Copyright (C) 1980

IS

R[Sz e AT LBMRY
W Pa) V-5 ®3 COLMCVE.

Y OSERAUTICRGY | VERY S
TO BAS\C.

TS FiRTM JER PRORLEMS FOURD

REFERENCE MANUAL ¢.3 PECLEL e

AND Fopfin TuTeRiN

LM}? pte. . cuVie

b ol rT £ L Covbev OCT [N
Ao LT K1 €0 | c‘ -

L(r-; NG T)RR 33-

see o # 6
P13 NUG[sEET 1 caurae

USER'S GUIDE

For
KIS0 warl FRsT
Intecolor and Compucolor ABLONSTD

Units with FORTRAN

999275
02/25/80

Intelligent Systems Corp.
Intecolor Drive
225 Technology Park/Atlanta
Norcross, Georgia 30092
Telephone: 404/449-5961
™WX: 810/766-1581

Paae i

TABLE OF CONTENTS

Notes on ISC FORTRAN I
Microsoft E‘OR[‘RAN-—SO Reference Manual § = 10§
Microsoft FORTRAN-80 User's Manual ' 33— \3
LINK-80 Linking Loader Instructions 35 — 43

§UT PORTRAN [MiRD MSERELER

P&nevl

NOTES ON ISC FORTRAN

PROCEDURE FOR THE USE OF ISC FORTRAN:

1) Create a FORTRAN source program module and any other needed modules
to be linked on disk using a text editor such as ISC's TEXT EDITOR
or SCREEN EDITOR,

2) Compile the modules using F80:
FPCS>RUN F80

F80>Module name
F80>Module name

F80>Module name
F80> (Control/C)
FCS>

Note that the default input file type for F80 is _FOR and the output
file type is REL,
3) Link the resulting compiled modules together with the library routines
needed from FORLIB.REL using L80:
PCS>RUN L80
L80>module name. module name.. . .,module name
L80>FORLIB/S
At this point. the resulting module may be run:
L80>/G

or a program (PRG.) file may be generated to be run later:

L80>/N:Name for program . sycis ' sed ot doving iF %
L80>/E L me Lpa>/NiFoRDNE
FCS>

Note that the default input file type for L80 is REL. and that
multiple commands may appear on a single line. ovTBut P w0 PRG-

EXAMPLE:

Suppose that the program REGRES.PRG is to be created on disk from
the FORTRAN source program REG.FOR and its associated source module
INV.PRG both of which reside on disk. Assuming at each step that the
correct disk is in the drive, the procedure is as follows: ‘

Poqe

FCS>RUN F80
P80>REG
F80>INV

F80> (Control/C)
PCS>RUN LS80 ‘
L80>REG, INV
L80>FORLIB/S
L80>/N: REGRES/E
FCS>

PROGRAMS TOO LARGE TO LINK:

Programs too large to link by the method above may yet be linked by use of
the equates file (EQ.REL). At link time. the compiled module(s) of the
program are linked to BEQ.REL with a program address of ACID (or beyond) so
that the prelinked library may be in memory at runtime:

FCS>RUN L80 -

L80>/P:ACID (for Compucolor and for Intecolor
3621; for 8000/8300/8900-Series
Intecolor use L80>/P:CB30)

L80>Module name, module name,...,module name

L80>EQ _

L80>/N:File name/E .

FCS>

To execute the resulting program. first run LIB.PRG which loads the
prelinked library, then run the program:

FCS>RUN LIB
FCS>RUN File name

For the example above the procedure is

FCS>RIN 180

L80>/P:ACID (for Campucolor and for Intecolor
3621; for 8000/8300/8900-Series
Intecolor use L80>/P:CB30)

L80>REGRES, INV

L80>/N:REGRES/E

PCS>RUN LIB
FCS>RUN REGRES

OTHER NOTES:

1) One or more of the following 'flags' may be used after a file name
in a command line for F80: :

<L List source code on printer
T List source code on CRT

=N Suppress object coce

/A List object code (mnemonics)

Flags which may be used for L80 are cdescribed elsewhere in the
reference manual.

2) The logical unit numbers for use in I/O statements are as follows:
2 - printer
3 - console
6-10 -~ disk files
3) Graphics may be employed by defining LOGICAL (BYTE) variables,
assigning the needed plot values to them and using unformatted
WRITE statements listing these variables..

4) The form of the OPEX statement isl

CALL OPEM (File name, Logical unit number)

5) The unformatted READ statement is not incorporated.

(

Pﬂc#

MICROSOET
FORTRAN=80

version 3.0

Fererence manual

0N

(0]

rction

MICROSOFT FORTRAN-80
Reference Manual

Contents

INtroductionN . ¢ « o o o o o o o o o o o

Fortran Program FOXrm =« « o o o o o o o o

2.1

Fortran Character Set .« « ¢« ¢ o « &
2,17,7 Lettrs ¢« « o « o o o o o o o
2 1 2 Digits e e e o e © e o o o o
2.17.3 AlphanumericCs « « « o o o o @
2.1.4 Special Characters =« « « « .
FORTRAN Line Format .« « o o o o o o
StatCMENLES o o o o o o o o o o o o o

Representation/Storage Format . . .

Data names and types « « o o o o o o
377 NamMeS « o o o o o o s o o o o
3.T02 TYPES v v v v o o o o o o o o
Constants &« ¢ « o o o o o o o o o o

varlables ‘. L] L] L] L] L] L] L L] L
Arrays and Array Elements c o o o o
Subscripts . « .+ « . e o o o o o s

Data Storage Allocatlon e o o o o o

FORTRAN EXPreSSiONS o« o o o o o o o o o

[-3
s o o

1
2
3

Arithmetic Expressions
Expression Evaluation
Logical Expressions
4.3.1 Relational Expres51ons
4,.3.2 Logical Operators . . .
Hollerith, Literal, and Hexadecimal
Constants in Expressions . « . . .« &

[[e. o

Replacement Statements

Specification Statements . . ¢ ¢ o .+ o .

AN
e o o o o
W=

Specification Statements
Array Declarators . . .
Type. Statements
EXTERNAL Statements . .
DIMENSION Statements .« « o« o o o o &

Page

~

WO WM IdI

14

14
14
14
15
19
20
20
21

25
25
26
27
28
28

31

32

34
34

34
35

37

6.6
6.7
6.8

COMMON Statements . « « &
EQUIVALENCE Statements .

DATA Initialization Statement

FORTRAN Control Statements . .

7.1

~N
o o
w N

NN NN
e o o o o o o
= O 00 ~JOU &

Input/Output , . . . « « o o

8.1

- 00 00 00 ™
L] . . .
Vb WwN

GOTO Statements . . &
7.1.1
7.1.2 Computed GOTO .
7.1.3 Assigned GOTO
ASSIGN Statement , .
IF Statement ., . .
7.3.1 Arithmetic IF
7.3.2 Logical IF
DO Statement , .
CONTINUE utduement
STOP Statement .
PAUSE Statement .,
CALL Statement .,
RETURN Statement
END Statement

.. e ® e @ -’u'owp v e &

Formatted READ/WRITE ..
8.1.1 Formatted READ ,
8.1.2 Formatted WRITE
Unformatted READ/WRITE
Auxiliary I/0 Statements
ENCODE/DECODE . ¢ o o o &

Input/Output List Spec1f1cat'o s
List Item Types .-
Special Notes on List’
Specifications ., ..
ORMAT Statements-
Field Descriptors

8.5.1
8.5.2

6.7
l6.7|2
.8 FORMAT Control,

Unconditional- GOTO

‘e & @ o o o o_qwoﬁoﬁgfc<o

P Descriptor ., , .. .
Special Control Featu;es
of FORMAT ‘Statements °

°
(]
.
L[]
L]
L]

Numeric Conversions
Hollerith Conversiong

X Descriptor . , . o

L[]
L]
‘ L]
1

1
2
3
4 Logical Conversion . .
5
6
7

e o o o & 0 6 o ¢ o o o o o o

L]

L]

L]
n

.1 Repeat Spec1f1catlons
Field Separators

.] . L] L] L

e o o o o

L] L] L] L] L] L] L] L4

[] L] L] [] L] L] . L]

» L] L] L] L]

List Spec1f1catlons

and Record Demarcation
9 FORMAT Carriage Control
10 FCRMAT Spe01f1cat10ns in- Arrays

L)
.
.
4
°
.
.

37
39
41

44

44
44
45
45
46
47
47
47
48
51
52
52
53
53
53

54

54
54
57
58
59
59
60
60

62
63

64
69

71
72
72

- 73

73
75

76

77
77

Functions and Subprograms .

L]
Ao~ oanbWND -

o

WWOWOWWOWOVWOWOLOOVY
L] [

PROGRAM Statement
Statement Functions
Library Functions .,
Function Subprograms .
Construction of Function Subprograms
Referencing a Function Subprogram .
Subroutine Subprograms
Construction of Subroutine Subprograms.
Referencing a Subroutine Subprogram .
Return From Function and Subroutine

Subprograms . « « « o o

)
—
—

O O
[]
|V

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

*

L]

Processing Arrays in Subprograms
BLOCK DATA Subroutine .

Language Extensions and Restrictions

I/0 Interface .,

Subprogram Linkages

ASCII Character Codes

Disk File Access

FORTRAN-80 Library Subroutines

L]

L]

.100
.102
.103

.106

FORTRAN-80 Reference Manual Page 6

SECTION 1

INTRODUCTION |

FORTRAN 1is a universal, problem ' oriented programming
language designed to simplify the preparation and check-out
of computer programs. The name of the language = FORTRAN -
is an acronym for FORmula TRANslator.

The syntactical rules for using the language are rigorous

and require the programmer to define fully the
characteristics o¢f a problem in a series of precise
statements. These statements, called the source program,

are translated by a system program called the FORTRAN
processor 1into an object program in the machine language of
the computer on which the program is to be executed.

This manual defines the FORTRAN source language for the 8080
and Z2~-80 microcomputers. This language includes the
American National Standard FORTRAN language as described in
ANSTI document X3.9-1966, approved on March 7, 1966, plus a
number of language extensions and some restrictions. These
language extensions and restrictions are described in the
text of this document and are listed in Appendix A.

NOTE

This FORTRAN differs from the
Standard in that it does not
include the COMPLEX data type.

Examples are included throughout the manual to illustrate
the construction and use of the language elements. The
programmer should be familiar with all aspects of the
language to take full advantage of its capabilities.

Section 2 describes the form and components of an 8080
FORTRAN source program. Sections 3 and 4 define data types
and thelr expressional relationships. Sections 5 through 9

describe the proper construction and usage of the various
statement classes.

FORTRAN-80 Reference Manual Page 7

SECTION 2

FORTRAN PROGRAM FORM

8080 FORTRAN source programs consist of one program unit
called the Main program and any number of program units
called subprograms. A discussion of subprogram types and
methods o©f writing and using them is in Section 9 of this
manual.

Programs and program units are constructed of an ordered set
of statements which precisely describe procedures for
solving problems and which also define information to be
used by the FORTRAN processor during compilation of the
object program. Each statement is written using the FORTRAN
character set and following ¢ prescribed line format.

2.1 FORTRAN CIIARACTER SET

To simplify reference and explanation, the FORTRAN
character set 1is divided into four subsets and a
name is given to each.

2.1.1 LETTERS

, E,’Z‘,G,H',I,J,K,L,‘M,N,O,P,Q,R,S,T,U
’ z,

A,B

V,W
NOTE

No distinction is made bhetween upper and

lower case letters. However, for clarity

and legibility, exclusive use of upper case
letters is recommended.

2.1.2 DIGITS
0,1,2,3,4,5,6,7,8,9

NOTE

Strings of digits representing numeric
quantities are normally interpreted as
decimal numbers. However, in certain
statements, the interpretation is in the

FORTRAN-8(0 Reference Manual Page 8

Hexadecimal number system in which case the
letters A, B, C, D, E, F may also be used
as Hexadecimal digits. Hexadecimal wusage
is defined in the descriptions of
statements in which such notation is
allowed.

ALPHANUMERICS

A sub-set of characters made up of all letters and
all digits.

SPECIAL CHARACTERS

Blank
= Equality Sign
+ Plus Sign
- Minus Sign
* Asterisk
/ Slash ‘
(Left Parenthesis
) Right Parenthesis
’ Comma
. Decimal Point

NOTES:

1. FORTRAN program lines consist of - 80 character
positions or columns, numbered 1 through 80.
They are divided into four fields.

2, The following special characters are classified
as Arithmetic Operators and are significant in
the unambiguous statement of arithmetic
expressions. S
+ Addition or Positive Value .

- Subtraction or Negatlve VAlue
* Multiplication
/ Division
** Exponentiation
3. The other special characters have specific

application in the syntactical expression of
the FORTRaAN language and in the construction of
FORTRAN statements.

FORTRAN-80 Reference Manual : Page 9

2.2

4. Any printable character may appear in a
Hollerith or Literal field.

FORTRAN LINE FORMAT

The sample FORTRAN coding form (Figure 2.1) shows

the format of FORTRAN program lines. The lines of
the form consist of 80 character positions or
columns, numbered 1 through 80, and are divided
into four fields.

1. Statement Label (or Number) field- Columns 1
through 5 (See definition of statement labels).

2. Continuation character field-
Column 6

3. Statement field-
Columns 7 through 72

4. Indentification field-
Columns 73 through 80

The identification field is available for any
purpose the FORTRAN programmer may desire and is
ignored by the FORTRAN processor.

The lines of a FORTRAN statement are placed in
Columns 1 through 72 formatted according to line
types. The four line types, their definitions, and
column formats are:

1. Comment line -- used for source program

annotation at the convenience of the
programmer.

1. Column 1 contains the letter C.

2. Columns 2 - 72 are used 1in any desired
format to express the comment or they may
be left blank.

3. A comment line may be followed only by an
initial 1line, an END 1line, or another
comment line,

4, Comment lines have no effect on the object
program and are ignored by the FORTRAN
processor except for display purposes 1in
the listing of the program.

-
-~
"’

v ! - i vles Ly
79 9 7 17 69 19 17 7 65 Bu s 9h . 86 L4 2L 16 6 sF GF 5 9y vhopr fv Ty Gw R AN BT 6 G0 TR oo £ WD L 60 RSO 90 W v] P ¥ , 3 .
| . e . _ J . i -
I
- \ - L N —
: i
—— ! — —— ———— - ————— - —_—d e e —— e — ———
']
' . I
: ——— e - [S g

.

s L ; RN SR

:
|

.

! B
w ; :
P - N —_ —_— ——— e —_ — : A em———— - —
' .
—_ . d df e e B B B - N O _—
" !
' i H
. ! 1
\. [-
| |
i ! '
Lo
i . R
e —— e — - L -1 ———— -1-
. !
.
SOV SR T - o e = - 4-]
)
— - - D T L B B D T T B B D B — - 4 S

R N N A I I O N N N O A A R e T

INIWILIVIS NVAO4

HOLifig 3V SLNY -
ST A i 3

Tt st

DAV

wyoy Butpo] NvYLHOL w.mmm

FORTRAN Coding Form

Figure 2.1

FORTRAN-80 Reference Manual Page 11

Examgle:
C COMMENT LINES ARE INDICATED BY THE
C CHARACTER C IN COLUMN 1.

C THESE ARE COMMENT LINES

line -- the last line of a program unit.
Columns 1-5 may contain a statement label.
Column 6 must contain a zero or blank.

Columns 7-72 contain one of the characters
E, N or D, in that order, preceded by,
separated by or followed by blank
characters.

Each FORTRAN program unit must have an END
line as 1its 1last 1line to inform the
Processer that it is at the physical end of
the program unit.

An END line may follow anv other type line.

Examgle:
END

Initial Line -- the first or only line of each
statement.

Columns 1-5 may contain a statement 1label
to identify the statement.

Column 6 must contain a zero or blank.

Columns 7-72 contain all or part of the
statement.

An initial line may begin anywhere within

~the statement field.

:Examgle:"

¢ THE STATEMENT BELOW CONSISTS
C. " OF AN INITIAL LINE '
c o

‘A= .5*SQRT(3-2.*C)

FORTRAN-80 Reference Manual Page 12

4. Continuation Line -~ used when additional lines
of coding are required to complete a statement
originating with an initial 1line.

1. Columns 1-5 are ignbrédh unless Column 1
~ contains a C.

2. If Column 1. contalns a C, it is a comment
line.

3. Column 6 must contain a character other
than zero or blank. ’

4."Columns 7-72 contaln the continuation of
the statement.

5. There may be as many continuation lines as
needed to complete the statement.

Examgle.

.C. THE STATEMENTS BELOW ARE AN INITIAL LINE
C AND 2 CONTINUATION LINES
C
63 BETA(1 2) = «."' ‘
1 A6BAR**7- (BETA (2,2) ~ASBAR*50
2 +SQRT (BETA(2,1)))

A statement label may be placed in columns 1-5 of a
- FORTRAN statement -initial line and is used for
reference purposes in other statements.

The following con51derat10ns gévern the use of
statement labels: : S
1. The label is an 1nteger from 1 to 99999.

2. The numeric value of’the,label, leading zeros
‘ and blanks are not significant.<

3. A label must be unlque w1th1n a program unit.

4. A label on a continuation llne is lgnored by
- the FORTRAN Processor.

FORTRAN~-80 Reference Manual Page 13

Example:
C EXAMPLES OF STATEMENT LABELS
C
1
1 01
99999
763

STATEMENTS

Individual statements deal with specific aspects of
a procedure described in a program unit and are
classified as either executable or non-executable.

Executable statements specify actions and cause the
FORTRAN Processor to generate object program
instructions. There are three types of executable
statements:

1. Replacement statements.
2. Control statements.

3. Input/Output statements.

Non-executable statements describe to the processor
the nature and arrangement of data and provide
information about input/output formats and data
initialization to the object program during program
loading and execution. There are five types of
non-executable statements:

1. Specification statements.

2. DATA Initialization statements.

3. FORMAT statements.

4., FUNCTION defining statements.

5. Subprogram statements.

The proper usage and construction of the various

types of statements are described in Sections 5
through 9.

FORTRAN-80 Reference Manual Page 14

SECTION 3

DATA REPRESENTATION / STORAGE FORMAT

The FORTRAN Language prescribes a definitive method for
identifying data used in FORTRAN programs by name and type.

3.1.2

DATA NAMES AND TYPES

NAMES

1. Constant - An explicitly stated datum.
2. Variable - A symbolically identified datum.

3. Array - An ordered set of data in 1, 2 or 3
dimensions.

4, Array Element - One member of the set of data
of an array. :

TYPES
Integer -- Precise representation of integral
numbers (positive, negative or zero) having

precision to 5 digits in the range -32768 to +32767
inclusive (-2**15 to 2**15-1).

Real -- Approximations of real numbers (positive,
negative or zero) represented in computer storage
in 4-byte, floating-point form. Real data are
precise to 7+ significant digits and their
magnitude may lie between the approximate limits of
10**-38 and 10**38 (2**-127 :and 2**127).

Double Precision =-- Approximations of real numbers
(positive, negative or zero) represented in
computer storage in 8-byte, £floating-point form.
Double Precision data are precise to 16+
significant digits in the same magnltude range as
real data.

Logical -- One byte representations of the truth
values "TRUE" or "FALSE" with "FALSE defined to
have an internal representation of zero. The
constant .TRUE. has the value -1, however any
non-zero value will be treated as ,TRUE. in a
Logical IF statement. In addition, Logical types
may be used as one byte signed integers in the

FORTRAN-80 Reference Manual -) Page 15

range -128 to +127, inclusive.

Hollerith -- A string of any number of characters
from the computer's character set. All characters
including blanks are significant. Hollerith data

require one byte for storage of each character in
the string.

CONSTANTS

FORTRAN constants are identified explicitly by
stating their actual value. The plus (+) character
need not precede positive valued constants.

Formats for writing constants are shown in Table
3—10 :))

FORTRAN-80 Reference Manual

TYPE

INTEGER

Page

Table 3-1. CONSTANT FORMATS

FORMATS AND RULES OF USE EXAMPLES

1. 1 to 5 decimal digits -763
interpreted as a deci- 1
mal number., +00672

2., A preceding plus (+) or -32768
minus (-) sign is op- +32767
tional.

3. No decimal point (.) or
comma (,) is allowed.

4. Value range: -32768
through +32767 (.i.e.,

-2**15 through 2**15-1),

1. A decimal number with 345,
precision to 7 digits -.345678
and represented in one +345,678
of the following forms: +,3E3

~73E4

+ or -.f + or -i.f
b. + or -i.E+ or -e

+ or -.fE+ or -e

+ or -i.fE+ or -e

where i, f, and e are
each strings represent-
ing integer, fraction,

and exponent respective-

ly-

2. Plus (+) and minus (=)

characters are optional.

3. In the form shown in 1 b

above, if r represents any
of the forms preceding

E+ or -e (i.e., rE+ or =e),
the value of the constant
1s interpreted as r times
10**e, where -38<=e<=38.

If the constant preceding
E+ or -e contains more
significant digits than

16

FORTRAN-80 Reference Manual = Page

DOUBLE
PRECISION

LOGICAL

LITERAL

HEXADECIMAL

the precision for real
data allows, truncation
occurs, and only the
most significant digits
in the range will be rep-

resented.
A decimal number with +345.678
precision to 16 digits. All +.3D3
formats and rules are identi- -73D4

cal to those for REAL con-
stants, except D is used in
place of E. Note that a real
constant .is assumed single pre-
cision unless it contains a

"D" exponent.

.TRUE. generates a non-zero . TRUE,
byte (hexadecimal FF) and .FALSE.
.FALSE. generates a byte in

which all bits are 0.

If logical values are

used as one~-byte integers, the
rules for use are the same as
for type INTEGER, except that
the range allowed is =128 to
+127, inclusive.

In the literal form, any
number of characters may be
enclosed by single quotation
marks. The form is as follows:

'X1X2X3...Xn'

where each Xi is any charac-
ter other than '. Two
quotation marks in successicn
may be used to represent the
quotation mark character
within the string, i.e.,

if X2 is to be the quotation
mark character, the string
appears as the following:

TX1''X3...Xn*
1. The letter Z or X zZ'12°?

followed by a single quote,
up to 4 hexadecimal X'AB1F'

17

FORTRAN-80 Reference Manual ‘ Page
digits (0-9 and A-F) and a Z'FFFF'
single quote is recognized
as a hexadecimal value. X'1F'

2. A hexadecimal constant is
right justified in its storage
value,

18

FORTRAN-80 Reference Manual Page 19

3.3

VARIABLES

Variable data are identified in FORTRAN statements
by symbolic names. The names are unique strings of
from 1 to 6 alphanumeric characters of which the
first is a letter. :

NOTE

System variable names and runtime
subprogram names are distinguished from
other variable names . in that they begin
with the dollar sign character ($). It is
therefore strongly recommended that in
order to avoid conflicts, symbolic names in
FORTRAN source programs ' begin with some
letter other than "$".

Examgles:
15, TBAR, B23, ARRAY, XFM79, MAX, A1$C

Variable data are classified into four types:
INTEGER, REAL, DOUBLE PRECISION and LOGICAL. The
spec1flcatlon of type 1s accompllshed in one of the
following ways:

1. Implicit typing in which the first letter of
the symbolic name .specifies Integer or Real
type. Unless explicitly typed (2., below),
symbolic names beginning with I, J, XK, L, M or
N represent Integer ' variables, and symbolic
names beginning with letters other than I, J,
K, L, M or N represent Real variables.

Integer Variables Y

ITEM
J1
MODE
X123
N2

FORTRAN-80 Reference Manual ' ‘_*7» Page 20

Real Variables

BETA
H2
ZAP
AMAT
XID

2. Variables may be typed explicitly. That 1is,
they may be given a particular type without
reference to the first letters of their names.
Variables may be explicitly typed as INTEGER,
REAL, DOUBLE PRECISION :'or -LOGICAL. The
specific statements. used in explicitly typlng
data are described in Sectlon 6.

Variable data receive their numeric value assignments during

program execution or, initially, in a DATA statement
(Section 6). ‘ SRR

Hollerith or Literal data may be éssigned "to any type

variable. Sub-paragraph 3.6 contains a discussion of
Hollerith data storage. o - '

3.4 ARRAYS AND ARRAY ELEMENTS

An array is an ordered set of data characterized by
the property of dimension. An array may have 1, 2
or 3 dimensions and is identified and typed by a
symbolic name in the same manner as a variable
except that an array name must be 'so declared by an

"array declarator." Complete discussions of the
array declarators appear in Sectlon 6 of this
manual. An array declarator also indicates the

dimensionality and size of the»farray. An array
element is one member of the data set that makes up
an array. Reference to an array element in a
FORTRAN statement is made by appending a subscript
to the array name. The term array element is
synonymous with the term subscripted variable used
in some FORTRAN texts and reference manuals.

An initial value may be aSSigned' to any array

element by a DATA statement or its value may be
derived and defined during program execution.

3.5 SUBSCRIPTS

A subscript follows an array name to uniquely

FORTRAN-80 Reference Manual Page 21

identify an array element. In use, a subscript in
a FORTRAN statement takes - on the same
representational meaning as a subscript in familiar
algebraic notation.

Rules that govern the wuse of subscripts are as

follows:
1. A subscript contains 1, 2 or 3 subscript
expressions (see 4 below) enclosed in

parentheses.

2. If there are two or three subscript expressions
within the parentheses, they must be separated
by commas.

3. The number of subscript expressions must be the
same as the specified dimensionality of the
Array Declarator except in EQUIVALENCE
statements (Section 6).

4. A subscript expression is written in one of the
following forms:

K C*V V-K
V C*V+K C*V-K
V+K

where C and K are integer constants and V is an
integer variable name (see Section 4 for a
discussion of expression evaluation).

5. Subscripts themselves may not be subscripted.
Examples:

X(2*3-3,7) A(I,J,K) I(20) C(L-2) Y (I)

3.6 DATA STORAGE ALLOCATION

Allocation of storage for FORTRAN data is made in
numbers of storage units. A storage unit is the
memory space regquired to store one real data value
(4 bytes).

Table 3-2 defines the word formats of the three
data types.

Hexadecimal data may be associated (via a DATA
statement) with any type data. Its storage
allocation is the same as the associated datum.

Hollerith or literal data may be associated with
any data type by use of DATA initializaton

FORTRAN-80 Reference Manual ' Page 22

statements (Section'G).

Up to eight Hollerith characters may be associated
with Double Precision type storage, up to four with
Real, up to two with Integer and one with Logical
type storage.

FORTRAN-80 Reference Manual Page 23

TYPE

INTEGER

LOGICAL

REAL

TABLE

3-2. STORAGE ALLOCATION BY DATA TYPES

!

ALLOCATION

o)

bytes,/ 1/2 storage unit

0

Binary Value

iHegative numbers are the 2's complement of
positive representations.

1 byte/ 1/4 storage unit
Zero (false) or non-zero (true)

A non-zero valued byte indicates true (the
logical constant .TRUE. is represented by
the hexadecimal value FF). A zero valued
byte indicates false.

When used as an arithmetic value, a Logical
datum 1s treated as an Integer in the range
-128 to +127.

4 bytes/ 1 storage unit

Chavacteristic S Mantissa
Mantissa (continued)

The first byte is the characteristic
expressed in excess 200 (octal) notation;
i.e., a value of 200 (octal) corresponds tc a
binary exponent of 0. Values less than 200
{octal) correspond to negative exponents, and
values greater. than 200 ‘correspond to
positive exponents, By definition, 1if the
characteristic 1is zero, the entire number is
zeron, '

The next three bytes constitute the mantissa.
The mantissa is always normalized such that
the high order bit is one, eliminating the
need to actually save that bit. The high bit
is used instead to indicate the sign of the
number. A one indicates a negative numker,
and zerce indicates a positive number., The
mantissa 1s assumed to be a binary fraction
whose binary point is to the 1left of the

NANTNESA.

FORTRAN-80 Reference Manual ‘ Page 24

DOUBLE
PRECISION

8 bytes/ 2 storage units

The internal form of Double Precision data is
identical with that of Real data except
Double Precision uses 4 extra bytes for the
matissa.

FORTRAN-80 Reference Manual Page 25

SECTION 4

FORTRAN EXPRESSIONS

A FORTRAN expression is composed of a single operand or a
string of operands connected by operators. Two expression
types --Arithmetic and Logical-- are provided by FORTRAN.
The operands, operators and rules of use for both types are
described in the following paragraphs.

4.1 ARITHMETIC EXPRESSIONS

The following rules define all permissible
arithmetic expression forms:

1. A constant, variable name, array element
reference or FUNCTION reference (Section 9)
standing alone is an expression.

Examgles:
S(I) JOBNO 217 17.26 SQRT (A+B)

2. If E is an expression whose first character is
not an operator, then +E and -E are called
signed expressions.

Examgles
-S +JOBNO =217 +17.26 -SQRT (A+B)

3. TIf E is an expression, then (E) means the
quantity resulting when E is evaluated.

ExamEles:
(-A} - (JOBNO) - (X+1) (A-SQRT (A+B})

4. If E is an unsigned expression and F 1is any
expression, then: F+E, F-E, F*E, F/E and F**E
are all expressions.

ExamEles:

-(B(I,J)+SQRT (A+B(K,L)))
1.7E-2%* (X+5,0)
-(B(I+3,3*J+5)+A)

FORTRAN-80 Reference Manual ‘ : Page 26

5.

An evaluated expression may be Integer, Real,
Double Precision, or Logical. The type is
determined by the data types of the elements of
the expression. If the elements of the
expression are not all of the same type, the
type of the expression 1is determined by the
element having the highest type. The type
hierarchy (highest to 1lowest) is as follows:
DOUBLE PRECISION, REAL, INTEGER, LOGICAL.

Expressions may contain nested parenthesized
elements as in the tollow1ng' »

A* (Z- ((Y+X)/T))**J

where Y+X is the innermost element, (Y+X)/T is
the next innermost, Z-((Y+X)/T) the next. 1In
such expressions, care should be taken to see
that the number of 1left parentheses and the
number of right parentheses are equal.

EXPRESSION EVALUATION

Arithmetic expre551ons are evaluated according to

1.

~ the following rule3°

Parenthe514ed expression elements are evaluated
first. If parenthesized elements are nested,
the innermost elements are evaluated, then the
next 1nnermost unt11 the entlre expreSSLOn has
been evaluated. "

Within parentheses and/or wherever parentheses
do not govern the order or evaluation, the
hlerarchy of operatlons in order of precedence
is as follows:

a. FUNCTION evaluation
b. Exponentiation. o

c. Multiplication and DlVlSlon'
d. Addlthn and Subtractlon L

'Example:

The expre551on' | N
A* (Z~- ((Y+R)/T))**J+VAL

is evaluated in the‘£91l0w1ng eéquence:

FORTRAN-80 Reference Manual Page 27

Y+R = el
(e1)/T = e2
2-e2 = e3
e3**J = e4
A*e4 = eb
e5+VAL = eé6

Wherever operations of equal hierarchy are
involved, evaluation proceeds from 1left to
right.

Examples:
Expression Evaluated as
W*X/Y*2Z (W*X) /Y*Z
B**Z~4,*A*C (B**Z)~((4.*%A)*C)
X-Y-2 (X-Y)-2
X/Y/% (X/Y) /2
—X**3 - (X**3)

The expression X**Yy**Z s not allowed. It

should be written as follows:

(X**y) **7 or X** (y**7Z)

Use of an array element reference requires the
evaluation of its subscript. Subscript
expressions are evaluated under the same rules
as other expressions.

LOGICAL EXPRESSIONS

A Logical Expression may be any of the following:

1.

A single Logical Constant (i.e., .TRUE. or
.FALSE.), a Logical variable, Logical Array
Element or Logical FUNCTION reference (see
FUNCTION, Section 9).

Two arithmetic expressions separated by a
relational operator (i.e., a relational
expression) .

Logical operators acting upon logical
constants, logical variables, 1logical array
elements, logical FUNCTIONS, relational

expressions or other logical expressions.

FORTRAN-80 Reference Manual . : Page 28

The value of a 1oglca1 expre551on is always either
.TRUE. or .FALSE.

RELATIONAL EXPRESSIONS

The general form of a relatlonal expre551on is as
follows:

el r e2
where el and e2 are arithmetic expressions and r is

a relational operator,: The six relational
operators are as follows: ' ’ '

LLT. ‘Less Than

.LE, Less than or egual to
.EQ. -Equal to - -+
.NE. Not equal to
+GT. Greater than - - . -
~ .GE. - Greater than or equal to

The value of the relational expression is .TRUE.
if the condition defined by the operator is met.
Otherwise, the value ls .FALSE.

Examgles:

A EQ.B o ‘ ’
(A**J) GT. (ZAP*(RHO*TAU-ALPH))

LOGICAL opERATORs'*“i,

Table 4-1 lists the’ loglcal operatlons. U and V
denote logical expressions. ' :

v

FORTRAN-80 Reference Manual Page 2%

Table 4-1. Logical Operations

.NOT.U The value of this expression is the
logical complement of U (i.e., 1
bits become 0 and 0 bits become 1).

U.AND.V The value of this expression is the
" logical product of U and V (i.e.,
there 1is a 1 bit in the result oniv
where the corresponding bits in Loin
U and V are 1.

U.OR.V The value of this expression is the
logical sum of U and V (i.e., ther=
is a 1 in the result if the
corresponding bit in U or V is 1 v
if the corresponding bits in both U
and V are 1.

U.XOR.V The value of this expression is the
exclusive OR of U and V (i.e., there
is a one in the result if the
corresponding bits in U and V are 1
and 0 or 0 and 1 respectively.

Exannles:

If U = 01101100 and Vv = 11001001 , then
.NOT.U = 10010011

U.AND.V = 01001000

J,0R.V = 11101101

J.XOR.V = 10100101

FORTRAN-80 Reference Manual Page 30

The following are additional considerations for
construction of Logical expressions:

1.

Any Logical expression may be enclosed in
parentheses, However, a Logical expression to
which the .NOT. operator is applied must be
enclosed 1in parentheses if it contains two or
more elements.,

In the hierarchy of operations, parentheses may
be used to specify the ordering of the
expression evaluation. Within parentheses, and
where parentheses do not dictate evaluation
order, the order 1is understood to be as
follows:

a. FUNCTION Reference

b. Exponentiation (**)

c. Multiplication and Division (* and /)
d. Addition and Subtraction (+ and -)

e. .L7T., .LE., .EQ., .NE., .GT., .GE.

f. +NOT. o

g. .AND.

h. «.OR., .XOR.

ExamEles:

The expression
X .AND. Y .OR. B(3,2) .GT. Z

is evaluated as

el = B(3,2).GT.2
e2 = X ,AND., Y
e3 = e2 .0OR. el

The expression
X .AND. (Y .OR. B(3,2) .GT. Z)

is evaluated as

el = B(3,2) .GT. Z
e2 =Y ,OR. el
e3 = X ,AND. e2

It is invalid to have two contiguous logical

operators except when the second operator is
«NOT. :

FORTRAN~-E(Reference Manual ‘ L Page 31

That is,

«AND. .NOT..

wOR..NOT.

are‘pérmittéa.

Prample:r
A.ANﬁ,.NOT.B s permitted
AﬁAND;;OR.B is‘not permitted

AOLLERITH, LITERAL, AND HEXADECIMAL CONSTANTS IN
EXPRESSTONS

Hollerith, Literal, and Hexadecimal constants are
allowed in expressions in place of 1Integer
constants., These special constants always evaluate
to an Integer value and are therefore limited to a
length of two hytes. The only exceptions to this
are:
1. Long liollerith or Literal constants may be uased
8s subprogram parameters,

2. SHollerith, Literal, or Hexadecimal constants
may be up to four bytes long in DATA statements
when associated with Real variables, or up to
eight bytes long when associated with Doublie
pracision variables,

FORTRAN-80 Reference Manual v Page 32

SECTION 5

REPLACEMENT STATEMENTS

Replacement statements define computations and are wused
similarly to eguations in normal mathematical notation.
They are of the folliowing form:

v = e

where v is any variable or array element and e is an
expression.

FORTRAN semantics defines the equality sign (=) as meaning
to be replaced by rather than the normal is equivalent to.
Thus, the object program instructions generated by a
replacement statenent will, when executed, evaluate the
expression on the iight cf the equality sign and place that
result in the stcrage space allocated to the variable or

array element on the left of the equality sign.

The following conditions apply to replacement statements:

1. Both v and the equality sign must appear on the
same line. This holds even when the statement is
part of a logical IF statement (section 7).
Example:

C IN A REPLACEMENT STATEMENT THE '='

C MUST BE IN THE INITIAL LINE.
A(5,3) = ' '
1 B(7,2) + SIN(C)

The 1iine containing v= must be the initial line of
the statement unless the statement is part of a
logical 1IF statement. In that case the v= must
occur no later than the end of the first line after
the end of the IF.

2. If the data types of the variable, v, and the
expression, e, are different, then the value
determined by the expression will be converted, if
possible, to conform to the typing of the variable.
Table 5-1 shows which type expressions may be
equated to which type of variable. Y indicates a
valid replacement ‘and N indicates an invalid
replacement. Foctnotes to Y indicate conversion
considerations,

FORTRAN-80 Reference Manual Page 33
Table 5-1. Replacement By Type
Expression Types (e)
Variable
Types Integer Real Logical Double
Integer Y Ya Yb Ya
Real Yc Y Yc Ye
Logical Yd Ya Y Ya
Double Yc Y Yc Y
a. The Real expression value is converted to Integer,

truncated if conform to
Integer data. ,
b. The sign is extended through the second byte.

c. The variable is assigned the Real approximation of
the Integer value of the expression.

d. The variable is assigned the truncated value cf the

necessary to the range of

Integer expression (the low-order byte 1is used,
regardless of sign).
e. The variable is assigned the rounded value of the

Real expression.

FORTRAN-80 Reference Manual ‘ Page 34

SECTION 6

SPECIFICATION STATEMENTS

Specification statements are non-executable, non-generative
statements which define data types of variables and arrays,
specify array dimensionality and size, allocate data storage
or otherwise supply determinative information to the FORTRAN
processor. DATA intialization statements are
non-executable, but generate object program data and
establish initial values for variable data.

6.1 SPECIFICATION STATEMENTS

There are six kinds of specification statements.
Theyare as follows:

Type, EXTERNAL, and DIMENSION statements
COMMON statements

EQUIVALENCE statements

DATA initialization statements

All specification statements are grouped at the
beginning of a program unit and must be ordered as
they appear above. Specification statements may be
preceded only by a FUNCTION, SUBROUTINE, PROGRAM or
BLOCK DATA statement. All specification statements
must precede statement functions and the first
executable statement.

6.2 ARRAY DECLARATORS
Three kinds of specification statements may specify
array declarators. These statements are the
following: ‘

Type statements
DIMENSION statements
COMMON statements

Of these, DIMENSION statements have the declaration
of arrays as their sole function. The other two
serve dual purposes. These statements are defined
in subparagraphs 6.3, 6.5 and 6.6.

Array declarators are used to specify the name,
dimensionality and sizes of arrays. An array may
be declared only once in a program unit.

An array declarator has one of the following forms:

FORTRAN-80 Reference Manual Page 35

ui (k)
ui (k1,k2)
ui (k1,k2,k3)

where ui is the name of the array, called the
declarator name, and the k's are integer constants.

Array storage allocation is established upon
appearance of the array declarator. Such storage
is allocated 1linearly by the FORTRAN processor
where the order of ascendancy is determined by the
first subscript varying most rapidly and the last
subscript varying least rapidly.

For example, if the array declarator AMAT(3,2,2)
appears, storage 1is allocated for the 12 elements
in the following order:

AMAT (1, 1 AMAT (2,1,1), AMAT(3,1,1), AMAT(1,2,1),

/1),
AMAT(2,2,1), AMAT(3'2,1)1 AMAT(1I112)I AMAT(21102)I
AMAT (3,1,2), AMAT(1,2,2), AMAT(2,2,2), AMAT(3,2,2)

TYPE STATEMENTS

Variable, array and FUNCTION names are
automatically typed Integer or Real by the
'predefined' convention unless they are changed by
Type statements., For example, the type is Integer
if the first letter of an item is I, J, K, L, M or
N. Otherwise, the type is Real.

Type statements provide for overriding or
confirming the pre-defined convention by specifying
the type of an item. In addition, these statements
may be used to declare arrays.

Type statements have the following general form:
t vl,v2,...vn

where t represents one of the terms INTEGER,
INTEGER*1, INTEGER*2, REAL, REAL*4, REAL*8, DOUBLE
PRECISION, LOGICAL, LOGICAL*1, LOGICAL*2, or BYTE.
Each v is an array declarator or a variable, array
or FUNCTION name. The INTEGER*1, . INTEGER*2,
REAL*4, REAL*8, LOGICAL*1,and LOGICAL*2 types are
allowed for readability and compatibility with
other FORTRANs, BYTE, INTEGER*1, LOGICAL*1, and
LOGICAL are all equivalent; INTEGER*2, LOGICAL*2,
and INTEGER are equivalent; REAL and REAL*4 are
equivalent; DOUBLE PRECISION and REAL*S8 are
equivalent.

FORTRAN-80 Reference Manual Page 36

Example:
REAL AMAT(3,3,5),BX,1IETA,KLPH

NOTE

1. AMAT and BX are redundantly typed.

2. IETA and KLPH are unconditionally
declared Real.

3. AMAT (3,3,5) is a constant array
declarator specifying an array of 45
elements.

Examgle:
INTEGER M1, HT, JMP(15), FL

NOTE

M1 is redundantly typed here. Typing of HT
and FL by the pre-defined convention is
overridden by their appearance 1in the
INTEGER statement. JMP(15) is a constant
array declarator. It redundantly types the
array elements as Integer and communicates
to the processor the storage requirements
and dimensionality of the array.

Examgle:
LOGICAL L1, TEMP

NOTE

All variables, arrays or FUNCTIONs required
to be typed Logical mnust appear in a
LOGICAL statement, since no starting letter
indicates ' these types by the default
convention.

FORTRAN-80 Reference Manual Page 37

6.4

EXTERNAL STATEMENTS

EXTERNAL statements have the following form:
EXTERNAL ul,u2,...,un

where each ui is a SUBROUTINE, BLOCK DATA or
FUNCTION name. When the name of a subprogram is
used as an argument in a subprogram reference, it
must have appeared in a preceding EXTERNAL
statement.

When a BLOCK DATA subprogram is to be included in a
program load, its name must have appeared in an
EXTERNAL statement within the main program unit.

For example, if SUM and AFUNC are subprogram names
to be used as arguments in the subroutine SUBR, the
following statements would appear in the calling
program unit:

EXTERNAL SUM, AFUNC

CALL SUBR(SUM,AFUNC,X,Y)

DIMENSION STATEMENTS

A DIMENSION statement has the following form:
DIMENSION u2,u2,u3,...,un
wﬁere each ui is an array declarator.
Example:
DIMENSION RAT(5,5),BAR(20)
This statement declares two arrays - the 25 element

array RAT and the 20 element array BAR.

COMMON STATEMENTS

COMMON statements are non-executable, storage
allocating statements which assign variables and
arrays to a storage area called COMMON storage and
provide the facility for various program units to
share the use of the same storage area.

FORTRAN-80 Reference Manual : Page 38
COMMON statements are expressed in the following
form:

COMMON /Y1/A1/Y2/A2/.../¥n/An

where each Yi is a COMMON block storage name and
each Ai 1is a sequence of variable names, array

names or constant array declarators, separated by
commas. The elements in Ai make up the COMMON
block storage area specified by the name Yi. If

any Yi 1is omitted leaving two consecutive slash
characters (//), the block of storage so indicated
is called blank COMMON. If the first block name
(Y1) is omitted, the two slashes may be omitted.

Examgle:
COMMON /AREA/A,B,C/BDATA/X,Y,Z,
X FL,ZAP{(30)

In this example, two blocks of COMMON storage are
allocated - AREA with space for three variables and
BDATA, with space for four variables and the 30
element array, ZAP.

Examgle
COMMON //A1,B1/CDATA/ZOT (3, 3)
X //T2,23

In this example, A1, B1, T2 and Z3 are assigned to
blank COMMON in that order. The pair of slashes
preceding A1 could have been omitted.

CDATA names COMMON block storage for the nine
element array, 20T and thus ZOT (3,3) is an array
declarator, 2ZOT must not have been previously
declared. (See "Array Declarators," Paragraph
6.3.)

Additional Considerations:

1. The name of a COMMON block may appear more than
' once 1in the same COMMON statement, or in more
than one COMMON statement.

2. A COMMON block name is made up of from 1 to 6
alphanumeric characters, the first of which
must be a letter.

3. A COMMON block name must be different from any
subprogram names used throughout the program.

FORTRAN-80 Reference Manual Page 39

4. The size of a COMMON area may be increased by
the use of EQUIVALENCE statements. See
"EQUIVALENCE Statements," Paragraph 6.7.

5. The lengths of COMMON blocks of the same name
need not be identical 'in all program units
where the name appears. However, if the
lengths differ, the program unit specifying the
greatest length must be loaded first (see the
discussion of LINK-80 in the User's Guide).
The length of a COMMON area is the number of
storage units required to contain the variables
and arrays declared in the COMMON statement (or
statements) unless expanded by the use of
EQUIVALENCE statements.

EQUIVALENCE STATEMENTS

Use of EQUIVALENCE statements permits the sharing
of the same storage unit by two or more entities.
The general form of the statement is as follows:

EQUIVALENCE (ul), (u2),..., (un)

where each ui represents a sequence of two or more
variables or array elements, separated by commas.
Each element in the sequence is assigned the same
storage unit (or portion of a storage unit) by the
processor. The order in which the elements appear
is not significant.

Examgle:
EQUIVALENCE (A,B,C)

The variables A, B and ¢C will share the same
storage unit during object program execution.

If an array element is used 1in an EQUIVALENCE
statement, the number of subscripts must be the
same as the number of dimensions established by the
array declarator, or it must be one, where the one
subscript specifies the array element's number
relative to the first element of the array.

Example:
If the dimensionaliity of an array, Z, has been

declared as Z(3,3) then in an EQUIVALENCE statement
Z(6) and 2(3,2) have the same meaning.

FORTRAN-80 Reference Manual Page 40

Additonal Considerations:

1.

2.

The subscripts of array elements must be
integer constants.

An element of a multi-dimensional array may be
referred to by a single subscript, if desired.

Variables may be assigned to a COMMON block
through EQUIVALENCE statements.

Example:

COMMON /X/A,B,C
EQUIVALENCE (A,D)

In this case, the variables A and D share the
first storage unit in COMMON block X.

EQUIVALENCE statements can increase the size of
a block indicated by a COMMON statement by
adding more elements to the end of the block.

Example:
DIMENSION R(2,2)

COMMON /Z/W,X,Y
EQUIVALENCE (Y,R(3))

The resulting COMMON bloék will have the
following configuration:

Variable Storage Unit

W=L(1,1) 0
X = R(2,1) 1
Y = R(1,2) 2

R(2,2) 3

The COMMON Lklock established by the COMMON
statement contains 3 storage units. It is
expanded to 4 storage units by the EQUIVALENCE
statement. E o

COMMON block size may be increased only from
the last element established by the COMMON
statement forward; not from its first element
backward. '

Note that EQUIVALENCE (X,R{3)) would be invalid
in the example. The COMMON statement
established W as the first element in the
COMMON Dblock and an attempt to make X and R(3)
equivalent would be an attempt to make R(1) the
first element.

FORTRAN-80 Reference Manual Page 41

5. It is invalid to EQUIVALENCE two elements of
the same array or two elements belonging to the
same or different COMMON blocks.

Example:

DIMENSION XTABLE (20), D(5)
COMMON A,B(4)/2AP/C,X

EQUIVALENCE (XTABLE (6) /A7)
X B(3) ,XTABLE(5)),
Y (B(3),D(5))

This EQUIVALENCE statement has the following
errors:

1. It attempts to EQUIVALENCE two elements of the
same array, XTABLE(6) and XTABLE(15).

2, It attempts tc EQUIVALENCE two elements cof +*he
same COMMON block, A(7) and B(3).

3. Since A is not an array, A(7) 1s an illegal
reference.

4. Making B(3) eguivalent to D(5) extends COMMON
backwards from its defined starting point.

DATA INITIALIZATION STATEMENT

The DATR initialization statement is a
non-~executanlse statement which provides a mezans of
compiiing dat. values into the object program and
assigning these data to variables and array
elemen*s refcerenced by other statements.

The stiicmeni. is of the following form:

DATA iist/ul,ul,...,un/,list.../uk,uk+1,...uk+n/

where "list" represents a list of wvariable, array
or array e¢lement names, and the ul are constants
corresponding in number to the elements in the
list. An exception to the one-for-one
correspondence of list items to constants 1is that

an array name (unsubscripted) may appear in the

FORTRAN-80 Reference Manual Page 42

list, and as many constants as necessary to fill
the array may appear in the corresponding position
between slashes. Instead of ui, it is permissible
to write k*ui in order to declare the same
constant, ui, k times in succession. k must be a
positive integer. Dummy arguments may not appear
in the 1list.

Examgle:

DIMENSION C(7)
DATA A, B, C(1),C(3)/14.73,
X -8.1,2*7.5/

This implies that
A=14.73, B=-8.1, C(1)=7.5, C(3)=7.5

The type of each constant ui must match the type of
the corresponding item in the list, except that a
Hollerith or Literal constant may be paired with an
item of any type. ’

When a Hollerith or Literal constant is used, the
number of characters in 1its string should be no
greater than four times the number of storage units
required by the corresponding item, i.e., 1
character for a Logical variable, up to 2
characters for an Integer variable and 4 or fewer
characters for a Real variable.

If fewer Hollerith or Literal characters are
specified, trailing blanks are added to fill the
remainder of storage.

Hexadecimal data are stcred in a similar fashion.
If fewer Hexadecimal characters are used,
sufficient leading zeros are added to fill the
remainder of the storage unit.

The examples below illustrate many of the features
of the DATA statement.

FORTRAN-80 Reference Manual . Page 43

DIMENSION HARY (2)
DATA HARY,B/ 4HTHIS, 4H OK.
1 r7.86/ :

REAL LIT(2)

LOGICAL LT,LF

DIMENSION H4(2,2), PI3(3)

DATA A1,B1,K1,LT, LF H4(1,1) ,H4 (2, 1)
1 H4(1 2) H4(2 2) PI3/5 9,2.5E-4,
2 64,.FALSE.,.TRUE.,1.75E—3,

3 0.85E~1,2*75.0,1.,2.,3.14159/
4 LIT(1)/'NOGO'/

FORTRAN-80 Reference Manual Page 44

SECTION 7

FORTRAN CONTROL STATEMENTS

FORTRAN control statements are executable statements which
affect and guide the logical flow of a FORTRAN program. The
statements in this category are as follows:
1. GO TO statements:
1. Unconditional GO TO
2. Computed GO TO

3. Assigned GO TO

2. ASSIGN
3. IF statements:
1. Arithmetic IF

2. Logical IF

4. DO

5. CONTINUE

6. STOP
7. PAUSE
8. CALL
9. RETURN

When statement labels of other statements are a part of a
control statement, such statement labels must be associated
with executable statements within the same program unit in
which the control statement appears.

7.1 GO TO STATEMENTS

7.1.1 UNCONDITIONAL GO TO

Unconditional GO TO statements are used whenever
control 1is to be transferred unconditionally to
some other statement within the program unit.

FORTRAN-80 Reference Manual Page 45

The statement is of the following form:
GO TO k

where k is the statement 1label of an executable
statement in the same program unit.

Example:

GO TO 376
310 A(7) = V1 =-A(3)

376 A(2) =VECT
GO TO 310

In these statements, statement' 376 1is ahead of
statement 310 in the logical flow of the program of
which they are a part.

COMPUTED GO TO
Computed GO TO statements are of the form:
GO TO (k1,k2,...,n),j

where the ki are statement labels, and j 1is an
integer variable, 1 < j < n.

This statement causes transfer of control to the
statement labeled kj. If j < 1 or j > n, control
will be passed to the next statement following the
Computed GOTO.

Examgle:
J=3

Go ro(7, 70, 700, 7000, 70000), J
310 J=5
GO TO 325

When J = 3, the computed GO TO transfers control to
statement 700. Changing J to equal 5 changes the
transfer to statement 70000. Making J = 0 or J = 6
would cause control to be transferred to statement
310.

ASSIGNED GO TO

Assigned GO TO statements are of the following

FORTRAN-80 Reference Manual Page 46

form:
GO TO j, (k1,k2,...,kn)
or
GOTO J

where J is an integer variable name, and the ki are
statement 1labels of executable statements. This
statement causes transfer of control to the
statement whose label is equal to the current value
of J. :

Qualifications

1. The ASSIGN statement must logically precede an
assigned GO TO.

2. The ASSIGN statement must assign a value to J
which is a statement label included in the list
of k's, if the list is specified.

Example:
GO TO LABEL, (80,90, 100)

Only the statement labels 80, 90 or 100 may be
assigned to LABEL,

ASSIGN STATEMENT

This statement is of the following form:
ASSIGN j TO i

where j is a statement label of an executable
statement and i is an integer variable.

The statement is wused 1n conjunction with each
assigned GO TO statement that contains the integer
variable i. When the assigned GO TO 1is executed,
control will be transferred to the statement
labeled j.

FORTRAN-80 Reference Manual

Examgle:
ASSIGN 100 TO LABEL

ASSIGN 90 TO LABEL
GO TO LABEL, (80,90,100)

7.3 IF STATEMENT

IF statements transfer control to one of a

Page 47

series

of statements depending wupon a condition. Two

types of IF statements are provided:

Arithmetic IF
Logical IF

7.3.1 ARITHMETIC IF

The arithmetic IF statement is of the form:
IF(e) m1,m2,m3

where e is an arithmetic expression and m1,
m3 are statement labels.

m2 and

Evaluation of expression e determines one of three

transfer possibilities:

If e is: Transfer to:
<0 m1
=0 m2
>0 m3
Examples:
Statement Expression Value
IF (A)3,4,5 15
IF (N-1)50,73,9 0

IF (AMTX(2,1,2))7,2,1 =256

7.3.2 LOGICAL IF
The Logical IF statement is of the form:

IF (u)s

where u is a Logical expression and s

Transfer to
5

73
7

is any

executable statement except a DO statement (see

7.4) or another Logical IF statement. The

Logical

FORTRAN-80 Reference Manual Page 48

expression u 1is evaluated as .TRUE. or .FALSE.
Section 4 <contains a discussion of Logical
expressions. '

Control Conditions:

If u is FALSE, the statement s 1is ignored and
control goes to the next statement following the
Logical IF statement. If, however, the expression
is TRUE, then control goes to the statement s, and
subsequent program control follows normal
conditions.

If s is a replacement statement (v = e, Section 5),
the variable and equality sign (=) must be on the
same line, either immediately following IF(u) or on
a separate continuation line with the line spaces
following IF(u) left blank. See example 4 below.

Examples:
1. IF(I.GT.20) GO TO 115
2. IF(Q.AND.R) ASSIGN 10 TO J
3. IF(Z) CALL DECL(A,B,C)
4, IF(A.OR.B.LE.PI/2)I=J
5. IF(A.OR.B.LE.PI/2)
X I=J
DO STATEMENT
The DO statement, és implemented in FORTRAN,
provides a method for repetitively executing a

series of statements. The statement takes of one
of the two following forms:

1) DO k i = m1,m2,m3
or
2) DO k i = ml,m2

where k is a statement label, i is an integer or
logical variable, and ml1, m2 and m3 are integer
constants or integer or logical variables.

If m3 is 1, it may be omitted as in 2) above.

The followingiconditions and restrictions govern
the use of DO statements:

FORTRAN-80 Reference Manual Page 49
1. The DO and the first comma must appear on the

initial 1line.
2. The statement labeled k, called the terminal

statement, must be an executable statement.
follow
executable
to and
constitute

3. The terminal statement must physically
its associated DO, and the
statements following the DO, up
including the terminal statement,
the range of the DO statement.

4. The terminal statement may not be an Arithmetic
IF, GO TO, RETURN, STOP, PAUSE or another DO.

5. If the terminal statement is a logical IF and
its expression is .FALSE., then the statements
in the DO range are reiterated.

If the expression is .TRUE., the statement of
the logical 1IF 1is executed and then the
statements in the DO range are reiterated. The

statement of the logical IF may not be a GO TO,
Arithmetic IF, RETURN, STOP or PAUSE.

is called
The index must be
modified by any

6. The controlling integer variable, i,
the index of the DO range.
positive and may not be
statement in the range.

and m3 are Integer*1 wvariables

the DO loop will execute faster
but the range is 1limited to
iterations. For example, the loop overhead
a DO loop with a constant 1limit and
increment of 1 depends upon the type of
index variable as follows:

7. If ml, m2,
'_constants,
be shorter,

or
and
127
for
an
the

Overhead
Microseconds

Index Variable

Type Bytes

INTEGER*2
INTEGER* 1

35.5 19
24 14

8. During the first execution of the statements in
the DO range, 1 1is equal to ml; the second
execution, i = m1+m3; the third, i=ml1+2*m3,
etc.,

until i is equal
this sequence less than
then the DO is said
statements in the DO
executed at least once,

When the DO has been satisfied, control
following the

to the statement

to the highest value in
or equal to m2, and
to be satisfied. The
range will always be
even if m1 < m2,

passes
terminal

FORTRAN-80

Reference Manual

Page 50

statement, otherwise control transfers back to
the first executable statement following the DO
statement. _ :

ExamEle:

The following example computes
100
Sigma Ai
i=1

where a is a one-dimensional array

100 DIMENSION A(100)

SUM = A(1)
DO 31 I = 2,100
31 SUM =SUM + A(I)

END

The range of a DO statement may be extended to
include all statements which may logically be
executed between the DO and 1its terminal
statement. Thus, parts of the DO range may be
situated such that they are not physically
between the DO statement and its terminal
statement but are executed logically in the DO

range. This is called the extended range.
Example:
DIMENSION A(500), B(500)
po 50 I = 10, 327, 3
IF (v7 -C*C) 20,15,31
30
50 A(I) = B(I) + C
20 C=C - .05
GO TO 50
31 C=C+ .0125

GO TO 30

FORTRAN-80 Reference Manual Page 51

7.5

10. It is invalid to transfer control into the

range of a DO statement not itself in the range
or extended range of the same DO statement.

11. Within the range of a DO statement, there may

be other DO statements, in which case the DO's
must be nested. That is, if the range of one
DO contains another DO, then the range of the
inner DO must be entirely included in the range
of the outer DO.

The terminal statement of the inner DO may also
be the terminal statement of the outer DO.

For example, given a two dimensional array A of
15 rows and 15 columns, and a 15 element
one-dimensional array B, the following
statements compute the 15 elements of array C
to the formula:

15
Ck =Sigma AkjBm, k = 1,2,...,15
3=1

DIMENSION A(15,15), B(15), C(15)

DO 80 K =1,15

C(K) = 0.0
DO 80 J=1,15 :
80 C(K) = C(K) +A(K,J) * B(J)

CONTINUE STATEMENT

CONTINUE 1is classified as an executable statement.
However, 1its execution does nothing. The form of
the CONTINUE statement is as follows:

CONTINUE

CONTINUE 1is frequently wused as the terminal
statement in a DO statement range when the
statement which would normally be the terminal
statement 1is one of those which are not allowed or
isonly executed conditionally.

FORTRAN-80 Reference Manual Page 52

Examgle:
DO 5 K= 1,10

.

IF (C2) 5,6,6
6 CONTINUE

L 2

éZ = C2 +.005
5 CONTINUE

STOP STATEMENT

A STOP statement has one of the following forms:
STOP
or
STOP c
where c is any string of one to six characters.
When STOP is encountered during execution of the
object program, the characters c (if present) are
displayed on the operator control console and
execution of the program terminates.
The STOP statement, - therefore, constitutes the
logical end of the program.

'

PAUSE STATEMENT

A PAUSE statement has one of the following forms:
PAUSE
ox
PAUSE c¢
where ¢ is any string of up to six characters.
When PAUSE is encountered during execution of the
object program, the characters ¢ (if present) are
displayed on the operator control console and

execution of the program ceases.

The decision to continue execution of the program
is not under control of the program. If execution

FORTRAN-80 Reference Manual Page 53

is resumed through intervention of an operator
without otherwise changing the state of the
processor, the normal execution sequence, following
PAUSE, is continued. .

Execution may be terminated by typing a "T" at the

operator console. Typing any other character will
cause execution to resume.

CALL STATEMENT

CALL statements control transfers into SUBROUTINE
subprograms and provide parameters for use by the
subprograms. The general forms and detailed
discussion of CALL statements appear in Section 9,
FUNCTIONS AND SUBPROGRAMS.

RETURN STATEMENT

The form, use and interpretation of the RETURN
statement is described in Section 9.

END STATEMENT

The END statement must physically be the last
statement of any ‘'FORTRAN program. It has the
following form:

END

The END statement is an executable statement and
may have a statement label. It causes a transfer
of control to be made to the system exit routine
$EX, which returns control to the operating system.

FORTRAN-80 Reference Manual : Page 54

SECTION 8

INPUT / OUTPUT

FORTRAN provides a series of statements which define the
control and conditions of data transmission between computer
memory and external data handling or mass storage devices
such as magnetic tape, disk, 1line printer, punched card
processors, keyboard printers, etc.

These statements are grouped as follows:
1. Formatted READ and WRITE statements which cause

formatted information to be transmitted between the
computer and I/0 devices.

2. Unformatted READ and WRITE statements ‘which
transmit unformatted binary data in a form similar
to internal storage.

3. Auxiliary I/0 statements for positioning and
demarcation of files. :

4., FENCODE and DECODE statements for transferring data
between memory locations.

S. FORMAT statements used in conjunction with
formatted record transmission to ©provide data
conversion and editing information between internal
data representation and external character string

forms.
8.1 FORMATTED READ/WRITE STATEMENTS
g8.1.1 FORMATTED READ STATEMENTS

A formatted READ statement is used to transfer
information from an input device to the computer.

Two forms of the statement are available, as
follows:

READ (u,f,ERR=L1,END=L2) k

or

READ (u,f,ERR=L1,END=L2)
where:

u - specifies a Physical and Logical Unit Number
and may be either an unsigned integer or an

FORTRAN-80 Reference Manual Page 55

integer variable in the range 1 through 255.
If an Integer variable 1is used, an Integer
value must be assigned to it prior to execution
of the READ statement.

Units 1, 3, 4, and 5 are preassigned to the
console Teletypewriter. Unit 2 is preassigned
to the Line Printer (if one exists). Units
6-10 are preassigned to Disk Files (see
Appendix E). These units, as well as units 11
- 255, may be re-assigned by the user (see
Appendix B).

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used within the input transmission or it may be
an array name, in which case the formatting
information may be input to the program at the
execution time. (See 8.6.10)

L1- is the FORTRAN label on the statement to which
the I/0 processor will transfer control if an
I/0 error is encountered.

L2- is the FORTRAN label on the statement to which
the I/0 processor will transfer control if an
End-of-File is encountered.

k - is a 1list of variable names, separated by com-
mas, specifying the input data.

READ (u,f)k is used to input a number of items,
corresponding to the names in the list k, from the
file on 1logical wunit u, and wusing the FORMAT
statement f to specify the external representation
of these items (FORMAT statements, 8.6). The ERR=
and END= clauses are optional. If not specified,
I/0 errors and End-of-Files cause fatal runtime
errors.

The following notes further define *he function of
the READ (u,f)k statement:

1. Each time execution of the XEAD statement
begins, a new record from the input file is
read.

2. The number of records to be input by a single
READ statement 1is determined by the list, k,
and format specifications.

3. The list k specifies the number of items to be
read from the input file and the locations into
which they are to be stored.

FORTRAN-80 Reference Manual . Page 56

4, Any number of items may appear in a single list
and the items may be of different data types.

5. If there are more quantities in an input record
than there are items in the list, only the
number of quantities equal to the number of
items 1in the list are transmitted. Remaining
guantities are ignored.

6. Exact specificatiohs for the vlist k are
described in 8.5. : :

Examples:

1.

Assume that four data entries are punched in a
card, with three blank columns separating each,
and that the data have field widths of 3, 4, 2
and 5 <characters respectively starting in
column 1 of the card. The statements

READ (5,20)K,L,M,N .
20 FORMAT(I3,3X,I4,3X,I2,3X,15)

will read the card (assuming the Logical Unit

Number 5 has been assigned to the card reader)

and assign the input data to the variables K,

L, M and N. The FORMAT statement could also be
20 FORMAT (I3,I7,I5,I8)

See 8.6 for completé description of FORMAT

- statements.

Input the quantities of an array (ARRY):
READ(6,21)ARRY

Only the name of the array needs to appear in
the 1list (see 8.5). All elements of the array
ARRY will be read and stored using the
appropriate formatting specified by the FORMAT
statement labeled 21,

READ (u,k) may be used in cbnjunction with a FORMAT
statement to read H-type alphanumeric data into an
existing H-type field (see Hollerith Conversions,
8.6.3). : .

For example, the statements

READ(I,25)

25 FORMAT (10HABCDEFGHIJ)

FORTRAN-80 Reference Manual Page 57

8.1.2

cause the next 10 characters of the file on input
device I to be read and replace the characters
ABCDEFGHIJ in the FORMAT statement.

FORMATTED WRITE STATEMENTS

A formatted WRITE statement is ~ used to transfer
information from the computer to an output device.

Two forms of the statement are available, as
follows:

WRITE(u, f,ERR=L1,END=L2)k

or

WRITE (u,f,ERR=L1,END=L2)
where:
u - specifies a Logical Unit Number.

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used with the output transmission.

L1- specifies an I/0 error branch.
L2- specifies an EQF branch.

k - is a list of variable names separated by com-
mas, specifying the output data.

WRITE (u,f)k is used to output the data specified
in the list k to a file on logical unit u using the
FORMAT statement £ to specify the external
representation of the data (see FORMAT statements,
8.6). The following notes further define the
function of the WRITE statement:

1. Several records may be output with a singlé
WRITE statement, with the number determined by
the list and FORMAT specifications.

2, Successive data are output until the data
specified in the list are exhausted.

3. If ocutput is to a device which specifies fixed
length records and the data specified in the
"list do not fill the record, the remainder of
the record is filled with blanks.

FORTRAN-80 Reference Manual Page 58

Examgle:
WRITE(2,10)A,B,C,D

The data assigned to the variables A, B, C and D
are output to Logical Unit Number 2, formatted
according to the FORMAT statement labeled 10.

WRITE(u,f) may be used to write alphanumeric
information when the characters to be written are
specified within the FORMAT statement. In this
case a variable list is not required.

For example, to write the characters 'H CONVERSION'
on unit 1,

WRITE(1,26)

26 FORMAT (12HH CONVERSION)

8.2 UNFORMATTED READ/WRITE

Unformatted I/0 (i.e. without data conversion) is

accomplished using the statements:

READ (u,ERR=L1,END=L2) k

WRITE (u,ERR=L1,END=L2) k

where:

u - specifies a Logical Unit Number.

L1- specifies an 1/0 error branch.

L2~ specifies an EOF branch.

k - is a list of variable names, separated by
commas, specifying the I/0O data.

The followinga notes define the functions of

unformatted 1I/0 statements.

1. Unformatted READ/WRITE statements perform
memory-image transmission of data with no data

conversion or editing.

2., The amount of data transmitted corresponds to
the number of variables in the list k.

FORTRAN-80 Reference Manual Page 59

3. The total length of the list of variable names
in an unformatted READ must not be longer than
the record 1length. If the 1logical record
length and the length of the list are the same,
the entire record is read. If the 1length of
the 1list 1is shorter than the logical record
length the wunread items in the record are
skipped.

4, The WRITE(a)k statement writes one 1logical
record.

5. A logical record may extend across more than
one physical record.

8.3 AUXILIARY I/0 STATEMENTS

Three auxiliary I/0 statements are provided:

BACKSPACE u
REWIND u
ENDFILE u

Initially, the actions of all three statements are

defined as no-ops. They may, however, be redefined
(see Appendices B and E).

8.4 ENCODE/DECODE

ENCODE and DECODE statements transfer . data,
according to format specifications, from one
section of memory to another. DECODE changes data
from ASCII format to the specified format. ENCODE
changes data of the specified format into ASCII
format. The two statements are of the form:

ENCODE (A,F) K
DECODE (A,F) K

where;

A 1is an array name
F is FORMAT statement number
K is an I/0 List

DECODE is analogous to a READ statement, since it
causes conversion from ASCII to internal format.
ENCODE is analogous to a WRITE statement, causing
conversion frcm internal formats to ASCII.

FORTRAN-80 Reference Manual Page 60

8.5

8.5.1

NOTE

Care should be taken that the array A is
always large enough to contain all of the
data being processed. There 1is no check

for overflow. An ENCODE operation which
overflows the array will probably wipe out
important data following the array. A

DECODE operation which overflows will
attempt to process the data following the
array.

INPUT/OUTPUT LIST SPECIFICATIONS

Most forms of READ/WRITE statements mayv contain an
ordered list of data names which identify the data
to be transmitted. The order in which the 1list
items appear must be the same as that in which the

corresponding data exists (Input), or will exist
(Output) in the external I/0 medium.
Lists have the following form:

ml,m2,...,mn

where the mi are list items separated by commas, as
shown.

LIST ITEM TYPES

A list item may be a single datum identifier or a
multiple data identifier.

1. A single datum identifier item is the name of a
variable or array element. One or more of
these items may be enclosed in parentheses
without changing their intended meaning.

Examgles:

A
c(26,1),R,K,D, (I,J)
B,1(10,10),S, (R,K),F(1,25)

NOTE

The entry (I,J) defines two items in a
list while (26,1) is a subscript.

FORTRAN-80 Reference Manual Page 61

2.

Multiple data identifier items are 1in two
forms:

a. An array name appearing in a 1list without
subscript(s) is considered egquivalent to the
listing of each successive element of the
array.

Examgle:

If B is a two dimensional array, the list item
B is equivalent to: B(1,1),B(2,1),B(3,1).ee.,
B(1'2)'B(2,2).¢.,B(j'k).

where j and k are the subscript limits of B.

b. DO-implied items are lists of one or more
single datum identifiers or other DO-implied
items followed by a comma character and an
expression of the form:

i =ml,m2,m3 or i = m1,m2
and enclosed in parentheses.
The elements i,m1,m2,m3 have the same meaning
as defined for the DO statement. The DO

implication applies to all list items enclosed
in parentheses with the implication.

Examples:

DO-Implied Lists Equivalent Lists
(X(1),I=1,4) (1) ,X(2) ,X(3),X(4)
(Q(J3),R(J),3=1,2) Q(1),r(1),0(2),R(2)
(G(K) ,K=1,7,3) G(1),G(4),G(7)

((A(I,J) ,I=3,5),J=1,9,4) A(3,1)1A(4’1),A(511)
A(3,5),A(4,5),A(5,5)
A(3,9),A(4,9),A(5,9)

(R(M) ,M=1,2),I,ZAP(3) R(1),R(2),I,ZAP(3)
(R(3),T(I),I=1,3) R(3),T(1),R(3),T(2),
R(3),T(3)

Thus, the elements of a matrix, for example,
may be transmitted in an order different from
the order in which they appear in storage. The

array A(3,3) occupies storage in the order
A(1,1),Aa(2,1), A(3,1),A(1,2),A(2,2),A(3,2),
A(1,3),Aa(2,3),A(3,3). By specifying the

transmission of the array with the DO-implied
list item ((A(I,J3),J=1,3),I=1,3), the order of
transmission is:

FORTRAN-80 Reference Manual Page 62

8.5.2

A(1,1),A(1,2),A(1,3),A(2,1),A(2,2),
A(2,3),A(3.1),A(3,2),A(3,3) ‘

SPECIAL NOTES ON LIST SPECIFICATIONS

1.

The ordering of a list is from 1left to right
with repetition of items enclosed in
parentheses (other than as - subscripts) when
accompanied by controlling DO-implied index
parameters.

Arrays are transmitted by the appearance of the
array name (unsubscripted) in an input/output
list.

Constants may appear in an input/output 1list
only as subscripts or as indexing parameters.

For input lists, the DO-implying elements 1i,
mi, m2 and m3 may not appear within the
parentheses as list items.

-

Examgles:

1.
2.

3.

READ (1,20) (I,J,A(I),I=1,J3,2) is not allowed
READ(1,20)I1,J, (A(I),I=1,TJ,2) is allowed

WRITE(1,20) (1,J,A(I),I=1,T3,2) is allowed

Consider the following eXamplés:

DIMENSION A (25)

A(1) = 2.1
A(3) = 2.2
A{5) = 2.3
J =5

WRITE (1,20) J,(I,A(I),I=1,J,2)

the output of this WRITE statement is

1.

5,1’2.1,3'2q2'5,2o3

Any number of items may aprear in a single
list.

FORTRAN-80 Reference Manual Page 63

8.6

8.6.1

2, In a formatted transmission (READ (u,f)k,
WRITE(u,f)k) each item must have the correct
type as specified by a FORMAT statement.

FORMAT STATEMENTS

FORMAT statements are non—-executable, generative
statements used in conjunction with formatted READ
and WRITE statements. They specify conversion
methods and data editing information as the data is
transmitted between computer storage and external
media representation.

FORMAT statements require statement labels for

reference (f) in the READ(u,f)k or WRITE(u,f)k
statements.

The general form of a FORMAT statement 1is as
follows:

n FORMAT (s1,s2,...,8n/s1',s82',...,8n"'/...)

where n is the statement label and each si 1is a
field descriptor. The word FORMAT and the
parentheses must be present as shown. The slash
(/) and comma (,) characters are field separators
and are described in a separate subparagraph. The
field is defined as that part of an external record
occupied by one transmitted item.

FIELD DESCRIPTORS

Field descriptors describe the sizes of data fields
and specify the type of conversion to be exercised
upon each transmitted datum. The FORMAT field
descriptors may have any of the following forms:

Descriptor Classification

rfw.d

rGw.d

rEw.d Numeric Conversion
rDw.d

riw

rLw Logical Conversion
rAw

nHh1h2...hn Hollerith Conversion
'1112...1n"

nX Spacing Specification

mpP Scaling Factor

FORTRAN-80 Reference Manual ‘ Page 64

where:

1. w and n are positive integer constants defining
the field width (including digits, decimal
points, algebraic signs) in the external data
representation.

2., d is an integer specifying the number of
fractional digits appearing in the external
data representation.

3. The characters F, G, E, D, I, A and L. indicate
the type of conversion to be applied to the
items in an input/output list.

4, r is an optional, non-zero integer indicating
that the descriptor will be repeated r times.

5. The hi and 1li are characters from the FORTRAN
character set.

6. m is an integer constant (positive, negative,
or zero) indicating scaling.

NUMERIC CONVERSIONS

Input operations with any of the numeric
conversions will allow the data to be represented
in a "Free Format"; i.e., commas may be used to
separate the fields in the external representation.

F-type conversion

Form: Fw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.

F-output

Values are converted and output as minus sign (if
negative), followed by the integer portion of the
number, a decimal point and d digits of the
fractional portion of the number. If a value does
not fill the field, it is right justified in the
field and enough preceding blanks to fill the field
are inserted. If a value requires more field
positions than allowed by w, the first w=1 digits
of the value are output, preceded by an asterisk.

FORTRAN-80 Reference Manual Page 65

F-Output Examples:

FORMAT Internal Output

Descriptor Value (b=blank)

F10.4 368.42 bb362.4200

F7.1 -4786.361 -4786.4

F8.4 8.7E-2 bb0.0375

F6.4 4739.76 *,7600

* Note the loss of leading digits in the 4th 1line
above, .

F-Input

(See the description under E-Input below.)

E-type Conversion

Form: Ew.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.

E-Output

Values are converted, rounded to d digits, and
output as:

1. a minus sign (if negative),

2. a zero and a decimal point,

3. d decimal digits,

4, the letter E,

5. the sign of the exponent (minus or blank),

6. two exponent digits,

in that order. The values as described are right
justified 1in the field w with preceding blanks to
fill the field if necessary. The field width w
should satisfy the relationship:

w >d + 7

Otherwise significant characters may be lost. Scme
E-Qutput examples follow:

FORTRAN-80 Reference Manual Page 66

FORMAT Internal Output

Descriptor Value (b=blank)
E12.5 76.573 b0.76573Eb02
E14.7 -32672.354 -0.3267235EbOS
E7.3 56.93 * 0.569E

E13.4 -0.0012321 bb-0.1232E-02
E8.2 76321.73 0.76EDbO0S
E-Input

Data values which are to be processed under E, F,
or G conversion can be a relatively loose format in
the external input medium. The format is identical’
for either conversion and is as follows:

1. Leading spaces (ignored)

2. A + or - sign (an unsigned input is assumed to
be positive)

3. A string of digits

4. A decimal point

5. A second string of digits
6. The character E

7. A + or - sign

8. A decimal exponent

Each item in the list above is optional; but the
following conditions must be observed:

1. If FORMAT items 3 and 5 (above) are present,
then 4 is required.

2. If FORMAT item 8 is present, them 6 or 7 or
both are required.

3. All non-leading spaces are considered zeros.

Input data can be any number of digits in 1length,
and correct magnitudes will be developed, but
precision will be maintained only to the extent
specified in Section 3 for Real data.

FORTRAN-80 Reference Manual . Page 67

E-~ and F- and G- Input Examples:

FORMAT Input Internal
Descriptor (b=blank) Value
E10.3 +0.23756+4 +2375.60
E10.3 bbbbb17631 +17.631
G8.3 b1628911 +1628.911
F12.4 bbbb=6321132 -632.1131

Note in the above examples that if no decimal point
is given among the input characters, the d in the
FORMAT specification establishes the decimal point
in conjunction with an exponent, if given. If a
decimal point is included in the input characters,
the d specification is ignored.

The letters E, F, and G are interchangeable in the

input format specifications. The end result is the
same.

D-Type Conversions

D-Input and D-Output are identical to E-Input and
E-Output except the exponent may be specified with
a "D" instead of an "E."

G-Type Conversions

Form: Gw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered significant.

G-Input:

(See the description under E-Input)

G-Output:

The method of output conversion is a function of
the magnitude of the number being output. Let n be
the magnitude of the number. The following table
shows how the number will be output:

FORTRAN-80 Reference Manual Page 68

Magnitude Equivalent Conversion
a-2 d-1)
a-1 d
10 <= n < 10 F(w-4).0,4X
Otherwise Ew.d

I-Conversions

Form: Iw

Only Integer data may be converted by this form of
conversion. w specifies field width.

I-Output:
Values are converted to Integer constants.
Negative values are preceded by a minus sign. If

the value does not fill the field, it 1is right
justified in the field and enough preceding blanks
to fill the field are inserted. If the wvalue
exceeds the field width, only the least significant
w-1 characters are output preceded by an asterisk.

Examples:

FORMAT Internal Output
Descriptor Value (b=blank)
I6 +281 bbb281
I6 -23261 -23261
I3 126 126
I4 -226 -226
I3 1234 *34

I-Input:

A field of w characters is input and converted to
internal integer format. A minus sign may precede
the integer digits. If a sign 13 not present, the
value is considered positive.

Integer values in the range =3. -8 to 32767 are
accepted. Non-leading spaces are treated as zeros.

FORTRAN-80 Reference Manual ; Page 69

Examples:
Format Input Internal
Descriptor (b=blank) Value

I4 b124 124

I4 -124 -124

I7 bb6732b 67320

I4 1b2b 1020

HOLLERITH CONVERSIONS

'A-Type Conversion

The form of the A conversion is as follows:
Aw

This descriptor causes unmodified Hollerith
characters to be read into or written from a
specified list item.

The maximum number of actual characters which may
be transmitted between internal and external
representations using Aw is four times the number
of storage wunits in the corresponding list item
(i.e., 1 character for logical items, 2 characters
for Integer items, 4 characters for Real items and
8 characters for Double Precision items).

A-Output:

If w is greater than 4n (where n is the number of
storage units required by the 1list item), the
external output field will consist of w-4n blanks
followed by the 4n characters from the internal
representation. If w is less than 4n, the external
output field will consist of the leftmost w
characters from the internal representation.

Examples:
Format Internal Type Output
Descriptor (b=blanks)
Al A1l Integer A
A2 AB Integer AB
A3 ABCD Real ABC
“A4 ABCD Real ABCD
A7 ABCD Real bbbABCD
A-Input:

If w is greater than 4n (where n is the number of

FORTRAN-80 Reference Manual Page 70

storage units required by the corresponding list
item), the rightmost 4n characters are taken from
the external input field. If w is less than 4n,
the w characters appear left Jjustified with w-4n
trailing blanks in the internal representation.

Examples:
Format Input Type Internal
Descriptor Characters (b=blanks)
A1l A Integer Ab
A3 ABC Integer AB
A4 ABCD Integer AB
Al A Real Abbb
A7 ABCDEFG Real DEFG
H-Conversion

The forms of H conversion are as follows:
nHh1h2...hn
‘h1h2...hn'

These descriptors process Hollerith character
strings between the descriptor and the external
field, where each h represents any character from
the ASCII character set.

NOTE

Special consideration is required if an
apostrophe (') is to be used within the
literal string in the second form. An
apostrophe character within the string is
represented by two successive apostrophes.
See the examples below.

H-Output:

The n characters hi, are placed in the external
field. In the nHh1h2...hn form the number of
characters in the string must be exactly as

specified by n. Otherwise, characters from other
descriptors will be taken as part of the string.
In both forms, blanks are counted as characters.

FORTRAN-80 Reference Manual ' i" Page 71

Examples:

Format D Output

Descriptor IR (b=blanks)
1HA or 'A7 o : A
8HbSTRINGD or 'bSTRINGb' bSTRINGD
11HX(2,3)=12.0 or 'X(2,3)=12,0' - X(2,3)=12,0
12HIbSHOULDN'T or 'IbSHOULDN"T' IbSHOULDN'T
H-Input

The n characters of the string hi are replaced by
the next n characters from the input record. This
results in a new string of characters in the field

descriptor,

FORMAT Input Resultant

Descriptor - (b=blank) Descriptor
4H1234 or '1234' ABCD 4HABCD or 'ABCD'
7HbbFALSE or 'bbFALSE' bFALSEDb 7HbFALSEb or 'bFALSED'
‘6Hbbbbbb or 'bbbbbb' MATRIX 6HMATRIX or 'MATRIX'

8.6.4 LOGICAL CONVERSIONS

The form of the logical convéfsion is as follows:
Lw
L-Output:

If the wvalue of an item in an output list
corresponding to this descriptor is 0, an F will be

output; otherwise, a T will be output. If w is
greater than 1, w-=1 1leading blanks precede the
letters.
Examples:
FORMAT Internal Output
Descriptor Value (b=blank)
L1 =0 F
L1 <>0 T
LS5 <>0 bbbbT
L7 =0 bbbbbbF
L-Input

The external representation occupies w positions,
It consists of optional blanks followed by a "T" or
"F", followed by optional characters.

FORTRAN-80 Reference Manual Page 72

8.6.5 X DESCRIPTOR

The form of X conversion is as follows:
nX

This descriptor causes no conversion to occur, nor
does it <correspond to an item in an input/output
list. When used for output, it causes n blanks to
be inserted in the output record. Under input
circumstances, this descriptor causes the next n
characters of the input record to be skipped.

Output Examples:

FORMAT Statement Output
(b=blanks)

3 FORMAT (1HA,4X,2HBC) AbbbbBC

7 TFORMAT (3X,4HABCD, 1X) bbbABCDb

Input Examples:

FORMAT Statement Input String Resultant Input

10 FORMAT (F4.1,3X,F3.0) 12.5ABC120 12.5,120
5 FORMAT (7X,13) 1234567012 012

8.6.6 P DESCRIPTOR

The P descriptor is wused to specify a scaling
factor for real conversions (F, E, D, G). The form
is nP where n is an integer constant (positive,
negative, or zero).

The scaling factor is automatically set to zero at
the beginning of each formatted I/O call (each READ
or WRITE statement). If a P descriptor is
encountered while scanning a FORMAT, the scale
factor is changed to n. The scale factor remains
changed until another P descriptor is encountered
or the I/O terminates.

Effects of Scale Factor on Input:

During E, F, or G input the scale factor takes
effect only if no exponent 1is present 1in the
external representation. In that case, the
internal wvalue will be a factor of 10**n less than
the external value (the number ill be divided by
10**n before being stored).

FORTRAN-80 Reference Manual ‘ Page 73

Effect of Scale Factor on OQOutput:

E-Output, D-Output:

The coefficient is shifted left n places relative
to the decimal point, and the exponent is reduced
by n (the value remains the same).

F-Output:

The external value will be 10**n times the internal
value,

G-Output:
The scale factor is ignored if the internal value

is small enough to be output using F conversion.
Otherwise, the effect is the same as for E output.

SPECIAL CONTROL FEATURES OF FORMAT STATEMENTS

Repeat Specifications

1. The E, F, D, G, I, L and 'A field descriptors
may be indicated as repetitive descriptors by
using a repeat count r ‘in the form rEw.d,
rFw.d, rGw.d, rIw, rLw, rAw. The following
pairs of FORMAT statements are equivalent:

66 FORMAT (3F8.3,F9.2)
C IS EQUIVALENT TO:
66 FORMAT (F8.3,F8.3,F8.3,F9.2)

14 TFORMAT (2I3,2A5,2E10.5)
C IS EQUIVALENT TO:
i4 FORMAT (I3,I3,A5,A5,E10.5,E10.5)

2. Repetition of a group of field descriptors is
accomplished by enclosing the group in
parentheses preceded by a repeat count.
Absence of a repeat count indicates a count of
one, Up to two levels of parentheses,
including the parentheses required by the
FORMAT statement, are permitted.

Note the following equivalent statements:

FORTRAN-80 Reference Manual Page 74

22 FORMAT (I3,4(F6.1,2X))
C IS EQUIVALENT TO:
22 FORMAT (I3,F6.1,2X,F6.1,2X,F6.1,2X,
1 F6.1,2X)

Repetition of FORMAT descriptors is also
initiated when all descriptors in the FORMAT
statement have been used hut there are still
items in the input/output list that have not
been processed. When this occurs the FORMNAT
descriptors are re-used starting at the opening
parenthesis that matches the last closing
parcnthesis in the FORMAT statement. The
parentheses enclosing the entire list of
descriptors are not considered unless there are
no other parentheses in the 1list. A repeat
count. preceding the parenthesized descriptor(s)
to be re-uscd is also active 1in the re-use.
This type of repetitive use of FORMAT
descriptors terminates processing of the
current record and initiates the processing of
a new record each time the re-use beoins,
Record demarcation under these circumstances is
the same as in the paragraph 8.7.6.2 below.

Input Example:

1

DIMENSION A(100)
READ (3,13) A

3 FORMAT (5F7.3)

In this example, the first 5 gquantities from each

of

20 records are input and assigned to the array

elements of the array A.

Output bixample:

1

WRITE (6,12)E,F,K,L,M,KK,LL,MM,K3,LE,
1 M3

2 FORMAT (2F9.4,(317))

In this example, three records are written. Record

1

contains £, ¥, K, I and M. Because the

descriptor 317 1s reused twice, Record 2 contains

KK,

L. and MM and Record 3 contains K3, L3 and M3.

FORTRAN-80 Reference Manual - Page 75

8.6.7.2

Field Separators

Two adjacent descriptors must be separated in the
FORMAT statement by either a comma or one or more
slashes.

Example:
2HOK/F6.3 or 2HOK,F6.3

The slash not only separates field descriptors, but
it also specifies the demarcation of formatted
records.

Each slash terminates a record and sets up the next
record for processing. The remainder of an input
record is ignored; the remainder of an output
record is filled with blanks. Successive slashes
(///.../) cause successive records to be ignored on
input and successive blank records to be written on
output. :

Output example:
DIMENSION A(100), J(ZO)

WRITE (7,8) J,A
8 FORMAT (1017/1017/50F7.3/50F7.3)

In this example, the data specified by the list of
the WRITE statement are output to unit 7 according
to the specifications of FORMAT statement 8. Four
records are written as follows:

Record 1 Record 2 .- Record 3 Record ¢4
J(1) J(1) A(1) A(51)
J(2) J(12) e A(2) A(52)
J(10) J(20) A(50) _ A(100)

Input Example:

DIMENSION B(10)

RLAD (4,17) B s
17 FORMAT(F10.2/F10. 2///8F1O 2)

In this example, the two array elements B(1) and
B(2) receive their wvalues from the first data

FORTRAN-80 Reference Manual ' Page 76

fields of successive records (the remainders of the
two records are ignored). The third and £fourth
records are ignored and the remaining elements of
the array are filled from the fifth record.

FORMAT CONTROL, LIST SPECIFICATIONS AND RECORD
DEMARCAT10N

The following relationships and interactions
between FORMAT control, input/cutput lists and
record demarcaticn should be noted:

1. Execution of a formatted READ or WRITE
statement initiates FORMAT control.

2. The conversion performed on data depends on
information jointly provided by the elements in
the input/output list and field descriptors in
the FORMAT statement,

3. If there is an input/output list, at least one
descriptor of types E, F, D, G, I, L or A must
be present in the FORMAT statement.

4, Each execution of a formatted READ statement
causes a new record to be input.

5. Each item in an input 1list corresponds to a
string of characters in the record and to a
descriptor of the types E, ¥, G, I, L or A in
the FORMAT statement.

6. H and X descriptors communicate information
directly between the external record and the
field descriptors without reference to 1list
items.

7. On input, whenever a slash 1s encountered in
the TFORMAT statement or the FORMAT descriptors
have been exhausted and re-use of descriptors
is initiated, processing of the current record
is terminated and the following occurs:

a. Any unprocessed characters in the record
are ignored. '

b. If more input is necessary to satisfy
list reguirements, the next record’'is
read.

FORTRAN-80 Reference Manual Page 77

8.6.10

8. A READ statement is terminated when all items
in the input list have been satisfied if:

a. The next FORMAT descriptor is E, F, G, I,
L or A.

b. The FORMAT control has reached the last
outer right parenthesis of the FORMAT
statement.

If the input list has been satisfied, but the
next FORMAT descriptor is H or X, more data are
processed (with the possibility of new records
being input) until one of the above conditions
exists. '

9. If FORMAT control reaches the last right
parenthesis of the FORMAT state: .t but there
are more list items to be proce: =4, all or
part of the descriptors are reuse.. (See item
3 in the description of Repeat Specifications,
sub-paragraph 8.7.6.1)

10. When a Formatted WRITE statement is executed,
records are written each time a slash is
encountered in the FORMAT statement or FORMAT
control has reached the rightmost right
parenthesis. The FORMAT control terminates in
one of the two methods described for READ
termination in 8 above, Incomplete records are
filled with blanks to maintain record lengths,

FORMAT CARRIAGE CONTROL

The first character of every formatted output

record is used to convey carriage control
information to the output device, and is therefore
never printed. The carriage control character

determines what action will be taken before the
line is printed. The options are as follows:

Control Character Action Taken Before Printing
0 Skip 2 lines
i Insert Form Feed
+ No advance
Other Skip 1 line

FORMAT SPECIFICATIONS IN ARRAYS

The FORMAT reference, f, of a formatted READ or
WRITE statement (See 8.1) may be an array name
instezd of a statement label. If such reference is

FORTRAN-80 Reference Manual Page 78

made, at the time of execution of the READ/WRITE
statement the first part of the information
contained in the array, taken in natural order,
must constitute a valid FORMAT specification. The
array may contain non-FORMAT information following
the right parenthesis that ends the FORMAT
specification.

The FORMAT specification which is to be inserted in
the array has the same form as defined for a FORMAT
statement (i.e., it begins with a left parenthesis
and ends with a right parenthesis).

The FORMAT specification may be inserted 1in the
array by use of a DATA initialization statement, or
by use of a RIAD statement together with an Aw
FORMAT. Example:

Assume the FORMAT specification
(3Fr10,3,416)

or a similar 12 character specification 1is to be
stored into an array. The array must allow a
minimum of 3 storage units.

The FORTRAN coding below shows the various methods
of establishing the FORMAT specification and then
referencing the array for a formatted READ or
WRITE.

FORTRAN-80 Reference Manual

C DECLARE A REAL ARRAY
DIMENSION A(3), B(3), M(4)
C INITIALIZE FORMAT WITH DATA STATEMENT
DATA A/' (3F1','0.3,"','416)"'/

C READ DATA USING FORMAT SPECIFICATIONS
C IN ARRAY A

READ(6,A) B, M

C DECLARE AN INTEGER ARRAY
DIMENSION IA(4), B(3), M(4)

C READ FORMAT SPECIFICATIONS
READ (7,15) IA
C FORMAT FOR INPUT OF FORMAT SPECIFICATIONS
15 FORMAT (4A2)

C READ DATA USING PREVIOUSLY INPUT
c FORMAT SPECIFICATION
READ (7,IA) B,M

Page 79

FORTRAN-80 Reference Manual Page 80

SECTION 9
FUNCTIONS AND SUBPROGRAMS
The FORTRAN language provides a means for defining and using
often needed programming procedures such that the statement
or statements of the procedures need appear in a program

only once but may be referenced and brought into the logical
execution sequence of the program whenever and as often as

L 22D o

Thage procedures are as follows:

1. Statement functions.
2. Library functions.
3. FUNCTION subprograms.

4, SUBROUTINE subprograms.

Each of these procedures has its own unique requirements for

reference and defining purposes. These requirements are
discussed 1in subsequent paragraphs of this section.
Hrowevey, certain features are common to the whole group or

to two or more of the procedures. These common features are
as follows:

1. Each of these procedures is referenced by its name
which, in all cases, 1is one to six alphanumeric
characters of which the first is a letter.

2. The first three are designated as "functiocns" and
are alike in that:

1. They are always single wvalued (i.e., they
return one value to the program unit from which
they are referenced).

2. They are referred to by an expression
containing a function name.

3. They must be typed by type specification
statements if the data type of . the
single-valued result is to be different from
that indicated by the pre-defined convention.

3. FUNCTION subprograms and SUBROUTINE subprograms are
considered program units.

FORTRAN-80 Reference Manual ‘ Page 81

In the following descriptions of these procedures, the term
calling program means the program unit or procedure in which
a reference to a procedure is made, and the term "cailled
program" means the procedure to which a reference is made.

9.1

_THE PROGRAM STATEMENT

The PROGRAM statement ~ provides a means of
specifying a name for a main program unit. The
form of the statement is:

PROGRAM name .
If present, the PROGRAM statement must appear
before any other statement in the program unit.
The name consists of 1-6 alphanumeric characters,
the first of which 1is a letter. If no PROGRAM
statement 1is present in a main program, the
compiler assigns a name of $MAIN to that program.

STATEMENT FUNCTIONS

Statement functions are defined by a single
arithmetic or logical assignment statement and are
relevant only to. the program unit in which they
appear. The general form of a statement function
is as follows: ‘ '

f(al,a2,...an) = e

where f is the function name, the ai are dummy
arguments and e 1is an -arithmetic or 1logical
expression. :

Rules for ordering, structure and use of statement
functions are as follows:

1. Statement function definitions, if they exist
in a program unit, must precede all executable
statements 1in the unit and follow all
specification statements,

2, The ai are distinct variable names or array
elements, but, being dummy variables, they may
have the same names as variables of the same
type appearing elsewhere in the program unit.

3. The expression e is constructed according to
the rules 1in SECTION 4 and may contain-only
references to the dummy arguments and
non-Literal constants, variable and array
element references, utility and mathematical
function references and references to

FORTRAN-80 Reference Manual : Page 82

previously defined statement functions.

4., The type of any statement function name or
argument that differs from its pre-defined
convention type must be defined by a type
specification statement.

5. The relationship between f and e must conform
to the replacement rules in Section 5.

6. A statement function is called by its name
followed by a parenthesized list of arguments.
The expression is evaluated using the arguments
specified in the call, and the reference is
replaced by the result. ‘

7. The ith parameter in every argument list must
agree in type with the ith dummy in the
statement function.

The example below shows a statement function and a
statement function call,

C STATEMENT FUNCTION DEFINITION
C
FUNC1(A,B,C,D) = ((A+B)**C)/D

C STATEMENT FUNCTION CALL
C .
A12=A1-FUNC1(X,Y,27,C7)

LIBRARY FUNCTIONS

Library functions are a group of wutility and
mathematical functions which are "built-in" to the
FORTRAN system. Their names a pre-defined to the
Processor and automatically typed. The functions
are listed in Tables 9-1 and 9-2. In the tables,
arguments are denoted as al,a2,...,an, if more than
one argument is required; or as a if only one |is
required.

A library function is called when its name is used
in an arithmetic expression, Such a reference
takes the following form:)

f(al,a2,...an)

where f is the name of the function and the ai are
actual arguments. The arguments must agree in
type, number and order with the specifications
indicated in Tables 9-1 and 9-2,

FORTRAN-80 Reference Manual Page 83

!

In addition to the functions listed in 9-1 and 9-2,
four additional library subprograms are provided to
enable direct access to the 8080 (or Z80) hardware.
These are:

PEEK, POKE, INP, OUT

PEEK and INP are Logical functions; POKE and OUT
are subroutines. PEEK and POKE allow direct access
to any memory location. PEEK(a) returns the
contents of the memory 1location specified by a.
CALL POKE(al,a2) causes the contents of the memory
location specified by al to be replaced by the
contents of a2. INP and OUT allow direct access to
the I/0 ports. INP (a) does an input from port a
and returns the 8-bit value input. CALL OUT(a1l,a2)
outputs the value of a2 to the port specified by
al,

Examples:
A1 = B+FLOAT (I7)
MAGNI = ABS (KBAR)
PDIF = DIM(C,D)
S3 = SIN(T12)

ROOT = (-B+SQRT (B**2-4,*Aa*C))/
1 (2.%A)

FORTRAN-80 Reference Manual

Function Name

TABLE 9-1

Intrinsic Functions

Definition

ABS
IABS
DARBS

AINT
INT
IDINT

AMOD
MOD

AMAXO
AMAX1
MAXO
MAXT
DMAX1
AMINO
AMIN1
MINO
MIN1
DMIN1

FLOAT

IFIX

SIGN
ISIGN
DSIGN

DIM
IDIM
SNGL

DBLE

lal

Sign of a times lar-
gest integer <= |al

al (mod a2)

Max(al,a2,...)

Min(al1,a2,...)

Conversion from
Integer to Real

Conversion from
Real to Integer

Sign of a2 times |all

al - Min(a1l,a2)

Types
Argument Function
Real Real
Integer Integer
Double Double
Real Real
Real Integer
Double Integer
Real Real
Integer Integer
Integer Real
Real Real
Integer Integer
Real Integer
Double Double
Integer Real
Real Real
Integer Integer
Real Integer
Double Double
Integer Real
Real Integer
Real Real
Integer Integer
Double Double
Real Real
Integer Integer
Double Real
Real Double

Page

84

ATOG

[

vy

RYMBTRREL

INT oAy
DLOG T

Cos

DCOSsS

TANH

AN

.
ATAN

44

A
D

DTENZ
DATAN2

0HOD

Nunboer

=50 Roefcerence Manual Paygc

TABLE 9-2

Basic External Functions

o

o! Type
~oqrnents Definition Argument Function

i mkr g Real Real

i Doubhle Double
1 In (a) Real Real

i Double Double
i logiof{a) Read Real

1 Double Douprle
1 sin (a) Real Real

1 Double Double
1 cos (a) Real - Real

1 Double Double
1 tanh (&) Real Real

1 (a) ** 1/2 Real Real

} Double«: Double
1 arctan (a) Real Real

1 Double Double
2 arctan {(al/a2) Real Real

2 Double Double

al(mod a2) Double ' Double

FORTRAN-80 Reference Manual Page 86

9.4

9.5

FUNCTION SUBPROGRAMS

A program unit which begins with a FUNCTION
statement is called a FUNCTION subprogram.

A FUNCTION statement has one of the following
forms:

t FUNCTION f(al,a2,...an)

or

FUNCTION f(al,a2,...an)

where:

1. t is either INTEGER, REAL, DOUBLE PRECISION or
LOGICAL or 1is empty as shown in the second
form.

2., £ is the name of the FUNCTION subprogram.

3. The ai are dummy arguments of which there must
be at least one and which represent variable

names, array names or dummy names of SUBROUTINE
or other FUNCTION subprograms.

CONSTRUCTION OF FUNCTION SUBPROGRAMS

Construction of FUNCTION subprograms must comply
with the following restrictions:

1. The FUNCTION statement must be the first
statement of the program unit.

2. Within the FUNCTION subprogram, the FUNCTION
name must appear at least once on the left side
of the equality sign of an assignment statement
or as an item in the input list of an input
statement. This defines the wvalue of the
FUNCTION so that it may be returned to the
calling program.

Additicnal values may be returned to the
calling program through assignment of values to
dummy arguments.

FORTRAN-80 Reference Manual Page 387

Example:

FUNCTION Z7(A,B,C)

Zz7 = 5,*(A-B) + SQRT(C)

C REDECINE ARGUMENT
B=B+Z7

END

The names in the dummy argument list may not appe:s
in EQUIVALIZINCE, COMMON or DATA statcecments in
FUNCTION subprogram.

T 0

T

If{ a dummy argument is an array name, then an arrav
declarator 1must appear 1in the subprogram with
dimensioning information consistant with that in
the callinyg program.

A FUNCTION subprogram may contain any defined
FORTRAN statements other than BLOCK D&TA
statements, SUBROUTINE statements, another FUNCTICN
statement or any statement which references eithexr
the FUNCTION being defined or another subprogram
that references the FUNCTION being defined.

The logical termination of a FUNCTION subprogram 1s
a RETURN statement and there must be at least ons
ot them,

A FUNCTION subprogram must physically terminate
with an END statement.

FORTRAN-80 Reference Manual Page 88

Example:

FUNCTION SUM (BARY,I,J)
DIMENSION BARY (10,20)

SUM = 0.0
DO 8 K=1,I
DO8 M = 1,J
8 SUM = SUM + BARY (K,M)
RETURN
END

REFERENCING A FUNCTION SUBPROGRAM

FUNCTION subprograms are called whenever the
FUNCTION name, accompanied by an argument list, is
used as an operand in an expression. Such
references take the following form:

f(al,a2,...,an)

where £ is a FUNCTION name and the ai are actual

arguments. Parentheses must be present in the form
shown.

The arguments ai must agree in type, order and
number with the dummy arguments in the FUNCTION
statenent of the called FUNCTION subprogram. They
may be any of the following:

1. A variable name.

2. An array element name.

3. An array name.

4, An expression.

5. A SUBROUTINE or FUNCTION subprogram name.

6. A Hollerith or Literal constant.

If an ai is a subprogram name, that name must have
previously been distinguished from ordinary
variables by appearing in an EXTERNAL statement and
the corresvonding dummy arguments 1in the called
FUNCTION subprograms must be used 1in subprogram
references.

If ai is a Hollerith or Literal constant, the
corresponding dummy variable should encompass
enough storage units to correspond exactly to the

amount of storage needed by the constant.

When a FUNCTION subprogram 1is called, program

0
.
-

9,4

vz

N-80 Refvrencce Manual Page &4
control goes to the first executable statenent
following the FUNCTICN statement.

The following examples show references to FUNCTLON
subprograms.

210 = FT14+27(D,T3,RHO)

DIMENSION DAT(5,5)

S1 = TOT1 + SUM(DAT,S5,5)

SUBRCUTINE SURDPROGRMMS

unit which bogins with a SUEDOUTLIH
is <called a SUBROUTINE subprogram. Tiw
statement has one of the followin

SULKROUTINE & (al1,a2,...,an)

or

SUBROUTINL s

where s is the name of the SUBROUTINE subproar.n
and @ach al 1s a dummy argument which represanus

variable or array name or another SUBROUTINE or
FUNCTION name,

CONSTRLCTION OF SUBROUTINE SUBPROGRAMS

Thna SUBROUTINE statement must be the first statement
of the subprogram.

The SUBROUTINE subprogram name must not
any statemwsnt other than the initial
statement.

appnar in
SU

dumrnny argument names must not anpear in
LYALENCE, COMMON or DATA sgstatements 1n the

If a dummy argument is an array name then an array
declarator must appear 1in the subprogram with
dimens Jvnlng information consistant with that in the

v of the dummy arguments represent values tHlv
v to be determined by the SUBROUTINE subpro- 0
turned to the calling program, these durry

FORTRAN-80 Reference Manual ‘ Page 90

10.

arguments must appear within the subprogram on the
left side of the equality sign 1in a replacement
statement, 1in the input list of an input statement
or as a parameter within a subprogram reference.

A SUBROUTINE may contain any FORTRAN statements
other than BLOCK DATA statements, FUNCTION
statements, another SUBROUTINE statement, a PROGRAM
statement or any statement which references the
SUBROUTINE subprogram being defined or another
subprogram which references the SUBROUTINE
subprogram being defined.

A SUBROUTINE subprogram may contain any number of
RETURN statements. It must have at least one.

The RETURN statement(s) is the logical termination
point of the subprogram.

The physical termination of a SUBROUTINE subprogram
is an END statement.

If an actual arcument transmitted to a SUBROUTINE
subprogram by the calling program is the name of a
SUBROUTINL or FUNCTION subprogram, the corresponding
dummy argument must be used in the called SUBROUTINE
subprogram as a subprogram reference.

Example:

C SUBROUTINE TO COUNT POSITIVE ELEMENTS
C IN AN ARRAY
SUBROUTINE COUNT P (ARRY,I,CNT)
DIMENSION ARRY (7)
CNT = 0
Do 9 J=1,1I
IF (ARRY (J))9,5,5
9 CONTINUE
RETURN
5 CNT = CNT+1.0
GO TO 9
END

REFERENCING A SUBROUTINE SUBPROGRAM

A SUBROUTINE subprogram may be called by using a
CALL statement. A CALL statement has one of the
following forms:

CALL s(al,a2,...,an)

or

FORTRAN~80 Reference Manual Page ©

CALL s

where s is a SUBROUTINE subprogram name and the ai
are the actual arguments to be used by the
subprogram. The ai must agree in type, order and
number with the corresponding dummy arguments in

the subprogram-defining SUBROUTINE statement.

The arguments in a CALL statement must comply with
the following rules:

1. FUNCTION and SUBROUTINE names appearing in tho
argument list must have previously agpeared i
an EXTERNAL statement.

2. 1f the cailed SUBROUTINE subprogram contalns =
variable array ceclarator, then the CALL
statement must contain the actual name of the
array and the actual dimensicn specificatiovns
as arguments.

3. If an item in the SUBROUTINE subprogram dumiy
argument list 1is an array, the correspondinyg
item in the CALL statement argument list must
be an array.

When a SUBROUTINE subprogram is called, prouram
control goes to the first executable statemcnt
following the SUBROUTINE statement.

Example:

DIMENSION DATA(10)

C THE STATEMENT BELOW CALLS THE
C SUBROUTINE IN THE PREVIOUS PARAGRAPH
C

CALL COUNTP (DATA,10,CPOS)

RETURN FROM FUNCTION AND SUBROUTINE SUBPROGRAMS

The logical termination of a FUNCTION or SUBROUTINE
subprogram 1is a RETURN statement which transfers
control back to the calling program. The generai
form of the RETURN statement is simply the word

RETURN

The following rules govern the use of the RETURN
statement:

FORTRAN-80 Reference Manual Page 92

1. There must be at least one RETURN statement in
each SUBROUTINE or FUNCTION subprogram.

2, RETURN from a FUNCTION subprogram is to the
instruction sequence of +the <calling program
following the FUNCTICN reference.

3. RETURN from a SUBROUTINE subprogram is to the

next executable statement in the «calling
program which would logically follow the CALL
statement.

4., Upon return from a FUNCTION subprogram the
single-valued result of the subprogram is
available to the evaluation of the expression
from which the FUNCTION call was made.

5. Upon return from a SUBROUTINE subprogram the

values assigned to the arguments in the
SUBROUTINE are available for use by the calling
program.

Example:

Calling Program Unit

CALL SUBR(29,B7,R1)

Called Program Unit

SUBROUTINE SUBR(A,B,C)
READ(3,7) B
A = B**C
RETURN
7 FORMAT (F9.2)
END

In this example, Z9 and B7 are made available to
the calling program when the RETURN occurs.

PROCESSING ARRAYS IN SUBPROGRAMS

If a calling program passes an array name to a
subprogram, the subprogram must contain the
dimension information pertinent to the array. A
subprogram must contain array declarators if any of
its dummy arguments represent arrays or array

FORTRAN-80 Reference Manual Page 93

elements.

For example, a FUNCTION subprogram designed to
compute the average of the elements of any one
dimension array might be the folowing:

Calling Program Unit

DIMENSION Z1(50),22(25)

Al

]

AVG(Z1,50)

A2

I

A1-AVG(Z22,25)

Called Program Unit

FUNCTION: AVG (ARG, I)
DIMENSION ARG (50)
SUM = 0.0
Do 20 J=1,1

20 SUM = SUM + ARG (J)
AVG = SUM/FLOAT (I)
RETURN
END

Note that actual arrays to be processed by the
FUNCTION subprogram are dimensioned in the calling
program and the array names and their actual
dimensions are transmitted to the FUNCTION
subprogram by the FUNCTION subprogram reference,
The FUNCTION subprogram itself contains a dummy
array and specifies an array declarator.

Dimensioning information may also be passed to the
subprogram in the paramater list. For example:

FORTRAN-80 Reference Manual Page 94

Calling Program Unit

DIMENSION A(3,4,5)

CALL SUBR(A,3,4,5)

END
Called Program Unit

SUBROUTINE SUBR(X,I,J,K)
DIMENSION X(I,J,K)

RETURN
END

It is valid to use variable dimensions only when
the array name and all of the variable dimensions
are dummy arguments. The variable dimensions must
be type Integer. It 1is 1invalid to change the
values of any of the variable dimensions within the
called program.

BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram has as its only purpose the
initialization of data in a COMMON block during
loading of a FORTRAN object program. BLOCK DATA
subprograms begin with a BLOCK DATA statement of
the following form:

BLOCK DATA [subprogram-name]

and end with an END statement. Such subprograms
may contain only Type, EQUIVALENCE, DATA, COMMON
and DIMENSION statements and are subject to the
following considerations:

1. If any element in a COMMON block is to be
initialized, all elements of the block must be
listed in the COMMON statement even though they
might not all be initialized.

2. Initialization of data in more than one COMMON
block may be accomplished 1in one BLOCK DATA
sukprogram,

FORTRAN-80 Reference Manual Page 95

3. There may be more than one BLOCK DATA
subprogram loaded at any given time.

4, Any particular COMMON block item should only be
initialized by one program unit.

Example:

BLOCK DATA .

LOGICAL Al
COMMON/RETA/B (3, 3) /GAM/C (4)
COMMON/ALPHA/A1,C,E,D

DATA B/1.1,2.5,3.8,3%4.96,
12*0.52,1.1/,C/1.2E0,3*%4,.0/
DATA A1/.TRUE/,E/=5.6/

FORTRAN-80 Reference Manual Page 96

APPENDIX A

Language Extensions and Restrictions

The FORTRAN-80 language includes the following extensions to
ANSI Standard FORTRAN (X3.9-1966).

1.

2.

9‘

If ¢ is used in a 'STOP c¢' or 'PAUSE c' statement,
c may be any six ASCII characters.

Error and End-of-File branches may be specified 1in
READ and WRITE statements using the ERR= and END=
options.

The standard subprograms PEEK, POKE, INP, and OUT
have been added to the FGRTRAN library.

Statement functions may use subscripted variables.

Hexadecimal constants may be used wherever Integer
constants are normally allowed.

The literal form of Hollerith data (character
string between apostrophe characters) is permitted
in place of the standard nH form.

Holleriths and Literals are allowed in expressions
in place of Integer constants.

There 1is no restriction to the nupber of
continuation lines.

Mixed mode expressions and assignments are allowed,
and conversions are done automatically.

FORTRAN-80 places the following restrictions wupon Standard

FORTRAN.

1.

2.

The COMPLEX data type is not implemented. It may
be included in a future release.

The specification statements must appear in the
following order:

1. PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA

2. Type, EXTERNAL, DIMENSION

3. COMMON

4., EQUIVALENCE

FORTRAN-80 Reference Manual Page 97

5. DATA

6. Statement Functions

3. A different amount of computer memory is allocated
for each of the data types: 1Integer, Rzal, Double
Precision, Logical.

4, The equal sign of a replacement statement and the
first comma of a DO statement must appear on the
initial statement line.

Descriptions of these language extensions and restrictions

are included at the appropriate points in the text of this
document.,

FORTRAN-80 Refer:-:e Manual Page 98

APPENDIX B

I1/0 Interface

Input/Output operations are table-dispatched to the driver
routine for the proper Logical Unit Number. $LUNTB is the
dispatch table. It contains one 2-byte driver address for
each possible LUN. It also has a one-byte entry at the
beginning, which contains the maximum LUN plus one. The
initial run-time package provides for 10 LUN's (1 - 10), all
of which correspond to the TTY. Any of these may be
redefined by the user, or more added, simply by changing the

appropriate entries in $LUNTB and adding more drivers. The
runtime system wuses LUN 3 for errors and other user
communication. Therefore, LUN 3 should correspond to the

operator console. The initial structure of $LUNTB is shown
in the listings following this appendix.

The device drivers also contain local dispatch tables. Note
that $LUNTB contains one address for each device, yet there
are really seven possible operations per device:

1) Formatted Read
2) Formatted Write
3) Binary Read

4) Binary Write

5) Rewind

6) Backspace

7) Endfile

Each device driver contains up to seven routines. The
starting addresses of each of these seven routines are
placed at the beginning of the driver, in the exact order
listed above. The entry in $LUNTB then points to this local
table, and the runtime system indexes into it to get the
address of the appropriate routine to handle the requested
I/0 operation.

The following conventions apply to the individual I/0
routines:
1. Location $BF contains the data buffer address for

READs and WRITEs.

2., For a WRITE, the number of bytes to write 1is 1in
location $BL.

3. For a READ, the number of bytes read should be
returned in $BL.

FORTRAN-80 Reference Manual , Page 99

4.

All 1/0 operations set the condition codes before
exit to indicate an error condition, end-of-file
condition, or normal return:

a) CY=1,'Z=don't care - 1I/0 error
b) CY¥=0, Z2=0 - end-cf-file encountered
c) C¥Y=0, Z2=1 - normal return

The runtime system checks the condition codes after
calling the driver. If they indicate a non-normal
condition, control is passed to the label specified
by "ERR=" or "END=" or, if no label is specified, a
fatal error results.

$I0ERR is a global routine which prints an "ILLEGAL
I/O OPERATION" message (non-fatal). This routine
may be used if there are some operations not
allowed on a particular device (i.e. Binary I/C on
a TTY). ‘

NOTE

The I/0 buffer has a fixed maximum length
of 132 bytes wunless it 1is changed at
installation time. If a driver allows an
input operation to write past the end of
the buffer, essential runtime variables may
be affected. The consequences are
unpredictable.

The listings following this appendix contain an example

driver

for a TTY. REWIND, BACKSPACE, and ENDFILE are

implemented as No-Ops and Binary I/0 as an error. This 1is
the TTY driver provided with the runtime package.

[ta]
=

AT T)

iR

AT T
LT Ty TL

i e luGicuda—m

QeI

’-_»
LT

[

NG

[AT SIS TS T ST IO Y s e o L Lt e LT o T SRS T o o S SR Far ekt
o s s b G0) G0 o (U G B NI N N N DN B0 N NI N b bt bt ot et s
VIS OO IOV MT O WO - I — IO P -l

QoL QG R

MAC8C 1.0 PAGE 1

%g%%g : TTY I/0 DRIVER
00320 EXT IOERR,$BL,$BF,$ERR STTYIN, STTYOT
00400 IRECER BQOJ 22 ; INPUT' RECORD TOO LONG
00500 ENTRY SDRV3

013 g3669 SDRV3: DW DRV3FR ;FORMATTED READ

g42 00740 DW DRV3FW ;FORMATTED WRITE

019 203803 DW DRV3BR ;BINARY READ

Ju10 ! 4292902 N DRV3BW ;BINARY WRITE

A0CE ! @1600 DW DRV3RE ;REWNIND

e 31103 DW DRV33A :BACKSPACE

CuoE ! 21220 D DRV3EN ;ENDFILE

AF P13280 DRV3EN: XRA A *THESE OPERATIONS ARE
01200 iNO-OPS FOR TTY
N1530 DRV3RE BQU DRV3EN
61579 DRV3BA EOU DRV3EN

< 61703 RET

C3 vgpo * 81893 DRV3BW: Jip SIDERR ;ILLEGAL OPERATIONS
21900 : (PRINT ERROR AND RETURN)
22000 DRV3BR QU DRV33W

AR 02183 DRV3FR: XRA A :READ

32 €000 * 02200 STA BL, :ZERO BUFFER LENGTH

CD 0353 * @2306 DRV3l: CALL TTYIN ;INPUT A CHAR

E6 TP 32400 ANI 0177 ;AND OFF PARITY

FE 0A _ 02500 CPI 18 :IGNORE LINE FEEDS

CA 0017 ¢ 32693 Jz DRV31

F5 02700 PUSH PSW ;SAVE IT

ZA gg1s * 22820 _ LALD SBL ;GET CHAR POSIT IN BUFFER

76 00 02993 MVI H, 2 ‘ONLY 1 3YTE

EB 03000 XCHG

27 0000 * 33100 LALD S$3F ;GET BUFFER ADDR

19 03200 DAD D :ADD OFFSET

Fl 03300 POP PSW :GET CHAR

77 03400 MOV M, A :PUT IT IN BUFFER

13 83503 NX D :INCREMENT S$BL

E3 83600 XCHG

22 0023 * 93700 SALD S$BL ;SAVE IT

E 8D 03808 CPI @15 :CR?

¢ 23939 R7 : YES—DONE

D 24000 MOV AL :SBL,

FE 80 _ 04102 CPI 128 ;MAX IS DECIVMAL 128

DA @017 04202 Jc DRV3l ;GET NEXT CHAR

CD 0800 * 04300 CALL SERR

12 042400 DB IRECER ;INPUT RECORD TOO LONG

AF 34500 XRA A :CLEAR FLAGS

cY 04500 RET

33 0031 * 94708 DRV3FW: LDA SBL ;BUFFER LENGTH

B> 04807 ORA A

MAC80 1.0 PAGE 2
2946 C8 04929 RZ ;EMPTY BUFFER
Jod7 2A 0329 * 25600 LHLD $BF ;3UFFER_ADDRESS
gasA 3D 05100 DCR A ;DECREMENT LENGTH
€ud3 F5 35200 PUSH PSW ;SAVE IT
£24C 3E @D 05300 MVI A,13 iCR
0J4E CD 0929 05390 CALL S$fTyor :CUTPUT IT ~
L5l JE 05530 MOV A,M :GET FIRST CHAR IN BUFFER
€352 FE 23 35609 CPI '+ .
2054 CA @U79 35790 Jz DR3FW2 ;NO LINE FELDS
0us? FE 31 05800 CPI 17
¢d39 C2 0064 05930 JNZ, DR3FW1l ;NOT FORM FEED
025C 3E 0C 06302 MVI A,12 {FORM FEED
(OSE CD @04aR 26140 CALL S$ITYOT ;OUTRCT 1T
deoi C3 0079 £5267 Jup DRIFW2
cUc4 3B 0A 663306 DR3FWl: MVI A, 10 ;LF
0066 CD LOSP * 06140 CALL STTYOT
(1209 7R 36500 MOV A,M ;GET CHAR BACK
¢ioA FE 20 065600 CPI v
3060 CA (979 ¢ 0640 Jz DR3FW2 ;NO MORE LINE FEEDS
GAGF FE 39 36801 CPI LR
d071 C2 U9 06904 - JNZ DR3FW2 ;NO MORE LINE FEEDS
Go7y 3B 0h 075an MVT A, 10" ;LF
9376 CD 6967 * 37100 CALL STTYOT
0679 £1 97209 DR3FW2: POP PSW ;GET LENGTH BACK
GO7A 23 07308 T INX H ; INCREMENT PTR
0473 C3 37428 DRV32: Rz
207C F5 87500 PUSH PSW ;SAVE CHAR COUNT
JuTD 7B 27600 MOV A M ;GET NEXT CHAR
9375 23 07700 INX H ; INCREMENT PIR
0078 CD 8077 * 07290 CALL STTYOT ;OUTFJT CHAR
0982 Fl 87989 POP PSH ;GET COUAT
0283 3D 03950 DCR A ;DECREMENT IT
0034 C3 @e78 18109 JMP DRV32 ;ONE MORE TTAE
0687 05200 END
MAC8D 1.0 PAGE 3

$IOERR ©@l1* $3L g243* $BF @P48* $ERR_ 003D*

STTYIN QU18* STTYOT 0086* IRECER @912 DRV3 2000

DRV3FR 00913' DRV3FW ©342' DRV3BR ©0018' DRV334 0913°

DRV3RE @0BE' DRV3BA @40E' DRV3EN 0QPE' DRV31l 317"

DR3FW2 0079' DR3FWl 0864' DRV3Z @#978°

MACB802

0adl
aodl
geew
vetg
20230
gLav a3
9021 a0
g3
50103
2003
¢ 3 ,
bou3 J020
CLos
I 0091
ot
DL~ dubs
BocE9
e]
acd9
Ba69 goi7
apeR
9ee3
Joe3
0Yes
BG33 apee
@2¢D coer
JdF 599D
gull JO9F
013 a1l
3215
8015

MACB0Q

1.2

i

O WRINNINNN -
2 1R/ RDRWWNHER
oYUl

-

SRDAONASHRREEN
[

oot

* % % % F

SOEAMEAROSROONEESASNASNRLOOLODNAN SaREREERN

G 0 Lo Lo N3 1O NI BN NI RO NI N N N bt = et = b e et b e ot e bd et el
W GQINO 0 - INUTE W N = SIE O ~ I DA O OYUTU LI WIS\

SN EEEREREOOVIRIVOAQE TGRS

1.0 PAGE

DSK 2eal
LPTDRV QQ03*

[N

1
; COMMENT *
; DRIVER ADDRESSES FOR LUN'S 1 THROUGH 10
Lpr EQU 1 ;UNIT 2 IS LPT
D5% EQU 1 sUNITS 6-18 ARE DSK
DTC BQU ¢ :DTC COMMUNICATICHS UNIT 4
ENTRY LUNTB
EXT SDRV3
SLUNTB: DB 013 sMAX LUN + 1
DW SDRV3 ;THEY ALL POINT TO $ORV3 FOR KO
IFF LPT
D SDRYV3
ENDIF
IFT LPT
EXT LETDRY
D LPTDRY
ENDIF
DW SDRV3
IFF DTC
DW SDRV3
ENDIF
IFT DI
EXT SE%DRV
DW CMDRV
ENDIF
DW SDRV3
IFF DSK
DW DRV3
DW DRV3
DW DRV3
DW DPY3
DW SDRV3
ENDIF
1FT DSK
EXT DSKDRV
DW DSKDRV
DW DSKDRV
DW DSKDRV
DW DSKDRV
DW DSKDRV
ENDIF
END
2
DTC 0800 SLUNTB 0002"

DSKDRV 0013*

FORTRAN-80 Reference Manual Page 100
APPENDIX C

Subprogram Linkages

This appendix defines a normal subprogram call as generated
by the FORTRAN compiler. It 1is included to facilitate
linkeges between FORTRAN programs and those written in other
languages, such as 8080 Assembly.

A subbprogram reference with no parameters generates a simple
"CALL" instruction. The corresponding subprogram should
return via a simple "RET." (CALL and RET are 8080 opcodes -

see the assembly manual or 8080 reference manual for
explanations.)

A subprogram reference with parameters results in a somewhat
more complex calling sequsnce. Parameters are always rassed
by reference (i.e., the thing passed is actually the address
of the low byte of the actual argument). Therefore,
parameters always occupy two bytes each, regardless of type.

The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
1 will be in HL, 2 in DE (if present), and 3 in BC
(if present).

2. If the number of parameters is greater than 3, they
are passed as follows:

1. Parameter 1 in HL.
2. Parameter 2 in DE,

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte =f this
data block (i.e., to the low byte of p: :meter
3).

Note that, with this scheme, the subprogram must know how
many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. Neither the compiler nor
the runtime system checks for the correct number of
parameters. T

If the subprogram expects more than 3 parameters, and needs
to . transfer them to a local data area, there is a systen

FORTRAN-80 Reference Manual Page 101

subroutine which will perform this transfer. This argument
transfer routine 1is named $AT, and 1is «called with HL
pointing to the local data area, BC pointing to the third
parameter, and A containing the number of arguments to
transfer (i.e., the total number of arguments minus 2). The
subprogram is responsible for saving the first two
parameters before calling $AT. For example, if a subprogram
expects 5 parameters, it should look like:

SUBR: SHLD P1 ; SAVE PARAMETER 1
XCHG
SHLD P2 ; SAVE PARAMETER 2
MVI A,3 ;NO. OF PARAMETERS LEFT
LXI H,P3 ; POINTER TO LOCAL AREA
CALL $AT ; TRANSFER THE OTHER 3 PARAMETERS

[Body of subprogram]

RET ;sRETURN TO CALLER

P1: DS 2 ; SPACE FOR PARAMETER 1
P2: DS 2 ; SPACE FOR PARAMETER 2
P3: DS 6 ; SPACE FOR PARAMETERS 3-5

When accessing parameters in a subprogram, don't forget that
they are pointers to the actual arguments passed.

NOTE

It is entirely up to the
programmer to see to it that
the arguments in the <calling
program match in number, type,
and length with the parameters
expected by the subprogram.
This applies to FORTRAN
subprograms, as well as those
written in assembly language.

FORTRAN Functions (Section 9) return their values in
registers or memory depending upon the type. Logical
results are returned in (A), Integers in (HL), Reals 1in

memory at $AC, Double Precision in memory at $DAC. $AC and
$UAC are the addresses of the low bytes of the mantissas.

FORTRAN-80 Reference Manual Page 102

APPENDIX D

ASCII CHARACTER CODES

DECIMAL CIIAR. DECIMAL CHAR. DECIMAL CHAR.
000 NUL 043 + 086 Y/
001 SOH 044 R 087 W
002 STX 045 - 088 X
003 ETX 046 . 089 Y
004 EOT 047 / 090 Z
005 ENQ 048 0 091 [
0056 ACK 049 1 092 AN
007 BEL 050 2 093]
008 BS 051 3 094 A (or %)
009 HT 052 4 095 < (or <)
010 LF 053 5 096 '
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 SO 057 9 100 d
015 S1 058 : 101 e
016 DLE 059 H 102 £
017 DC1 060 < 103 g
018 DC2 061 = 104 h
019 DC3 062 > 105 i
020 DC4 063 ? 106 3j
021 NAK 064 @ 107 k
022 SYN 065 A 108 1
023 ETB 066 B 109 m
024 CAN 067 C 110 n
025 EM 068 D 111 o)
026 SUB 069 E 112 P
027 ESCAPE 070 F 113 q
028 FS 071 G 114 r
029 GS 072 H 115 S
030 RS 073 I 116 t
031 Us 074 J 117 u
032 SPACE 075 K 118 v
033 ! 076 L 119 W
034 " 077 M 120 X
035 # 078 N 121 Y
036 $ 079 0] 122 z
037 % 080 P 123 {
038 & 081 o) 124 |
039 ' 082 R 125 }
040 (083 S 126 ~
041) 084 T 127 DEL
042 * 085 U

LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout

FORTRAN-80 Reference Manual Page 103

APPENDIX E

DISK FILE ACCESS

FORTRAN-80 provides sequential disk file access via FORTRAN
programs. The CP/M and ISIS-II versions of FORTRAN-80 also
provide random disk accessing, i.e., a record may be
specified with a disk READ or WRITE,

Logical Unit Numbers 6-10 are preassigned to disk files. a
READ or WRITE to an LUN automatically OPENs the file for
input or output respectively, if it 1is not already open.
The file remains open until closed by an ENDFILE command cr
until normal program termination. A file that is OPENed by
a READ or WRITE statement has a default name that depends
upon the LUN and the operating system:

FCS: FORT06 .DAT, FORTO7 .DAT,..., FORT10.DAT

In each case the LUN ‘is incorporated into the default file
name.

For random disk access | , the record
number is specified by using the REC=n option in the READ or
WRITE statement. For example:

I =10
WRITE (6,20,REC=I,ERR=50) X, Y, 2

This program segment writes record 10 on LUN 6. If a
wraevicus record 10 exists, it is written over. If no record
10 exists, the file is extended to create one. Any attempt
to read a non-existent record results in an I/O error.

The record length of any file accessed randomly is assumed
to be 128 bytes (1 sector). Therefore, it is recommended
that any file you wish to read randomly be created via
FORTRAN (or Microsoft BASIC) random access statements.

Random access files may be created via FORTRAN programs, by
asing either binary or formatted WRITE statements. If the
WRITE statement does not cause enough data to be transferred
to fill the record (128 bytes), then the end of the record
is filled with zeros (NULL characters).

FORTRAN-80 Reference Manual Page 104

Alternatively, a file may be OPENed using the OPEN
subroutine, LUNs 1-5. may also be assigned to disk files
with OPEN. The OPEN subrutine allows the program to specify
a filename and device to be associated with a LUN, whereas

the default spec1f1es a default name and uses the' currently
selected disk drlve.:-ﬁ“ :

An OPEN of a non- ex15tent flle creates a null flle "of the
appropriate name. An OPEN of ‘an existing file followed by
an output deletes the existing flle. An OPEN of an existing

file followed by an input allows access to the current
contents of the file. . :

The form of an OPEN call under FCS is:
CALL OPEN (LUN, Filehame)
where: R
LUN = a Logical Unit Number to be associated with the. file

(must be an Integer constant or Integer variable with a
value between 1 and 10).

Filename = an ASCII name which the operating system will
associate with the file. The Filename should be a Hollerith

FORTRAN-80 Reference Manual Page 105

or Literal constant, or a variable or array name where the
variable or array contains < the ASCII name. The Filename
should be in the form normally required by FCS, i.e., an

optional device name : , followed by a name of up
to 6 characters, a period, an extension of up to 3
characters, and a space (or other non-alphanumeric
character). The Filename must be terminated by a

non-alphanumeric character.

The following are examples of valid OPEM calls under
FCS:

CALL OPEN (6,'MD1:FOO.DAT ')
CALL CPEN (1,'DFO:TEST.DAT ')
CALL OPEN (10, 'FILE1.RND ')

The ENDFILE and REWIND commands allow further program
control of disk files. The form of the commands is:

ENDFILE L or REWIND L
where L is an LUN. ENDFILE L <closes the file associated

with LUN L. REWIND L closes the file associated with LUN L,
then opens it again. ‘

NOTE
Under FCS do not open more

than 1 disk file for output on
any device.

FORTRAN-80 Reference Manual Page 106

APPENDIX F

FORTRAN-80 Library Subroutines

The FORTRAN--80 library contains a number of subroutines that
may be referenced by the wuser from FORTRAN or assembly
programs. In the following descriptions, $AC refers to the
floating accumulator; $AC is the address of the low byte of
the mantissa. $AC+3 is the address of the exponent. $DAC
refers to the DOUBLE PRECISION accunulator; $DAC is the
address of the low byte of the mantissa. $DAC+7 1is the
address of the DOUBLE PRECISION exponent.

All arithmetic routines (addition, subtraction,
multiplication, division, exponentiation) adhere to the
following calling conventions.

1. Argument 1 is passed in the registers:
Integer in [HL] ‘
Real in $AC
Double in $DAC

2, Argument 2 is passed either in registers, or in
memory depending upon the type:

a. Integers are passed in [HL], or [DE] if
[HL] contains Argument 1,

b. Real and Double Precision values are
passed in memory pointed to by [HL].
([HL] points to the low byte of the
mantissa.)

FORTRAN-80 Reference Manual

The following
Library:

Function

Addition

Division

Exponentiation

Multiplication

Subtraction

arithmetic

Name

$AA
$AB
$AQ
$AR
$AU

$D9
$DA
$DB
$DQ
$DR
$DU

$E9
$EA
$EB
$EQ
$ER
$EU

$M9
$MA
$MB
$MQ
$MR
$MU

$sSA
$sSB
$SQ
$SR
$su

routines

are

Argument 1 Type

Page

contained in

107

the

Argument 2 Type

Real
Real
Double
Double
Double

Integer
Real
Real
Double
Double
Double

Integer
Real
Real
Double
Double
Double

Integer
Real
Real
Double
Double
Double

Real
Real
Double
Double
Double

Integer
Real
Integer
Real
Double

Integer
Integer
Real
Integer
Real
Double

Integer
Integer
Real
Integer
Real
Double

Integer
Integer
Real
Integer
Real
Double

Integer
Real
Integer
Real
Double

FORTRAN-80 Reference Manual Page 108
Additional Library - routines are provided for converting
between value types. Arguments are always passed to and
returned by these conversion routines in the appropriate

registers:
Logical in [A]
Integer in [HL]

Real in $AC

Double in $DAC
Name Function
$Ca Integer to Real
$CC Integer to Double
$CH Real to Integer
$CJI Real to Logical
$CK Real to Double
$CX Double to Integer
$CY Double to Real
$C2 Double to Logical

FORTRAN-80

Arithmetic
Arithmetic
Arithmetic
Array . .

Array Decla
Array Eleme
ASCII Chara
ASSIGN . .

Reference Manual

Expression
IF . . .
Operators

rator . .
nt « o o
cter Codes

Assigned GOTO

BACKSPACE . .
BLOCK DATA . .

CALL o« o o o
Character Set
Characteristic
Comment Line .
COMMON . « .« &
Computed GOTO
Constant . . .
Continuation .
CONTINUE . . .

Control Stateme

DATA

Data Representation

Data Storage
DECODE . . .
DIMENSION .
Disk Files .
DO
DO Implied

List

.

.

.
n

Double precision

Dummy

ENCODE
END
END Line . . .
ENDFILE o o o
EQUIVALENCE .
Executable . .
Expression . .
Extended Range
EXTERNAL . . .

External Functi

Field Descriptors

FORMAT
Formatted READ

(@)

S

S

INDEX

L[] L] L] L] L[] L] [] [] L[] L] L[] [] L[] L[] L] L] L] L[] . L[] L] * L] L]

47
49

25-26,

44, 47,
8 .
14,
56,
20

14,
102
44, 46
44-45

20,
77,

34-35,
87-88,

20, 27,

59 |
34, 37, 90, 94
44,
7
23
9
34, 37,
44-45
14-15
9, 12
44, 51
44

53, 90

39-41,

34,
14
21
59
20,
103
44,
61
14
89-91,

41, 87,

34, 37, 94

47-49

93

59

53,
11

59,

87, 90, 94
103

34, 39-41,
13, 34, 44
25-26, 31-32
50
34,
85

87,

37, 88, 91

63

32,

89,

37-38,

39

87,

94

92-93

89

94

Page 109

40-41,

’ 94

55-57, 63, 67, 69-73, 75-78

54

Formatted WRITE . . « « o« o o 57
FUNCTION 3 . 3 3 . 34, 37' 80' 86—93

GOTO . . L] . . L] . [. . L]]] 44' 49

HexadeCimal e o o © e ® o o o 8' 21, 31’ 42
HOllerith . . ° . . . ° o o ° 9’ 15, 20"'21, 31' 42] 56'

69-70, 88
I/O & o o o o o o o o o o o« o« 54, 98
I/O LisSt v o« 4 o o o o« o o o« o 60
IF & 6 6 ¢ o o o o o o o o o o 44, 47
INdeX .+ ¢ o o o o o o o o « o 49
Initlal Line e e e o o e e o o 11
INP e o o o e o o e o o o o o 83
Integer .« ¢ ¢ o« o o o o o o o 14, 19, 23
Intrinsic Functions . . . « « 84
Label . ¢ ¢ ¢ ¢ o o o o o o « 9, 12, 44-45, 48
Library Function . . . « « . . 80, 82
Library Subroutines . . . « o 106
Line Format . « ¢« « « « « o o« 9
List Item . . « o« o« o o« « « o 60
Literal . ¢ & ¢ ¢ ¢ o o« o« o « 9, 20-21, 31, 42, 70, 88
Logical =« ¢ o o o« o o o o & o 14, 19, 23, 71
Logical Expression . « . « « o 27, 30, 48
Logical IF o« o « « « o o« o« o« o 44, 47, 49
Logical Operator . « « « o« o« o« 28
Logical Unit Number« « 54, 58, 98, 103
LUN . ¢ ¢ ¢ o o« o o« o« o« o« o« o« 54, 58, 98, 103

MantisSsa . « o o o o o o o o o 23

Nested) L] L] L] L] [] L] * . L] L] L] 51
Non-executable . . « + « « « o 13, 34

Numeric Conversions . . « « . 64

OPEN L] L] L] L] * L] [] [] L] L] [] L] * 10 3

Operand . « « « o« o o o o o o 25
Operator « « o« « ¢« ¢ o« o o o « 25

OUT * L] * [] L] * * * L] [] * [] [] 83

PAUSE L)) L] L) .] - * . 0:. L] 44' 49’ 52_
PEEK * L] L] - L] [] [] [] . L] L] [] [] 83 .
POKE [] L] L] [] * L] L] L] * L] [] L] [] 83

pRC)GRAM 3 * [] * * L] [] L) L] ® [] 34 ’ 81 ' 90

Random Disk access 103
Range . . ¢ ¢ ¢ o o o o o« o « 49

READ . . o) . 3 3 3 . 56, 58’ 63, 72, 76—78

Real 4 v v o ¢« o o o« o o o o o 14, 19, 23

Relational Expression 27-28

Relational Operator 28

Replacement Statement 32, 48

RETURN . « . . ¢« « « « « « o« o 44, 49, 53, 87, 90-92
REWIND . ¢ o« o o o o« o o o« o« o 59

Rewind . ¢« ¢ ¢ ¢ ¢« ¢« o o o-o o« 105

Scale Factor . « ¢ « o o o o« o 12-73

Specification Statement . . . 34

Statement Function 34, 80-81

STOP . ¢ o« &« o o o« o« o« « « « - 44, 49, 52

Storage . . ¢ ¢« ¢ ¢ o o o o o 35

Storage Format . « « « « « o o 14

Storage Unit . . « « « &« « « o 21, 23, 39

Subprogram . . . « o « « o « o 37, 53, 80, 86-94, 100
SUBROUTINE . . « « « « « « « o 34, 37, 53, 80, 87-92
Subscript .« ¢« ¢ ¢ ¢ o o« o o o 20, 27

Subscript Expression o 21, 27

TYPE « o o s o o s o o o o o o 94
Type Statement « « « o 35

Unconditional GOTO . . « « « o 44
Unformatted I/JO . ¢« « « « « o 58

Variable . . . « ¢« « « « « « «» 14, 19, 32, 38, 88

WRITE &+ &+ & o o o o o o o o« o 57-58, 63, 72, 76-78

MICROSOET
FORTRAN -80

user’s manual

SECTION 1

1.1

—_ -
.
w N

SECTICN 2

Microsoft
FORTRAN=-80 User's Manual

CONTENTS

Compiling FORTRAN Prcgrams « o« « « o «

FORTRAN~-80 Cormand SCanneér « « « « « «
1.17.1 Format of Commands . . « . .« =
1.17.2 FORTRAN-80 Compiiation Switches
Sample Cocmpllaticon ¢ ¢ v o o o o o o
FORTRAN~8C Compiler Error Messages .

FORTRAN Runtime Error MessagesS « o« o« o

Page 4

FORTRAMN-

80 User's Manual o ‘ Page 5

SECTION 1

Compiling FORTRAN Programs

FORTRZN-80 Command Scanner ‘

To tell the FORTRAN comnller what to compile - and
Mlth which options, it 1is necessary to input a

"command string," which is read by the FORTRAN=-80
command scanncr. '

Format of Commands

To run FORTAN-80, type LUN F80 in respon.e to the
FCS> prompt, FORTRAN-80 . will return the prompt
F80> indicating that it 'is ready to accept
commands. The general format of a FORTRAN-8C
command string is: -

sfilel,...,sfileN TO ofiie

sfilel,...,sfileN

The FCS filenames of the FORTRAN-BO source files
to be compiled. The filenames may specify device
and version. The default type is .FOR .

ofile -

The FCS filename of the FORTRAN-80 object file.
The default type is .REL . If no object file is
specified, then the default object filename is the
same as sfilel with .REL for the type.

Listing options are specified by appending a
switch to the command string. The following
listing options are available:

-T Listing displayed on the console
-L Listing printedkon the printer
-LS Listing saved in sfilel.LST

In all cases the error messages are displayed on
the console. If both an object file and listing
file are requested, the listing file 1is directec
to the other disk unit with the same device type,
i.e., if the .REL file is sent to FDl:, the .LST
file is sent to FDO:

FORTRAN-80 User's Manueal

Page 6

If no object file is desired, do not specify the
'TO0 ofile' in the command. Instead, add a =N
switch to the command to suppress the creation of
the object file.

Examples:

F80>TEST Compile TEST.FOR and place
the object in TEST.REL.

F80>TEST-T-N Compile TEST.FOR and list the
program on the console. No
object is generated.

F80>TEST-L Compile TEST.FOR giving
TEST.REL and list program on
the printer.

F80>TEST-N Compile TEST. FOR without
producing an object file or
listing.

FORTRAN-80 Compilation Switches

A number of different switches may be given in the
command string that will affect the format of the
listing file. Each switch should be preceded by a
slash (/) :

Switch Action

0] Print all listing addresses, etc. 1in
octal.

A List generated object code.

S » Each /S allocates an extra 200 bytes
of stack space for use during
compilation. Use /S if stack
overflow errors occur during

comnpilation; otherwise, not needed.

M Specifies to the compiler that the
generated code should be in a form
which can be loaded into ROMs. When
a /M is specified, the generated code
will differ from normal in the
following ways:

1. FORMATs will be placed in the
program area, with a "JMP" around

them.
2. Parameter blocks (for calls with
more than 3 parameters) will be

initialized at runtime, rather than
being initialized by the loader.

FORTRAN-80 User's Manual » SRR Page 7

Examples:

F80>MYPROG T Complle MYPROG FOR giving MYPROG.REL

and list the program on the console.

F80>TEST—L/A Complle TEST FOR giving TEST.REL and

list. the program with the generated
code on the’ prlnter.

F80>BIGONE/S Allocate 200 bytes of extra stack

space for compilation of BIGONE.FOR
into BIGONE.REL ',

NOTE

If a FORTPAN program is intended for 'ROM,

the

programmer should be aware of the

following ramlflcatlons.

1.

DATA sbatements should not be used to
initialize RAM. ~ Such initialization is
done by the loader, and will therefcre
not be present at: execut¢on. Variables
and arrays may be - initialized during
execution via assignment statements, or
by READing into them.

FORMATs should not be read into during
execution.

If the standard 1library I/0 routines
are used, DISK £files should not be
OPENed on any LUNs other than o, 7, 8,
9, 10. If other LUNs are needed for
Disk I/0, SLUNT3 should Lo racompiled
with the apprcoriate addresses pointing
to the Disk driver routine.

A library routine, $INIT, sets the stack
pointer at the top of available memcrv (as
indicated by the operating system) becfore
execution begins.

FORTRAN-80 User's Manual Page 8

The calling convention is:

LXI B,<return address>
JMP $INIT

If the gererated code is intended for some
other machine, this routine should probably
be rewritten. The source of the standard
initialize routine is provided on the disk
as "INIT.MAC". Only the portion of this
routine wiiich sets up the stack pointer
should ever be modified by the wuser. The
FORTRAN library already centains th

standard iritialize routine.

(1

W

FORTRAN-80 User's Manual

1.2

A>F80

Page 9

Sample Compilation

*EXAMPL,TTY : =EXAMPL

FORTRAN-80 Ver.

00100
00230
00300
00400

kkk x¥*
x kk ok k

00500
00600

hkkkk
%k k & %
00700
kok ok ko
*kokk ok
ok ok kK
* % k &k
* % Kk kK
* %k K %
00800
*ok Kk kK
%k ok Kk *
* ok k% %
* ok ok x %
* %k k Kk
* &k %k
00900
* ok ok kK
* ok kK Kk
* ok on ok
* & k% ok
* %k * K
* K ok kK
* ok ok Kk
* % kK ok
* %k Kk k&
01000
*k kK Kk
* ok k &k
* ok ok k&

0000"
0003'
C

cooe!
0009

ooocC'
000F'
0012"
0015"
0018"
001B'
1

001E"

0021'

0024"
0027!
0029’
oozc!
10

002F"
0032!
0035"
0038"
0039"
003B'
003cC!
003E'
003F"

0042"
0045"
0047'

3.0 Copyright 1978 (C) By Microsoft - Bvtes: 4524
PROGRAM EXAMPLE

INTEGER X

I = 2**8 + 2**9 + 2**10
po 1 J=1,5

LXI H,0700

SHLD I

CIRCULAR SHIFT I LEFT 3 BITS =-- RESULT IN X
CALL CSL3(I,X)

LXI H,0001

SHI.D J

WRI1ITE(3,10) I,X

LXI D,X

LXI H,I

CALL CSL3

LyI D,10L

LXI H,I 03 00]
CALL $W2

I=X

LXI B,X

LXI D,I

LXI H, [01 001}
MVI A,03

CALL $10

CALL $ND

FORMAT (2I15)

LHL X

SHLD I

LHLD J

INX H

MV I A,05

SUB L

MVI A,00

SBR H

JP 0009"

END

CALL $EX

0100

0300

Program Unit Length=0049 (73) Bytes
Data Area Length=000D (13) Bvtes

Subroutines Referenced:

$10
$ND

CSL3 $W2
$EX

FORTRAN-80 User's Manual Page 10

Variables:

X o001 I ooo3" J ooos5"
LABELS:

1L 002F! 10L ooo7"

*AQC

A>

See Section 1.6 of the Microsoft Utility Software Manual for
a listing of the MACRO-80 subroutine CSL3.

FORTRAN-80 User's Manual Page 11

1.3 FORTRAN Compiler Error Messages

The FORTRAN-80 Compiler detects two kinds of
errors: Warnings and Fatal Errors. When a Warning
is issued, compilation continues with the next item
on the source line. When a Fatal Error is found,
the compiler ignores the rest of the logical line,
including any continuation. lines. Warning messaages
are preceded by percent signs: (%), and Fatal Errors
by question marks (?). . The editor line number, it
any, or the physical line number is printed next,
It is followed by the error code or error messagc.

Example:

?Line 25: Mismatched Parentheses

$Line 16: Missing Integer Variable

When either type of error‘ occurs, the progran
should be changed so that it compiles without
errors. No guarantee is made that a program that
compiles with errors will execute sensibly.

Fatal Errors:

Error
Number Message

100 Illegal Statement Nuﬁbér

101 Statement Unrecognizable or Misspelled
102 Illegal Statement Completlon

103 Illegal DO Nesting -

104 Illegal Data Constant

105 Missing Name o

106 Illegal Procedure Name :
107 Invalid DATA Constant or Repeat T"actor
108 Incorrect Number of DATA Constants

109 Incorrect Integer Constant

110 Invalid Statement Number

111 Not a Variable. Name. ‘

112 Illegal Logical Form Onerator

113 Data Pool Overflow ' -~

114 Literal String Too Large

115 Invalid Data List’ Element in I/O

116 Unbalanced DO Nest

117 Identifier Too Long

118 Illegal Operator mﬁn

119 Mismatched Parenthesis

120 Consecutive Operators

121 Improper Subscript Swvntax

122 Illegal Integer Quantity

123 Illegal Hollerith ‘Construction

124 Backwards DO reference

125 Illegal Statement Function Name

FORTRAN-80 User's Manual Page 12

126 Illegal Character for Syntax

127 Statement Out of Sequence

128 Missing Integer Quantity

129 Invalid Logical Operator :

130 Illegal Item Following INTEGER or REAL or
LOGICAL .

131 Premature End Of File on Input Device

132 Illegal Mixed Mode Operation

133 Function Call with No Parameters

134 Stack Overflow

135 Illegal Statement Following Logical IF

Warnings:

0 Duplicate Statement Label

1 Illegal DO Termination

2 Block Name = DProcedure Name

3 Array Name Misuse

4 COMMON Narme Usage

5 Wrong Number of Subscripts

6 Array Multiply EQUIVALENCEd within a Group

7 Multiple EQUIVALENCE of COMMON

8 COMMON Base Lowered

9 Non~COMMON Variable in BLOCK DATA

10 Empty List for Unformatted WRITE

11 Non-Integer Expressicn

12 Operand Mode Not Compatible with Oberator

13 Mixing of Operand Modes Not Allcwed

14 Missing Integer Variable

15 Missing Statement Number on FORMAT

16 Zero Repeat Factor

17 Zero Format Value

18 Format Nest Too Deep

19 Statement Number Not FORMAT Associated

20 Invalid Statement Number Usage

21 No Path to this Statement

22 Missing Do Termination

23 Code Output in BLOCK DATA

24 Undefined Labels Have Occurred

25 RETURN in a Main Program

26 STATUS Error on READ

27 Invalid Operand Usage

28 Function with no Parameter

29 Hex Constant Overflow

30 Division by Zero

32 Array Name Expected

33 Illegal Argument to ENCODE/DECODE

FORTRAN-80 User's Manual Page 13

Code

SECTION 2

FORTRAN Runtime Error Messages

Meaning

Warning Errors:

IB
TL
OB
DE

IS
BE
IN
ov
CN

SN
A2
I0
BI
RC

Input Buffer Limit Exceeded

Too Many Left Parentheses in FORMAT
Output Buffer Limit Exceeded
Decimal Exponent Overflow

(Number in input stream had

an exponent larger than 99)

Integer Size Too Large

Binary Exponent Overflow

Input Record Too Long

Arithmetic Overflow

Conversion Overflow

on REAL to INTEGER Conversiocn
Argument to SIN Too Large

Both Arguments of ATAN2 are 0
Illegal I/O Operation

Buffer Size Exceeded During Binary I/0
Negative Repeat Count in FORMAT

Fatal Errors:

ID
FO
MP
FW
IT
ML
D7
LG

SQ
DT

EF

Illegal FORMAT Descriptor

FORMAT Fielc Width is Zero

Missing Period in FORMAT

FORMAT Field Width is Too Small

I1/0 Transmission Error

Missing Left Parenthesis in FORMAT
Division by Zero, REAL or INTEGER
Illegal Argument to LOG Function
(Negative or Zero)

Illegal Argument to SQRT Function (Negative)
Data Type Does Not Agree With FORMAT
Specification

EOF Encountered on READ

Runtime errors are surrounded by asterisks as follows:

FW
Fatal errcors cause execution to cease (control 1is
returned to the operating system). Executio:.

continues after a warning error. However, after 20
warnings, execution ceases. '

Section 2 LINK-80 Linking Loader Fo FORTRAN L MAcRo ASCEMBIER

Section Page
2.1 Format of LINK-80 Commands 35
2.1.1 LINK-80 Command Strings 35

2.1.2 LINK-80 Switches 36

2.2 Sample Link 38
2.3 Format of LINK Compatible Object Files 38
2.4 LINK-80 Error Messages 40

2.5 Program Break Information 42

Pt}ﬂ 1

SECTION 2

LINK-80 Linking Loader

2.1 Format of LINK-80 Commands

2.1.1 LINK-80 Command Strings

To run LINK-80, type RUN L80 in response to the
FCS> prompt. LINK-80 will return with the prompt
L80> indicating that it is ready to accept
commands. Each command to LINK-80 consists of a

string of filenames and switches separated by
commas :

objdevi:filename.ext/switchl,objdev2:filename.ext,...

If the input device for a file 1s omitted, the
default is the currently: logged disk. If the
extension of a file 1is omitted, the default is
.REL. After each line is typed, LINK will load or
search (sce /S below) the specified files. After
LINK finishes this process, it will 1list all
symbols that remained undefined followed by an
asterisk. '

Example:

*MATN »

DATA 0100 ‘0200

SUBR1* (SUBR1 is undefined)
DATA 0100 ~ 0300 -

*SUBR1 , :
*/G (Starts Execution - see below)

Typically, to execute a FORTRAN and/or COBOL
program and subroutines, the user types the list of
filernames followed by /G (begin execution). Before
execution beagins, LINK-80 will always search the
system library (FORLIB.REL or COBLIB.REL) to
satisfy any unresolved external references. If the
user wishes to first search libraries of his own,
he should append the filenames that are followed Ly
/S to the end of the loader command string.

2.1.2

LINK-80 Switches

9&3e.34

A number of switches may be given in the LINK-80

ccmmand string
loading process.

to specify actions affecting the
LEach switch must be preceded by a

slash (/). These switches are:

§yitch

R

E or E:Nzame

G or G:Name

Action

Reset. Put loader back in its

initial state. Use /R if vou
loaded the wrcng £ile by mistake
and . want to restart. /F. takes

effect-as soon as it is encounteraed
in a command string.

Exit LINK-80 and return to the

Cperating Systern, The cvstem
library will be searched on the
cuxrent = disk to satisfv any
existing uncefined globals. The

opticnal form L:Name (vnere Nama ig¢
a globkal svmbeol previously doiined
in one of the mcdules) uses Nane
for the start address of the
program. Use /E to load a progran
and 'exit back to the monitor.

fl

-

5y
D

Start execution of the prociam as
soon as the current command line
has been interpreted. The systenm
library will .be searched on the
current . - disk to satisfy any
existing undefined globals if thay
exist. . Before execution actusaily
begins, LINK=-80 prints hree
numbers . “and & REGIN EXECUTION
message. = The three numbers ar: tha
start address, the address cf the
next available byte, and the numher
of 256-byie pages . used. The
optional form G:Name (where Name is
a global symbol previcus.y deiinec
in one of the. modules) uses
for . the start address of
program. . - - '

N:Name If /N:file is specified, the progranm
will be "saved 'on disk -under the
selected name with a default type of
.PRG when a /E is done.

P and D

/P and /D allow the origin(s) to ke
set for the next program loaded.
/P and /D take effect when scen
(not deferred), and they have no
effect on programs already lcaded.
The form ' is /P:<addraess> or
/D:<address>, where <address> 1is
the desired origirn in the current
typeout radix. {(Default radix for
non-MITS versions is hex. /O sets
radix to octal; /JH to hex.)
LINK-80 does a defzult /P:<link
origin>+3 (i.e., 103H for CP/!1 and
4003H for ISIS) to leave room Icor
the jump to the start address.

NOTE: Do not use /P coxr /D to load
programs or data into the locations
of the loader's jurp to the start
address (100i to 1024 for C¥M and
2800H to Zz 2! for DTC), uniiss it
is to load the start of the progjram
there. If programs or data are
loaded into ithese 1locations, the
jump will not' be generated.

If no /D is given, data areas are
loaded beifore program arcas for
each module. If a /D is given, 211
Data and Comron areas are loaded
starting at the data origin and the
program area at the program origin.
Example:

*/P:200,F00

Data 200 300
* /R :

*/P:200 /D:400,F00
Data 400 480
Program 200 = 280

List the origin and end of the pro-
gram and data area and all
undefined globals as soon as the

current command line has been
interprected. The prouram informa-
tion is only printed iZ a /D has

been done. Otherwise, the snrogrem
is stored in the data area.

List the origin ard end of the pro-
gram and data -area, ail definecd
globals and their values, and all
undefined globals followed by an
asterisk. The program information

Paab 37

Examplecs:

* /M

*MYPROG, SUBRCT

*/G

Sample L

ink

FCS>RUN -L80
L80 >EXAMPL, EXMPLl/G

DATA
[30as

3020
3080

is only printed if a /D

done. . Otherwise, th:s

stored in the data area.

Search the filename immediately

precading the /S in

strinag ,to satisfy auy

globals..

List all globals

MYLIB/S -

"Load MYDPROG.REL and SUBRG

then sexrch MYLIR, L to

Ba JJ“ cwccutlJ“ of main gro

BOAC
dy]

[BEGIN EXECUIION]

179
1433

2 14336
6 . =16383

-16383 o 14

FCS>

Format: of

1
11

PRGN

PR

4 2
2 T 896

B an>1t1ble Oh-ort Files

Section

whi

relocatable ﬁbj@df”t‘los~

want 1

cont

of

wish

0 0
Ain.
he

. NOTE

satisiv
any remaining undefinad globals.

T.REL an”

the

comman
undcdeilliva

)

\Q

RIS

2.3 is re‘erﬁnco material for uscrs
to know the load: f,*.vt of LINV-30

sizid this. f“cﬁ:-;, as iz
r’t“'lal,no”gs& 1y L0 the

y‘\. \x..\g

LINK-compatible object files consist

styrcam.,

are not alicned on byte bdundaries, cxcopt as
of a bit.streamn tor relocacabl

below.,

In

Use

files Xcoos

thereby

decrc

dividual -"fields withir th

3

the size of obiect filos to a

avlnq thg numbcr of disk r

tage 39

There are two basic types of load items: Absolute
and Relocatable. The first bit of an item
indicates one of these two types. If the first bit
is a 0, the following. 8 . bits are loaded as an
absolute kvte. If the first bit is a 1, the next 2
bits are used to indicate one of four types of
relocatable items: .

00 Special LINK item (see below).

01 Program Relative. Load the following 16
bits after addlng the current Program
base. .

10 Data Relative.}fLeadfthe following 16
bits after adding the current Data base.

11 Common Relatlve.b Load the following 16

. bits after addlng the current Common

base.

Special LINK 1tems con31st of +he bit stream 100
followed by: EIE R .

a four—blt control fleld

an optlonal A fleld con51st1ng
of a two-bit address type that
is the same as the two-bit field
above except 00 spec1f1e5‘
absolute address B

an optional B. fleld conSLStlng

. of 3 bits that give a symbol
“'length and up to 8- bits for

- each character of the symbol '

A general representatlon of a spec1al LINK 1tem is:

1 00 xxxx Yy zzz + characters of symbol name
A field ~ - B.field

XXXX Four-bit control field (0-15 below)

vy Two-bit address tyre field

222 Three-bit symbol length field

The following special types have a B-field only:

Entry symbol (name for search)
Select COMMON block

Program name

Reserved for future expan51on

WHN =0

2.4

: - ?@3@ Ao

4 Reserved for future expansion

The following special LINK items have both an A
field and a B field:

5 Define COMMON size

6 Chain external (A is head of address chain,
B 1s name , of external symbol)

7 Define entry pcint (A is address, B is name)

8 Reserved for future expansion

The follow1ng spec1al LINK 1tems have an A field
only: ,

9 External + offset. The A value will
be added to the two bytes starting
at. the current location counter
immediately before execution.

10 Define size of Data are: (A is size)
11 Set loading lccation cou. ter to A
12 .Chain addresss A is head of chain,

replace ali entries in chain with current
locaticn counter.
The last entry in the chain has an
address field of absolute zero.

13 Dcfine program size (A is size)

14 End program (forces to byte boundary)

The following upeCLal Llnk item has neither an A ncr
a B field:

15 End file

LINK-20 Error Messadges

LINK-80 has the following error messages:

?No Start Address A /G switch was issued,
: - . but no main program
" had been loaded.

?Loading Error . The last file given for input
was not a properly formatted
'LINK=-8) object file.

20ut of Memory NOt enough memory tc lcad
' program, ‘
7Cormmand Errer ' Unrecognizable LINK-80
- command.,
?<file> Not Found .<file>, as given in the command

string, did not exist.

Page 4

%$2nd CCMMON Larger /XXXXXX/
The first definition of
COMMON block /XXXXXX/ was not
the largest definition. Re-
order module loading sequence
or change COMMON block
definitions.

¥Mult. Def. Global YYYYYY
More than one definition for
the global (internal) symbol
YYYYYY was encountered during
the loading process.

g2Overlaying [Program] Area
Data
A /D or /P will cause already
loaded data to be destroyed.

?Intersecting [Progran} Area
Data

The program and data area
intersect and an address or
external chain entryv is in
this intersection. The
final value cannot be con-
verted to a current value
since it is in the area
intersection.

?Start Symbol - <name> -~ Undefined
: After a /E: or /G: is given,
the symbol specified was not
defined.

Origin [Above] Loader Memory,.Move Anyway (Y or N)?
Below e

After a /E or /G was given,
either the data or program
area has an origin or top
which lies outside loader
memory {i.e., loader origin
to top of memory). If a
Y <cr> is given, LINK-80
will move the area and con-
tinue. 'If anything elise 1is
given, LINK-80 will exit.
In either case, if a /N was
given, the image will already
have been saved.

?Can't Save Object File
A disk error occurred when
the file was being saved.

2.5

Paze 4

Program Break Information

LINK-80
location
symbol

$MEMRY i

stores the address of the first free

in a global symbol called $MEMRY if that
has been defined by a program loadad.
s set to the top of the data area +i.

NOTE

If /D is given and the data origin is less

than
sure
prog
Fpart

FORTRAN-80 which wuses $MEMRY to alloc

igk

the program avrea, the user must ke
there 1is enough room to keep the

ram - from being destroyea. This
icularly true with the disk driver £
a

is
or
te
buffers and FCl's.

e

‘CRENTING A FORTAAN PROGRNAME

_FCSp NN EVTOR

PIEY PORD\ , POk

W Hdo sarts wador the 4rme some

ﬂ,,kwd&hu&lduw:z

F1 x.}

—tprin
L S fbe FoRGIOR Ao Ll

Pspqut o da K. - —
S a»w/m Aok«
| ERISE PNGE T obor seten:
! FCs > RN P80
 fowsve “conpdee [firlt AuiK - _
| FI0> PoROI N
PIO> Cokal C ,
i Pemave ‘Pw?ywé‘ ok - \
| Gaatt * Goeptlar | ol Lk B
PS> RN L3O
L20>/p: AF OO
Plmave. “comptler [fon” ke
Qe ':‘E,ml«M‘ daotts
L0> For.@!
N ~——— } frvdaess dofn o serem
Ramgre ﬁv#lm’M T
M“WIM/M'M fre_Progoas Aoy Oarge b
L30> EQ Lok by wormel mtleet .

D ——————

Al oyt
(]

Grgett scagmn EDVOR. A |
___ [FCSO M e\ ToR

_ lanayt Scrtan, Sdikoy dwi _ .
L ek propremmend duok . I
- PREY FORD\, FoR flldeuwb wador Hhe 4swe moms
) Mon L witl Leod othseowt

—G&MAMMWM p “c“‘““"i:,i Wﬁn‘

bet 6. . F1 by _ Sovir fbo Eorgi.oR. Ao, uelh

Rapget Sikgroasiont i & -

Yuaeit “Comptlar/fink.” dusk .

ERSE PNGE T oBor seraen
FCS >N P80

B E30> poRel

PIO> Cokik C
Remave &’W\ il :
FCS> N L3O -
L30>/P: NF6O
Pamave “crmptlon [l sk
Bt Fropramns” duts
L0> For.@!
- ~—— } Proddess Lot o 0
Perrrre “fYO,)WMN' A T
bart * Compllar/ Lok, *dusk- e Propows A3 lurge b
L30> EQ Lok by worwsl metleot .

- e Q. Meduese Aoko. pn fern

Rercrt “comptlor/ fun i dak .

M’WMM

130> /s For-0l /e

— = ——=) Jnducts ok o serten’

— e ———

——n ——3

LPCZ RN uB

WNhMug " o .
M“MPM' dsrk. e
e - Fes>> RUN FoRQl I
o - i e

e TMHE INTREER M) PUWNTNG POWT VNUES NP REAOW
R T 3 .- " = S PTG PONT

i ‘ 00
- ; e |
i o { 6-09 -
1 0-90
) L 1$~00
- ¥ B M 00
36 I VYL

o yoUwwg seed Mg ccll W FORTRAN STob

- . REL FILES (,45 USE0 By forkikAN [-80 u&’r);’ﬂocmpu) :
7/% ?ari;am/fw/&r marwal céaoﬂ/@,aé{ma/fag . REL {(,44
(reboeattlte oot ol) brudly Mot o guncloalamid Lhom pione ey
7258 jxa»«fz/d,w g,om/%d /l//é /{o((&ww\? /\ﬂ;‘%&m a /fp& N s
(RAMN.RzL) conTiramg mv§ one /h’?’?rﬂ/m (RAM) & conld M crea el
Mg a /,vmrm;zs{‘, &’/7‘,44 Htﬁé(éﬂ — /1 ¢FH 9 gaved tFiny ~CS

SAVE RAM.REL $P9P 11 $IpP ReP
/fﬁ /ww,m a KEL /(fvé arc glored zo a/ﬂ?(,ﬁt(af»/ /e ,%?f
/éyzwcéuiu M/(W/ sxcceft et glaf s pnd % /hv7rtzo~o ng
RAN.REL 20 o oy nrfie) 2K /m?m-m RAN woold (oK Aite —

| & | v+ | 90 | 53 | A | 3¢
10000100 11010100 |001©000 01010011 19100000 0011010/ ¢l
A v O N 758, Lo
Mo £, No. Q‘ :
of a/f/ﬁé'ﬂna(//u/m»é//éw/‘/éf{c
I - T B B S B L
QOO0® 10l @OIIIOID Ol Oooo OO OO0 LV, [OO(]I O
o et — ey . el
No iy 1540 Ao s

(&no) (éoF)

FHLER Jo ByTE Bounopty
. [»5 a»w% /yﬂ?{ﬂ’/ﬁ\ iv&o/ﬁ/{(//éad,‘“/g@%/&} A wold glat
tore_th GE (£0F) iy Aoca bl ~ Mo 95 EOF) /z/amm/r‘/aéw
o, A, ona /@t Nptremelary.

% gou. anrc /{mlf‘ﬁ 7:1/\ a coa/w‘-? /Zzo /n»?/a.m/ e cotdf /ﬁ,»l/
/(;lff /ﬂ;ucﬁn A7~ / %06/&9/“' AlAme, /:’/w’:ty S Jr18oL, ﬂﬂrﬁ Sasr 926,
[RoGRA SIZE PROKARA | DATA, EXTERNAL SymdOLs, DEFiniiton 0F
Eniky Ponismamé, Emd | Mol Haf gorme clala arco, comgcrlond
Lo }MW} //o{(ow/z{ Myrnm A2 gn A plecockit . FRE
/{N?ra/)« R Aala //%ﬂw(/d A DA ALY 6’/ZJ¢;5ZT¢J/9
/}NCu[é/f/é /470?1/% A /ﬁ(JIRE /»fv?ra«— /f/dlf aéo/a//
ﬁ{ COARET DATA BRSE Qddyo ,%,, /& /z/,, /ﬁ,yf DA AR Gcldreso
"/ﬁz CURRSMT PrOcLA BASE aulilriso W A P %04 JROCAAM AR

acltree e

R

FORTRAN-80 Ver. 3.44 Copyright 1976-1981 (C) By Microsoft

Created: 10-Dec—-81

1 FROGRAM
0o 1 1=1,100
A=RAN(1.0)

1 WRITE(2,101) A

101 FORMAT(1X,F20.18)

CLWNERE N

EENT

LP35920298099517820
~A96393710374832150
302433401 346206670
309691 292047500610
A 726209938526153560
L 122689582407474520
LB84744461 43627166750
- 290751188993453980
L 3285684287548065920
LOR74341460318737328
L 1L A63LP359540939330
L 1134903803467 73050
24316960341 054679930
~A5H3304439783096310
- 3346887351703567500
SAFILIZ6270294189450
LAVH711673498103690
WGH1T789367158944090
«6065065264470184330
4708471 756B36563110
LH303476956B2525630
CBO34AL9286689758300
L7O5748620033264160
SATF2EB3Y89191055300
-540884554386138%20
-118236698210239410
-B75186800956726070
L7PE3876BH289196860
L070225078165331158
C353524476289749150
~8463592670162200930
CHH14600217819213870
LAL7007893323898320
2116311408579349520
SB1628B7836756896970
- 23B754004240036010
L0P7436428070068360

L2T766BEYVE221D42360

-.285148990134266360
LO18E23013219237328
L6635752916336039260
~040373716503381729
LBE7UP9H06513977050
«S603BEATT7T7HA58B7400
-876200854778289790
- 340892106E94631960
-299435544013977050
SF07714736461639400
S293688167123794560
76931 494474411G110
~2842117249946566770
LOYBLHTEI23195648190
2552061021327972410
~098Z6B0165069747 998
3118397770867 §
L@ ASPH0TARAS 4005 40

TSTRAN

I RANVOM NI C i i o

FIR FoKTRA~N
RAN - REL

4
]
-
=

P Ry -
I I A I A
[xx]

Do FHEIE -~ F4L 6T

Y
AR
BECUY

T 0
P A0 s

LR B R IN

3 Ge

=
1

L

AR Y]

RTINS L RN Do S ARETINE €00 K VNS LI

LA

[
g
DO I

Az 48
: =
5) (5|
AZS QG
(5 Y G
AE4S 2
FESE @
qASE SE
(]

)

=

¢

—
x)

1
a0

L2
L U o I

- -

!
S~
-

= =
1

151
LR

(RIS

i 1
i]
DO OmMM I I D
DI e N}

-
Dl

DR Rk
AR

]
3

<)

e
XX
&

.,_
=

=
ol i

[N B

I s L LS TS TR L T U L L RS LR A s & I i e & et}

T 05

= [l

DT T M m

T [n]
Tl

n = ﬂﬂﬂ (I(P)

L IVES NEAT I SEQVEN(&

fle RAN (‘P"’) ' MM‘“

REPENTS LAs]T 21192

A=~ RAN (~/-\P>

GIVEY FIRST im prEW
S WS &

KA~nGo~ ADS. ARE
Crvine AEinwer~r G L1

RAN. AAC

~.0121,01C6

0121 2=
0122 MOV
0123 L.XI
01326 NOF
0127 NOF
6128 CALL
O1L2B I-XI
O1L2E JM
0131 LXI

G134 FUSH
0135 CaAl.

0138 FOF
0139 LXI
013C RZ
0131 ADD
OLZE ANT
0140 HMVI
0142 MOV
0143 L.XI
0146 ADD
0147 ADD
0148 MOV
014% DA
O14A CALL
0140 LLUA
0150 INR
01%1 ANI
0153 MVl
015% CPI
0157 AlC
0158 "STA
015K LXI
O15E ADD
O1%F ADD
0160 MOV
0161 DAD
0162 CALL
0165 LXT
0168 MOV
0169 INX
OL6A MOV
016B INX
016C MOV
01460 INX
016E MOV
016F INX
0170 MOV

0171 ~0V
0172 XR1
0174 hOV
o1L75% nMVl
G177 DCX

0178 MOV
0179 HMVI
G17k 1LX1
017E INK
G17F MOV
0180 SUI
0182 UNZ
0185 MOV
0186 INR
G187 ULCRKR

I T
C,D -
B,007F T”

aassmamar——s:

0420
H,0127
0193 fh<
H,0121

FSW

0420

FSW

H,0127

M

o7
R,00
MyA
H,019R
A

A

C,6h

B

0242
0126

A

03
E,Q0
01

2]

0126
Hy,01R7
A

A .

CyA

R

0LCn
H,0720
iy

I

n,M

H

C,M

H

B,M

H
A,k
E,C

4F

C,A
",80

H

k,M
M,80
H,0125
l

A, M

AR
0189
My, A

C

It

Gy
o189
01L8C
0180
0190
0193
0194
Q199
0196
0197
0194
OL9R
G190
G1L9n
01A0
01Al
01LA2
G143
ClAL
G1La7
01 A8
CGLAY
0O1AA
OlAR
0O1AC
OlLAD
01 AE
Glar
01RO
01l
OLR2
o1LE3
OLE4
C1LES
O1LR8
O1LRY
OLER
O1EC
01BN
O1BIEE
O1EF
0100

T o1et

G112
01C3

ITN#
AL
XRA
LXT
JMi
MOY
NCX
MOV
e x
MOy
Jm
ICR
MOV
JZ
INRK
HILT
SBE
SHLI
SRR
LIAX
PP
MOV
GRR
MOW
IZZ- (\ '.' .
SRE
SRR
LLIaX
L. DAX
SER
SHERB
MOV
CMF
CALL
MOV
MVI
MOV
ORA
MOV
MOV
SRR
FOHL
SUR
MOV
9
FOF
MOV
MOV

B e
0329

A

H,0121

0411

My A o
H '
W

H

M, A ‘T
0LED

M
C,D

3999
E Onp4

R
B399
1]

]

[
k,A
J&
I, E
I
(
C

k

I

A

R
L
H
06948
My A
A, 78
oy I8
C
2, M
L,R
C

I
l.,C

10 M

4] A

