a serial receiver input, a serial transmitter output, and an external sensor input.
Tabte 1 defines the TMS 5501 pin assignments and describes the function of each pin.
TABLE 1
TMS 5501 PIN ASSIGNMENTS AND FUNCTIONS
SIGNATURE PIN DESCRIPTION
INPUTS
CE 18 Chip enable—When CE is low, the TMS 5501 address decoding is inhibited, which prevents
execution of any of the TMS 5501 commands.

A3 17 Address bus—-A3 through AQare the lines that are addressed by the TMS 8080 to select a particular

A2 16 TMS 5501 function.

Al 15

AQ 14
SYNC 19 Synchronizing signal--The SYNC signal is issued by the TMS 8080 and indicates the beginning of a

machine cycle and availability of machine status. When the SYNC signal is active (high), the
TMS 5501 will monitor the data bus bits DO (interrupt acknowledge) and D1 (WO, data output
function).

RCV 5 Receiver serial data input|ine—m must be held in the inactive (high) state when not receiving
data. A transition from high to low will activate the receive circuitry.

SIGNATURE PIN

X0
X1
Xi 2
X3
Xl 4
Xt5H
Xi 6
X7

SENS

X0 0
X0 1
X0 2
X0 3
X0 4
X0 5
X0 6
X0 7

XMT

DO
D1
D2
D3
D4
D5
D6
D7

INT

Vss
VBB
Vee
Vpp
o1
¢2

39
38
37
36
35
34
33
32

22

24
25
26
27
28
29
30
31

40

WN =&

21

TABLE 1 (continued)
TMS 5501 PIN ASSIGNMENTS AND FUNCTIONS

DESCRIPTION
INPUTS
External inputs—These eight external inputs are gated to the data bus when the read-external-inputs
function is addressed. External input n is gated to data bus bit n without conversion.

External interrupt sensing — A transition from low to high at SENS sets a bit in the interrupt
register, which, if enabled, generates an interrupt to the TMS 8080.

OUTPUTS

External outputs—These eight external outputs are driven by the complement of the output
register; i.e., if output register bit n is loaded with a high (low) from data bus bit n by a load-
output register command, the external output n will be alow (high). The external outputs change
only when a load-output-register function is addressed.

Transmitter serial data output line—This line remains high when the TMS 5501 is not transmitting.

DATA BUS INPUT/OUTPUT

Data bus — Data transfers between the TMS 5501 and the TMS 8080 are made via the 8-bit
bidirectional data bus. DO is the LSB. D7 is the MSB.

Interrupt—When active (high), the INT output indicates that at least one of the interrupt conditions
has occurred and that its corresponding mask-register bit is set.

POWER AND CLOCKS

Ground reference

Supply voltage (=5 V nominal)
Supply voltage (5 V nominal)
Supply voltage (12 V nominal)
Phase 1 clock

Phase 2 clock

2.2 TMS 5501 COMMANDS
The TMS 5501 operates as input/output device for the TMS 8080. Func-
tions are initiated via the TMS 8080 address bus and the TMS 5501
address inputs. Address decoding to determine the command function
being issued is defined in Table 2.
TABLE 2
COMMAND ADDRESS DECODING
When Chip Enable Is High
%2 #1
5501 5501
PORT PORT
NO. NO. A3 A2 Al AQ COMMAND FUNCTION PARAGRAPH
16 0 L L L L Read receiver buffer RBn —»Dn 2.2.1
17 1 L L L H Read external inputs XIn =»Dn 2.2.2
18 2 L L H L Read interrupt address RST =+Dn 2.2.3
19 3 L L H H Read TMS 5501 status (Status)=»Dn 2.2.4
20 4 L H L L Issue discrete commands See Fig.4 2.2.5
21 5 L H L H Load rate register See Fig.4 2.2.6
22 6 L H H L Load transmitter buffer Dn —»TBn 2.2.7*%
23 7 L H H H Load Output port Dn —X0n 2.2.8
24 8 H L L L Load mask register Dn =—+MRn 2.2.9
25 9 H L L H Load interval timer 1 Dn—sTimer 1 2.2.10
26 10 H L H L Load interval timer 2 Dn=sTimer 2 2.2.10
27 11 H L H H Load interval timer 3 Dn-=Timer 3 2.2.10
28 12 H H L L Load interval timer 4 Dn-=Timer 4 2.2.10
29 13 H H L H Load interval timer 5 Dn==Timer 5 2.2.10
30 14 H H H L No function
31 15 H H H H No function
* Important
RBn Receiver buffer bit n
Dn Data bus I/0 terminal n
X1ln External input terminal n
RST 11 (lAS) 1A4) (IAL) 1 1 1 (see Table 3)
TBn Transmit buffer bit n
XOn Output register bit n
MRn Mask register bit n
TABLE 3
RST INSTRUCTIONS
DATA BUS BIT INTERRUPT CAUSED BY TMS 5501
0O 1 2 3 4 5 6 7
H H H L L L HH Interval Timer 1 Power Up
H H H H L L HH Interval Timer 2 User Timer
H H H L H L HH External Sensor Real Time Clock
H H H H H L HH Interval Timer 3 Keyboard
H H H L L H HH Receiver Buffer Rx RS-232
H H H H L H HH Transmitter Buffer 1'x RS-232
H H H L H H HH Interval Timer 4 Bell Timer
H H H H H H HH Not Available CRT Executive Loop

2.21

2.2.2

223

2.2.4

The following paragraphs define the func .ions of the TMS 5501 commands.

Read receiver buffer
Addressing the read-receiver-buffer function causes the receiver buffer contents to be transferred to the TMS 8080 and
clears the receiver-buffer-loaded flag.

Read external input lines
Addressing the read-external-inputs function transfers the states of the eight external input lines to the TMS 8080.

Read interrupt address

Addressing the read interrupt address function transfers the current highest priority interrupt address onto the data bus
as read data. After the read operation is completed, the corresponding bit in the interrupt register is reset.

If the read-interrupt-address function is addressed when there is no interrupt pending, a false interrupt address will be
read. TMS 5501 status function should be addressed in order to determine whether or not an interrupt condition is
pending.

Read TMS 5501 status -

Addressing the read-TMS 550 1-status function gates the various status conditions of the TMS 5501 onto the data bus.
The status conditions, avaitable as indicated in Figure 3, are described in the following paragraphs.

BIT: 7 6 5 4 3 2 1 ! 0
START | FULL INTRPT | XMIT RCV SERIALIOVERRUN | FRAME
BIT BIT PENDING |BUFFER | BUFFER | RCVD |ERROR ERROR
DETECT | DETECT EMPTY LOADED

FIGURE 3—DATA BUS ASSIGNMENTS FOR TMS 5501 STATUS

Bit 0, framing error
A high in bit 0 indicates that a framing error was detected on the last character received (either one or both stop bits

were in error). The framing error flag is updated at the end of each character. Bit 0 of the TMS 5501 status will remain
high unti! the next valid character is received.

Bit 1, overrun error
A high in bit 1 indicates that a new character was loaded into the receiver buffer before a previous character was read
out. The overrun error flag is cleared each time the read-1/O-status function is addressed or a reset command is issued.

Bit 2, serial received data

Bit 2 monitors the receiver serial data input line. This line is provided as a status input for use in detecting a break and
for test purposes. Bit 2 is normally high when no data is being received.

Bit 3, receiver buffer loaded
A high in bit 3 indiciates that the receiver buffer is loaded with a new character. The receiver-buffer-loaded flag remains

high until the read-receiver-buffer function is addressed {(at which time the flag is cleared). The reset function also clears
this flag.

Bit 4, transmitter buffer empty

A high in bit 4 indicates that the transmitter buffer register is empty and ready to accept a character. Note, however,
that the serial transmitter register may be in the process of shifting out a character. The reset function sets the
transmitter-buffer-empty flag high.

Bit 5, interrupt pending
A high in bit 5 indicates that one or more of the interrupt conditions has occured and the corresponding interrupt is
enabled. This bit is the status of the interrupt signal INT.

Bit 6, full bit detected ,
A high in bit 6 indicates that the first data bit of a receive-data character has been detected. This bit remains high until
the entire character has been received or until a reset is issued and is provided for test purposes.

Bit 7, start bit detected
A high in bit 7 indicates that the start bit of an incoming data character has been detected. This bit remains high until
the entire character has been received or until a reset is issued and is provided for test purposes.

2.2.5 Issue discrete commands

Addressing the discrete command function causes the TMS 65601 to interpret the data bus information according to the
following descriptions. See Figure 4 for the discrete command format. Bits 1 through 5 are latched unti! a different
discrete command is received.

NORMALLY LOW

N\
20 T\
BIT: 7 6 5 4 3 2 1 0
INT.
NOT NOT TEST TEST INT. 7
ACK. BREAK | RESET
USED USED BIT BIT ENABLE SELECT
H: Enables interrupt acknowledge :i &H: Reset
L: Inhibits interrupt acknowledge L: No action
H: Selects X1 7 H: L Sets XMT output low
L: Selects interval timer 5 L: H Sets XMT output high

FIGURE 4-DISCRETE COMMAND FORMAT

Bit 0, reset
A high in bit O will cause the following:

1) The receiver buffer and register are cleared to the search mode including the receiver-buffer-loaded flag, the
start-bit-detected flag, the full-bit-detected flag, and the overrun-error flag. The receiver buffer is not cleared and
will contain the last character received.

2} The transmitter data output is set high (marking). The transmitter-buffer-empty flag is set high indicating that the
transmitter buffer is ready to accept a character from the TMS 8080.

3) The interrupt register is cleared except for the bit corresponding to the transmitter buffer interrupt, which is set
high.

4) The interval timers are inhibited.

A low in bit O causes no action. The reset function has no affect on the output port, the external inputs, interrupt
acknowledge enable, the mask register, the rate register, the transmitter register, or the transmitter buffer.

Bit 1, break
A low in bit 1 causes the transmitter data output to be reset low (spacing).

1f bit O and bit 1 are both high, the reset function will override.

Bit 2, interrupt 7 select
Interrupt 7 may be generated either by a low to high transition of external input 7 or by interval tmer 5.

A gh in bit 2 seiecis the interrupt 7 souice to be the transition of external input 7. A low n bt 7 setects t!
interrupt 7 source to be interval timer 5.

Bit 3, interrupt acknowledge enable
The TMS 5501 decodes data bus (CPU status) bit 0 at SYNC ot cach machine cycle to determine if ar riterrupt

acknowledge is being issued.

A high 1n bit 3 enables the TMS 5501 to accept the interrupt acknowtedge decode. A low n bit 3 causes the TMS 2501
to ignore the interrupt acknowledge decode.

Bit 4 and bit b are used only during testing of the TMS 5501. For correct system operation both bits must e kent fow
Bit 6 and bit 7 are not used and can assume any value.
2.2.6 Load rate register

Addressing the load rate-register function causes the TMS 5501 to load the rate register from the data bus and interpiet
the data bits (See Figure 5) as follows.

BIT: [7 6 5 4 3 2 1 0
\ STOP | 9600 4800 2400 1200 300 150 110
L BIT(s) baud baud baud baud baud baud baud i

[H: One stop bit
L: Two stop bits

FIGURE 5—-DATA BUS ASSIGNMENTS FOR RATE COMMANDS.

Bits 0 through 6, rate select

The rate select bits (bits O through 6) are mutually exclusive, i.e., only one bit may be high. A high in bits 0 through 6
will select the baud rate for both the transmitter and receiver circuitry as defined below and in Figure 5:

Bit O 110 baud
Bit 1 150 baud
Bit 2 300 baud
Bit 3 1200 bzaud
Bit4 2400 baud
Bit5 4800 baud
Bit6 9600 haud

If more than one bit is high, the highest rate indicated will resutt. If bits O through 6 are all low, both the receiver anii
the transmitter circuttry will be inhibited.

225

Bit 4, transmitter buffer empty

A high in bit4 indicates that the transmitter buffer register is empty and ready to accept a character. Note, however,
that the serial transmitter register may be in the process of shifting out a character. The reset function sets the
transmitter-buffer-empty flag high.

Bit 5, interrupt pending
A high in bit5 indicates that one or more of the interrupt conditions has occured and the corresponding interrupt is
enabled. This bit is the status of the interrupt signal INT.

Bit 6, full bit detected
A high in bit 6 indicates that the first daia bit of a receive-data character has been detected. This bit remains high until
the entire character has been received or until a reset is issued and is provided for test purposes.

Bit 7, start bit detected
A high in bit 7 indicates that the start bit of an incoming data character has been detected. This bit remains high until
the entire character has been received or until a reset is issued and is provided for test purposes.

Issue discrete commands

Addressing the discrete command function causes the TMS 5501 to interpret the data bus information according to the
following descriptions. See Figure 4 for the discrete command format. Bits 1 through 5 are latched until a different
discrete command is received.

NORMALLY LOW
-\

’ \
BIT: 7 6 5 4 3 2 1 0
NOT NOT TEST TEST INT. INT. 7
ACK.) BREAK | RESET
SE E
USED USED BIT BIT ENABLE SELECT|
H: Enables interrupt acknowledge ﬂ tH: Reset
L: Inhibits interrupt acknowledge L: No action
H: Selects X1 7 H: L Sets XMT output low
L: Selects interval timer 5 — L: H Sets XMT output high

FIGURE 4-DISCRETE COMMAND FORMAT

Bit 0, reset
A high in bit O will cause the following:

1} The receiver buffer and register are cleared to the search mode including the receiver-buffer-loaded flag, the
start-bit-detected flag, the full-bit-detected flag, and the overrun-error flag. The receiver buffer is not cleared and
will contain the last chavacter received.

2) The transmitter data output is set high (marking). The transmitter-buffer-empty flag is set high indicating that the
transmitter buffer is ready to accept a character from the TMS 8080.

3) The interrupt register is cleared except for the bit corresponding to the transmitter buffer interrupt, which is set
high.

4) The interval timers are inhibited.

A low in bit 0 causes no action. The reset function has no affect on the output port, the external inputs, interrupt
acknowledge enable, the mask register, the rate register, the transmitter register, or the transmitter buffer.

CRT 5027

JLPC FAMILY
APPENDIX G.3
CRT Video Timer-Controller
PIN CONFIGURATION

FEATURES

[J Fully Programmable Display Format N
Characters per data row (1-200) AAiE) opa
Datarows per frame (1-64) cs 3 38 Bv—m
Raster scans per datarow (1-16) R3[] 4 37 H1

] Programmable Monitor Sync Format ijgE : 3 % e
Raster Scans/Frame (256-1023) R0 7 34[JH4
“Front Porch” REC] 8 33[JHs
Sync Width el 1] roms
“Back Porch” vsyn[J 11 30[]DR4
Interlace/Non-Interlace oce 12 29[]1DR3
Vertical Blanking ‘\’IDDE > 281 0R2

(] Direct Outputs to CRT Monitor HsYN] 15 Y6 % iy
Horizontal Sync crv[]1e 25[] peg
Vertical Sync BL 17 24 oB1
Composite Sync gggE iz 22 3‘;22
Blanking pBs[] 20 21[] pBa
Cursor coincidence

1 Programmed via:
Processor data bus
External PROM [Split-Screen Applications
Mask Option ROM Horizontal

[Standard or Non-Standard CRT Monitor Compatible Vertical

(] Refresh Rate: 60Hz, 50Hz, ... Programmable Wipes

1 Scrolling] External Video Sync-Lock
Single Line] TTL Compatibility
Multi-Line [J BUS Oriented

[J Cursor Position Registers [High Speed Operation

O Character Format: 5x7, 7x9,... 1 COPLAMOS®N-Channel Silicon

] Programmable Vertical Data Positioning Gate Technology

(] Graphics Compatible
General Description

The CRT Video Timer-Controller Chip (VTAC) is a user programmable 40-pin COPLAMOS® n channel MOS/LSI device
containing the logic functions required to generate all the timing signals for the presentation and formatting of interlaced and
non-interlaced video data on a standard or non-standard CRT monitor.

With the exception of the dot counter, which may be clocked at a video frequency above 25 MHz and therefore not
recommended for MOS implementation, all frame formatting, such as horizontal, vertical, and composite sync, characters
per data row, data rows per frame, and raster scans per data row and per frame are totally user programmable. The data row
counter has been designed to facilitate scrolling.

Programming is effected by loading seven 8 bit control registers directly off an 8 bit bidirectional data bus. Four register
addresslines and a chip selectline provide complete microprocessor compatibility for program controlled set up. The device
canbe “self loaded" via an external PROM tied on the data bus as described in the OPERATION section. Formatting can also
be programmed by a single mask option.

in addition to the seven control registers two additional registers are provided to store the cursor character and data
row addresses for generation of the cursor video signal. The contents of these two registers can also be read out onto the
bus for update by the program.

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Rangeottt e 0°Cto + 70°C
Storage Temperature Range -55°Cto +150°C
Lead Temperature (soldering, TO SEC.) .« ..ottt e e e e +325°

Positive Voltage on any Pin, with respecttoground +18.0V

Negative Voltage on any Pin, withrespecttoground

“Stresses above those listed may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or at any other condition above those indicated in the operational
sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that

the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies
exhibit voltage spikes or ““glitches’’ on their outputs when the AC power is switched on and off.

In addition, voltage transients on the AC power line may appear on the DC output. For example, the
bench power supply programmed to deliver +12 volts may have large voltage transients when the
AC power is switched on and off. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS (Ta=0°C to 70°C, Vcc= +5V +5%, Voo=+ 12V +5%, unless otherwise noted)

Parameter Min. Typ. Max. Unit Comments
D.C. CHARACTERISTICS

INPUT VOLTAGE LEVELS

Low Level, ViL 0.8 \

High Level, ViH Vee—1.5 Vce \
OUTPUT VOLTAGE LEVELS

Low Level—Vou for R@-3 0.4 Vv for=3.2ma

Low Level—Vou all others 0.4 \Y loL =1.6ma

High Level—Vor for R@-3 2.4 lon =80ua

High Level-—Vow all others 2.4 lon=40ua
INPUT CURRENT

Low Level, I

High Level, I
INPUT CAPACITANCE

Data Bus, Cin 10 pf

Clock, Cin 25 pf

All other, Cin 10 pf
DATA BUS LEAKAGE in INPUT MODE

ioB

los
POWER SUPPLY CURRENT

lcc 80 ma

loo 40 ma

A.C.CHARACTERISTICS Ta= 25C

DOT COUNTER CARRY

frequency 0.2 4.0 MHz Figure1

PWH 35 ns Figure 1

PWL 190 ns Figure 1

tr. tf 10 ns Figure 1
DATA STROBE

PW©Bs 150 ns Figure 2
ADDRESS, CHIP SELECT

Set-up time 100 ns Figure 2

Hold time 50 ns Figure 2
DATA BUS—LOADING

Set-up time 100 ns Figure 2

Hold time 75 ns Figure 2
DATA BUS—READING

ToeL2 100 ns Figure 2, CL-=50pf
OUTPUTS: H@-7, HS, VS, BL, CRV,

CS-Toews . 100 ns Figure 1, CL=20pf
OUTPUTS: R@-3, DRE-5

ToeLs 1.0 US Figure 3, CL—=20pf

Restrictions

1. Only one pin is available for strobing data into the device via the data bus. The cursor X and Y coordinates are therefore
loaded into the chip by presenting one set of addresses and outputed by presenting a different set of addresses. Therefore
the standard WRITE and READ control signals from most microprocessors mustbe “NORed” externally to present a single

strobe (DS) signal to the device.

2. An even number of scan lines per character row must be programmed in interlace mode. This is again due to pin count

limitations which require that the least significant bit of the scan counter serve as the odd/even field indicator.

3. Ininterlaced mode the total number of character slots assigned to the horizontal scan must be even to insure that vertical

sync occurs precisely between horizontal sync pulses.

Operation

The design philosophy employed was to allow the device to interface effectively with either a microprocessor based or
hardwire logic system. The device is programmed by the user in one of two ways; via the processor data bus as part of the
system initialization routine, or during power up via a PROM tied on the data bus and addressed directly by the Row Select
outputs of the chip. (See figure 4). Seven 8 bit words are required to fully program the chip. Bit assignments for these words
are shown in Table 1. The information contained in these seven words consists of the following:

Horizontal Formatting:
Characters/Data Row A 3 bit code providing 8 mask programmable character lengths from 20 to 132.
The standard device will be masked for the following character lengths; 20, 32,
40, 64,72, 80, 96, and 132.

Horizontal Sync Delay 3 bits assigned providing up to 8 character times for generation of “front porch”.

Horizontal Sync Width 4 bits assigned providing up to 16 character times for generation of horizontal
sync width.

Horizontal Line Count 8 bits assigned providing up to 256 character times for total horizontal formatting.

Skew Bits A 2 bit code providing from a 0to 2 character skew (delay) between the

horizontal address counter and the horizontal blank and sync signals to allow for
retiming of video data prior to generation of composite video signal. The Cursor
Video signal is also skewed as a function of this code.

Vertical Formatting:
Interlaced/Non-interlaced This bit provides for data presentation with odd/even field formatting for inter-
laced systems. It modifies the vertical timing counters as described below.
A logic 1 establishes the interlace mode.

Scans/Frame 8 bits assigned, defined according to the following equations: Let X = value of 8
assigned bits.
1) in interlaced mode—scans/frame = 2X + 513. Therefore for 525 scans,
program X = 6 (000001 10). Vertical sync will occur precisely every 262.5 scans,
thereby producing two interlaced fields.
Range = 513 to 1023 scans/frame, odd counts only.
2) in non-interlaced mode—scans/frame = 2X + 256. Therefore for 262 scans,
program X = 3 (00000011).
Range = 256 to 766 scans/frame, even counts only.

In either mode, vertical sync width is fixed at three horizontal scans (= 3H).

Vertical Data Start 8 bits defining the number of raster scans from the leading edge of vertical
sync until the start of display data. At this raster scan the data row counter is
set to the data row address at the top of the page.

Data Rows/Frame 6 bits assigned providing up to 64 data rows per frame.

Last Data Row 6 bits to allow up or down scrolling via a preload defining the count of the last
displayed data row.

Scans/Data Row 4 bits assigned providing up to 16 scan lines per data row.

Additional Features

Device Initialization:

Under microprocessor control—The device can be reset under system or program control by presenting a1@14@ address
on A3-. The device will remain reset at the top of the even field page until a start command is executed by presentinga111@
address on A3-@.

Via “Self Loading”"—In a non-processor environment, the self loading sequence is effected by presenting and holding the
1111 address on A3-@, and is initiated by the receipt of the strobe pulse (DS). The 1111 address should be maintained long
enough to insure that all seven registers have been loaded (in most applications under one millisecond). The timing
sequence will begin one line scan after the 1111 address is removed. In processor based systems, self loading is initiated by
presenting the @111 address to the device. Self loading is terminated by presenting the start command to the device which
also initiates the timing chain.

Scrolling—In addition to the Register 6 storage of the last displayed data row a “scroil” command (address 1¢11)
presented to the device will increment the first displayed data row count to facilitate up scrolling in certain applications.

Description of Pin Functions

Input/
PinNo. Symbol Name Output Function
25-18 DBg-7 Data Bus 'O Data bus. Input bus for control words from microprocessor or
FROM. Bidirectional bus faor cursor address.
3 Cs Chip Select ! Signais chip that 1 is teing addressed
39,40,1,2 Ag-3 Register i Hegister address bits tor selecting one of seven control
Address registers or either of the cursor address registers
9 DS Data Strobe | Strobes DBJ-7 intc the appropriate register or outputs the
cursor character address or cursor line address onto the data bus
12 DCC DOT Counter [Carry fr< m off chip dot counter establishing basic character
Carry ‘. Lharacier elock.
38-32 Hg-6 Character O Ci‘,aracle: ~ounter outputs.
Counter Outputs
7,5,4 R13 Scan Counter O Thiee rnu:,t significant bits of the Scan Counter; row select
Outputs mputs to character generator
31 H7/DR5 H7/DR5 (@] Fin dr—rln'n'“n is user programmable. Qutput is MSB of
Ok cuce it horizontal line count (REG. @) is =128;
5 MISE of Data Row Counter,
8 Re Scan Counter LSB O nthitof the scan counter. Ininterlaced mode this
(Odd/Even Field) it defines the add or aven field. In this way, odd scan lines of
it are setected during the odd field and even
S5CArs aurtiyg wig even field.
26-30 DR@-4 Data Row O Jata Row counier oulputs.,
Counter Qutpuis
17 BL Blank o] Defimes nor active portion of horizontal and vertical scans.
15 HSYN Horizontal Sync 0] Initiates horizontal retrace.
11 VSYN Verticai Sync O Initates varticat vatrace
10 CSYN Composite Sync 0 Active in non-interlaced made only. Provides a true RS-170
composite sync waveform.
16 CRV Cursor Video O Defises cursor im,_t‘-iom in data tield.
14 Vee Power Supply PS =5k Poyiar g
13 Voo Power Supply PS +12voit Puwpr Supply
Timing Diagrams
@ORIZQNTAI TIMNG BT O
e APT OF LINE Iy ~"""’ !
- ..J
\Eri!(J“ H “.‘m\u .
AR OF FRAME M - 1 OREVENFIELD
S e e --¢
VERTICAL DATA — N b - - VERTICAL SYNC
START =34
TABLE 1
BIT ASSIGNMEMT JHART
SKEW 81t

ees[7] 1 1 1 T

MODE INTERLACED, HSYNCWIOTE 14 SYNC DR AY
NON INTERLACED i

HORIZONTAL 1LINE COUNT
il

[jqj ;aec: J

LAST DISPLAYED DATA ROW

tL

el
SENEIRRRRE

CURSOR CHARACTER ADDRESS
|

REG L7 LGJ

SCANS DATA P\O\‘a

[[s[2] 17]

CHARAC Ti:P(GATAROW

o7 L 1T 111 o]

CURSQOR ROW ADDRESS

WMIWQIJ [a]2] 1J

—
sl [T T 11 To]

A3 A2 A1 Ad
0 0 0 O
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 O
0 1 0 1
0 1 1 0
o 1 1 1
1 0 0 O
1 0 0 1
1 0 1 0
1 0 1 1
i1 0 O
11 0 1
1 10
11 11

Register Selects/Command Codes

Select/Command

Load Control Register @
Load Control Register 1
Load Control Register 2
Load Control Register 3
Load Control Register 4
Load Control Register 5
Load Control Register 6
Processor Self Load

Read Cursor Line Address
Read Cursor Character Address
Reset

Up Scroll

Load Cursor Character Address*
Load Cursor Line Address*
Start Timing Chain

Non-Processor Self Load

Description

> See Tabie 1

Command from processor instructing CRT
5027 to enter Self Load Mode

Resets timing chain to top left of page. Reset
is latched on chip by DS and counters are
held until released by start command.
Increments address of first displayed data
row on page. ie; prior to receipt of scroll
command—top line = O, bottom line = 23.
After receipt of Scroll Command—top line =
1, bottom line = 0.

Receipt of this command after a Reset or
Processor Self Load command will release
the timing chain approximately one scan line
later. In applications requiring synchronous
operation of more than one CRT 5027 the
dot counter carry should be held low during
the DS for this command.

Device will begin self load via PROM when
DS goes low. The 1111 command should be
maintained on A3-@long enough to guaran-
tee self load. (Scan counter should cycle
through at least once). Self load is automati-
cally terminated and timing chain initiated
when the all “1’s” condition is removed, in-
dependent of DS. For synchronous opera-
tion of more than one CRT 5027, the Dot
Counter Carry should be held low when this
command is removed.

*NOTE: During Self-Load, the Cursor Character Address Register (REG 7) and the Cursor Row Address
Register (REG 8) are enabled during states $111 and 1000 of the R3-R@ Scan Counter outputs respectively.
Therefore, Cursor data in the PROM should be stored at these addresses.

Vou

H SYNC

Vol

VOH;

V SYNC

Composite Sync Timing Diagram

:

| | L

VoL !

:4————H————4<————H~———>
Vou

COMPOSITE
SYNC
Vou

'
[}
'

—H/2 ;

L]

1T

'
\
)
i

L

AC TIMING DIAGRAMS

DOT COUNTER
CARRY

HE-7

HSYNC. V SYNC. BLANK.
CURSOR VIDEO
COMPOSITE SYNC

7/'

ADDRESS.
CHIP SELECT

DBg-7
LOADING IN
OF DATA

FIGURE 1 VIDEQ TIMING

FIGURE 2 LOAD/READ TIMING

TseT 0P

Tser-upz

#

DBg-7
READING OUT
OF DATA

.
L———TUELz

- TN

./

e ————PW 55—t

FIGURE 3 SCAN AND DATA ROW COUNTER TIMING

T T TN

r__TDEL 3

Figure 4. SELF LOADING SCHEME FOR CRT 5027 SET-UP

Bsn
Ay A~ A~ A C5 DS
DEg—><t —op
> —
- —>d
SMC
—x] CRT 5027
"DQ VTAC
<t ﬁ'iq
g —
DG— —b
DB7 < L
R. R R R-
HAx
32 x 8 PROM HA
HARRIS HM-7602
OR EQUIVALENT HA
STOAD cs HA
(from system) HA: e 45

ROW SELECTS
TO CHARACTER GENERATOR

AVYHOVIA X0019

aND AZI+ AG+

9] gt il I -
avo1413s 14 I — 6| 280uLs viva
|
uvis J ” €| 103738 a@ivd
1383y - | 300030 !
Tou0s - SSAMaAY [3«
R 2°1L'0v'6E
8d13S 0413s
el B} o _ . i o .
P £-0'80 SN Y1va 2
R S SO i : : - .L — T
. e
- T _
43LSI1O3H H3LSIO3Y LVIS | ﬁ 4318193y »u13S
4135) 3vHL/SMOY VIV ,‘ vIva WOllg3A [SY¥13S | INVHIISNVOS
| I [
bl : o _
| | I
e - N | — - ; 7 \\\fm . A\} - _, ; S - AA
waisiogy [| HOLVEVANOO HOLVHYIWOD | | | HOLVHVAWOD | | HOLVHVJWOO ;
I * |
inooswNn | L | * R L - . ; L
HSW . o ‘ - . i B ' - ~ - - - _\
- i , |
i J— I ! | 3
IF ﬁ 7 \w ‘ o I A N
SHQIH :mtt;. o TGl B NP SR O ,ﬁ H3INNOD | _\ L : _ O F H3LINNOD o
7 ' MOH VIYQ - F= 1 | mow §<sz<omﬁ] ~ 7 _ ! INVHI/SNYOS
P - ~—710H9S | - - Coo— Ly, e - gIovIHAING e
-1y , E
‘01314 ! INAS HOH X2
Nan3zaao) @ Y[0£-92 | 7)
-0 HA i Q3DVIH3LNI
AQFZONH_V_WWM
Sl | ' j
o[Lk LT , P
ﬁ:il HOLVHVANOD d L . E | e 90H
|
SR T -
, <7 Q30VIHALNI | ﬁ HY3INNOO |
owns |L2F L - W | wdwovevio T ETU I
3uis0dwod [gr \Mme_\OMfoJ SRR A — .- ylﬁ - -
n ! !
#4135 553400V A HOSHNO| o \ : o R S
e
sonl o1 J - 0 10 1 |
HOSHNO _IwIFA.ITAV -7 - ; A _
. — - HOLYHYANOD ﬁ Cm e - HOLVHVYAINOD HOLVHYINGD HOLVHVANOD
ONAS H XC +
: e ! - T I BRI -
1
i |] I 1 | |
1l . 1 - _ S IO
R _
y318193y Y3LSI93 | HAISIOIY H3LSIO3H 63181934 |
| $S3YAQY H HOSHND vTEdw T3S = L1 QI ONAS | AV130 ONAS MOEAEVHD [9135| INnoo N [e E13s
[- - S — —
L - - S G
N - : 8l~GZ ,08dSnd VivG

CRT 5027 Control &

Horizontal Line Count: Tota! Charar
Characters/Data Row: T 3

O .

0 o

0 !
Horizontal Sync Dalay: foon !
Horizontal Sync Wicith. ce o
Skew Bits L0

a '
Scans/Frame o

Y ,f‘.

Vertical Data Start: N

Data Rows/Frame: NI

Last Data Rows

Scans/Data Row:
Mode:

SORIZONT AL TN

F{E(%,ﬂl 7 :

L i . T
MODE: INTERL AL B ctmom o fores .

complete information sultictant for con
and is believesd to i i
does not cor,

SMC reserves ter

refah’ A

o~
REEE R BTyl

L0 LG5 {DBE=LSB)

Actve G asiersyData Row

L

4 - 0 Disallowed)
s N - O Disallowed)

< ursor Delay

= DO

g o the foliowing

© 5 assigned bite (DB@=1.8B)
frame 2X 513.
At % 6 (00060110).

Sump 80

> 5 scans

f

wloonets only
12X - 258.

SLoirame

Amary X 3600001 1),
LT RN Counis only.
Nixee M At tanee horizontal
AT
1 —n .
! : = | | |
[N S SU SO N
foHLRACTUR ADDRESS
i -
TTTTT T
. i EEEr
B R ADDRESS
T T e
- (P SO S SN e
" phicalinns: consequently,
~lan e efully checked
REN v infermation

31 others.

	Cover
	Table of Contents
	1. Introduction
	1.1 The Compucolor II
	1.2 Initializing and Running BASIC
	1.3 Compucolor II Keyboard Layouts
	1.4 Using the Manual

	2. Essentials for SImple Programming
	2.1 Variables
	2.2 Numbers
	2.3 Arithmetic Operations
	2.4 The Assignment Statement

	3. Beginning to Program
	3.1 Sample Program
	3.2 The PRINT Statement
	3.3 The RUN Statement
	3.4 Corrections
	3.5 The REM Statement
	3.6 The LIST Statement
	3.7 The END Statement
	3.8 The CONT Statement
	3.9 Multiple Statement Lines
	3.10 Introduction to Strings
	3.11 The CLEAR Statement
	3.12 Immediate Mode
	3.13 Samples and Examples

	4. More Statements, Commands, and Features
	4.1 The INPUT Statement
	4.2 The DATA Statement
	4.3 The READ Statement
	4.4 The RESTORE Statement
	4.5 The GOTO Statement
	4.6 Relational Operators
	4.7 Logical Operators
	4.8 The IF ... THEN and IF ... GOTO Statements
	4.9 The FOR and NEXT Statements

	5. Functions and Subroutines
	5.1 Functions
	5.2 User Defined Functions
	5.3 BASIC String Functions
	5.4 Subroutines
	5.5 The ON GOTO and ON GOSUB Statements

	6. Arrays
	6.1 Introduction to Arrays
	6.2 Subscripted Variables
	6.3 Subscripted String Variables
	6.4 The DIM Statement

	7. Further Sophistication
	7.1 Formatting the Printout
	7.2 Immediate Mode and Debugging
	7.3 Machine Level Interfaces with DISK BASIC
	7.4 String Space Allocation

	8. Disk Features
	8.1 Loading and Saving Programs
	8.2 Using the File Control System Through BASIC
	8.3 Introduction to Random Files
	8.4 The FILE Statement
	8.5 The GET Statement
	8.6 The PUT Statement
	8.7 Improving File Access
	8.8 Storage Requirements

	9. Color, Graphics, and Other Terminal Features
	9.1 The PLOT Statement
	9.2 Color
	9.3 Special Characters
	9.4 Cursor Controls
	9.5 Vector Graphics
	9.6 RS-232C Interface
	9.7 Using the Compucolor II as a Terminal
	9.8 Miscellaneous Escape Codes

	10. File Control System
	10.1 Introduction to FCS
	10.2 The FCS Commands

	Appendix A. Disk BASIC
	A.1 BASIC Statements
	A.2 BASIC Operators
	A.3 Standard Mathematical Functions
	A.4 Standard String Functions
	A.5 BASIC Error Codes
	A.6 BASIC Random File Error Codes

	Appendix B. FCS (File Control System)
	B.1 FCS Commands
	B.2 FCS Error Codes

	Appendix C. CRT Commands
	C.1 Control Codes
	C.2 Status Word Format
	C.3 Escape Codes
	C.4 Baud Rate Selection
	C.5 Graphic PLOT Submodes
	C.6 Incremental Direction Codes

	Appendix D. Internal Features
	D.1 Key Memory Locations
	D.2 Port Assignments
	D.3 Compucolor Fifty Pin Bus
	D.4 RS-232C Interface

	Appendix E. ASCII Values
	Appendix F: Character Set
	Appendix G.1. TMS 8080 Microprocessor
	Appendix G.2. TMS 5501 Multifunction Input/Output Controller
	Appendix G.3. CRT 5027 Video Timer-Controller VTAC

