

About The cower Colorcue celebrat e ts second anniversary with
7= ==.= =72 T7=27e= = many readers for theirinterest and support.
L N 2
EDITOR'S LETTEFI

S I B afe B e asicii e e e 3
REM

SR WENIEBH 3
ADVANCED APPLICATION

SESETI L ETgUS0Z - 0art 7 3
REM

systems sottware xreference L. 6
REM

thecallfunction. 9
REM

<2y scratchpad memory locations 10
CORRECTIONS

nancdsnaxke modification 13

INTELLIGENT SYSTEMS ANNOUNCES:
The 3830 SERIBS ..ot 13

IT°'S GRAPHIC!

Dargraphs and scaler 13
ayered design 14
NEW PRODUCTS
COMP-U-WERIEEBI . o 19
color ink-jet printer. 16

NUTS AND BOLTS
compucolor bell 16

KEEPING IT SIMPLE
introduction to fortran 17

BOOK REVIEWS

problems for computer solution L 18

home computers can make yourich 19
USERS NEWS

Clubs L 19

COPPESPONAENES .« .ot 19

creativity abounds 19

history library o 19

Colorcue is published every other
month for users of the Compucolor |
personal computer and users of In-
tecolor computers by Intelligent
Systems Corp. Address all Colorcue
correspondence tao ISC, 225
Technology Park/Atlanta, Norcross,
Georgia, 30092. Subscriptions to
Colorcue are $12.00 per year in the
U.8., Canada, and Mexico; and
$24.00 elsewhere. ®1880 Com-
pucolor Corporation. All rights re-
served.

Contributing
to the success
of this issue:

Editor —
Susan Sheridan

Software & Hardware —
Gene Boughey
Knox Pannill
Myron Steffy
Heath Thompson
Bruce Williams

Art Direction —
Henry Wood

EDITOR'S LETTER

s DEC/JAN issue marks Colorcue’s second anniversary and we're proud of the progress
e started in 1978, it was little more than a corner-stapled handout that was mailed to the
s thenin existence. Now we're larger, more informative, and more widely read than we ever

==ry issue inaugurates a new Colorcue editor. Actually, it re-inaugurates a former editor — Susan

3 =7 you will remember her from those earliest issues of Colorcue. It seems that Susan just couldn’t

-5, =42, “rom Compucolor! She has returned to manage Marketing Communications for Intelligent Systems
ZT=T 27 =02 s very excited about being able to work on Colorcue again.

bl

.27 of tms progress that Colorcue has made is due to the tremendous efforts of Cathy Abramson. She helped

Srcue into a smooth publication that really serves the users’ needs. It was a big accomplishment and
=v2 Deen appreciated by users everywhere.

|
)

2w we are two! The editor's name is not the only change we've made in Colorcue. We've done a little
~2 ~content, form, and publication frequency as well. Now Colorcue will also be serving the Intecolor users.
“ootnoting our COMPUCOLOR Il programs with the changes necessary to make them run on Intecolor
we'll be accepting suggestions and contributions from our broadly-based group of Intecolor owners.

to expand Colorcue’s utility and help it reach even more users with commen interests.

™" O

~ or2=r to make Colorcue more responsive to your needs, we have moved the Publications Departmnient back
-72.s= where our staff will be right in the thick of things, working next to the people who have the answers. The
“ormation flow will help Colorcue get news to you more directly. In order to give us the time necessary for
care’L oroofreading and absolute deadlines, Colorcue will be published every other month. (There were no AUG/SEP

or CC7 WOV issues, and consequently everyone's subscription will be extended by two issues.)

irmly committed to supporting the Compucolor users through Colorcue. We think that the new changes
A2 w2 made In the magazine will help us do just that. We always welcome your ideas and suggestions. Address all
corresoondence to: Compucolor Corporation, 225 Technology Park/Atlanta, Norcross, GA 30092, ATTN: Susan

It's great to be back!! S:mm

REM

also wanted

Vany of you have seen the full page ‘WANTED' poster that Texas Instruments has been placing in the trade
gazines this month and last. Tl offers a reward for any software which they accept for marketing. Most of you
<now that we, too, offera reward for software which we buy from users. If you have a program or two that you would
lixe o submit for evaluation, send it to us, in Norcross, to the attention of Gene Boughey. If you wish, of course, we

g'adly sign a non-disclosure agreement. Prices paid for software vary greatly, from one-time flat fees to rayalty
ements. If you have written a program that's useful to you, it may be useful to others. Send it in and let us have

ADVANCED APPLICATION
assembly language — part 7
The assembly language programmer is frequently confronted with the problem of interfacing with the user. We

discussed such interface routines as Cl, LO and OSTR in the past; however, these routines do not always
y all of the requirements. In this article, we will look at a routine to get a line of user input.

The GLINE routine allows the user to enter and edit the input line until the line is terminated by a CR (carriage
return) or the input is aborted by a Control C. Upon termination, control is passed back to the calling routine with the
s indicated by the "Z" and 'C’ flags. If neither the ‘Z' nor the 'C' flag is set, then there is an input line of non-zero
gthin the input buffer and it is terminated with an end-of-line marker (OOH). If the ‘Z’ flagis set, then the input line
is of zera length and if the 'C’ flag is set, a Control C was encountered and the input was aborted.

The values passed to the GLINE routine are the address of the input buffer, the address of the prompt message
(containing an ‘erase line’ and ending with 239) and the length of the input buffer. The routine will allow the input of
Length-1 characters. This is done so that there will be a place for the end-of-line marker upon exit. When an attempt
is mace toinput any more than the allowed number of characters, they will be ignored and the bell will be rung. If any of
the additional character(s) is a command or a buffer control character such as ‘erase line', then it will be processed.
When sizing the input buffer, it is better to use a size small enough so that the length of the prompt plus the length of
the buffer does not exceed the length of a screen line. This can simplify screen maintenance.

ADVANCED APPLICATION . . . Cort.
3

ADVANCED APPLICATION co:

=/ows the processing of certain ‘'contral characters. It also allows only upper-case alpha
Z2n be made to allow both upper-case and lower-case alpha characters and even to
ZZs=IC upper-case. Itis best to use upper-case because FCS expects upper-case and the testing

the entire line is erased and the prompt is e-‘-
=xt. There are occasions that a prompt may be
nerated without exiting GLINE. One solution is :c ar
g routine. This allows the calling routine to regen
s to convert an ‘erase line’ into a series of bauhp ce
nd GLINE does not need the address of me pro mpt

l. This is acceptable if the prompt
b, several different routines. In
th

he line, set the 'Z’ flag and test
e prampt and then call GLINE
s.” This places the caontrol of the
thereby making our routine more

Jutine is listed below with some setup code as an example.

EQU 2 . CONTROL B
EQU 3 ; CONTROL C
EQU 7 ; BELL
EQU 10 . LINEFEED
4 EQU 11 . ERASE LINE
EQU 12 ;. FORMFEED
EQU 13 ; CARRIAGE RETURN
EQU o6 ;. BACKSPACE / CONTROL Z
EQU 27 . ESCAPE
EQU 127 . DELETE/ RUBQUT
V2. 79/V5. 79 VB.78 V8.79 V9.80
LO EQU 1E27H ; 3392H 17C8H 17CSH
OSTR EQU 1E58H ; 33F4H 1824aH 182AH
SETUP:
LXI H, BUFFER
LXI D.MSG0OO
MVI B, BUFLEN
CALL GLINE
Jz SETUP . NO LINE: TRY AGAIN
JC abort routine
rest of program
BUFFER: DS 108
MSGOO: DB 6,3,ERASLN, FILENAME>" 8, 2,239
BUFLEN EQU 50
i GLINE — Get a line from the user
; INPUTS: HL => BUFFER
; DE => PROMPT
; B =>BUFFER LENGTH
: QUTPUTS: HL => BUFFER
; A = LINE LENGTH
; STATUS: (z) - NO LUNE
; (c) — ABORT
; (NZ)(NC) — GOOD INPUT LINE
GLINE:
PUSH H . SAVE BUFFER ADDRESS
GLINO2:

SLUIN1O:

SLXO02:

PUsH
HCHS
CALL
HEA
=TA
== =
eop
PUSH
MOV
VI
CALL
(o=
JZ
CPI

JZ
CPI
JZ
CPI
Jz
CPI
Jz
CPI
Jz
CPI
JNC
CPI
JC
DCR
Jz
MOV
CALL
IND
JMP

INR
MV
CALL
JMP

MOV
CMP
JNC
CALL
JMP

CALL
JMP

POP
ORA
sTC
RET

MVI
POP
MOV
suB
RET

)

oOsTR

A
CHARIN
D

H

H

c.B

M, O

(]
CTRHLC
GLX
CR
GLX0O=z
BKSPC
GLINGCS

’

ERASLN ;

GLINOZ2
ESC
GLIN1O
DEL
GLINOS8
'Z'+1
GLINGC4a
GLINO4
Cc
GLINOS
M, A

LO

H
GLINGO4

[

A, BELL
LO
GLINOC4

A, C
B
GLINOZ2

BACKUP ;

GLINO4

(@]
GLINO4

H
A

M, 0

A, B
c

’

SAVE PROMPT ADDRESS

ISSUE PROMPT

FLUSH OUT PREVIOUS CHARACTER

SAVE BUFFER ADDRESS

COPY BUFFER SIZE

SET END OF LINE MARKER
READ FROM CONSOLE

ISIT CTRL C ?

YES, EXIT FOR CONSL INTERRUPT

ISITCR?

YES, GO PROCESS CR

IS IT BACKSPACE ?

YES, GO PROCESS BACKSFPACE

ERASE LINE ?
GO PROMPT AGAIN
ESCAPE ?

IGNORE NEXT CHARACTER

DELETE CHAR ?

SAME AS BACKSPACE

ITIS A'Z'OR LESS ?
IF NOT, BAD CHAR

IS IT 'SPACE’ OR GREATER 7

IF NOT, BAD CHAR

REMAINING BUFFER COUNTER
END OF BUFFER: JUMP

DISPLAY CHARACTER

NEXT CHAR

BACK UP COUNTER

RING BELL

BUFFER REMAINING

NO CHARACTERS: REPROMPT

BACKSPACE ONE

NEXT CHARACTER AFTER (ESC)

IGNORE

BUFFER ADDRESS
CLEAR 'ZERO' FLAG
SET ‘CARRY’ FLAG
CONSOLE INTERRUPT

INSERT TERMINATOR
BUFFER ADDRESS
BUFFER SIZE
LENGTH OF INPUT
END ‘GLINE’

ADVANCED APPLICATION . .

. Cont.

ACE ONE CHARACTER

BN H i BACKUPRP BUFFER POINTEES
! A BKSPC;, 'BACKSPACE’

e ; SPACE OVER LAST CHAR
A.BKSPC; ANOTHER '‘BACKSPACE:
f The sooroEct oF molementing the ‘erase ling’ as a series of ‘backspaces is desired, then the prompt must be

generstec svterne o GLINE and the following changes must be made.

PLISH H i SAVE BUFFER ADDRESS
XBRA A
STA CHARIN ; FLUSH OUT PREVIOUS CHARACTER
MOV C.B ; COPY BUFFER SIZE
CPRI ERASLN ;: ERASE LINE ?
Jz GLIN12 ; GO ERASE LINE
MOV AC ; BUFFER REMAINING
CMP B ; SAME AS BUFFER LENGTH ?
cCc BACKUP ; IF SHORTER, BACKSPACE
JMP GLINO4

GLINT2
MOV A,C i REMAINING BUFFER
CMP B ;. SAME AS BUFFER LENGTH ?
JNC GLINO4 ; YES: END OF BACKSPACING
CALL BACKUPR

JMP GLIN12

Gther changes such as allowing Control H as a ‘backspace’ can also be easily implemented.

In our next issue, we will begin the discussion of the FCS routines and the associated memory.

The following is the system software cross reference listing for the COMPUCOLOR II. The
REM listing is for those units with VB.78 system software. In the coming issues of Colorcue, we
will publish the listings for both Compucolor Il units with more recent software, as well as
Intecolor units. This will allow you to take better advantage of your machine's capabilities,
and will let you create programs that can be used by everyone, regardless of software
version. The companion scratchpad memory locations are found on page 10. Labels re-
ferencing RAM locations are denoted in bold print.

system software
x-reference

LABEL HEX LABEL HEX LABEL HEX LABEL HEX LABEL HEX

A70N 38E8 B70N 3A18 BASICI 0052 BCRSY 3A37 BLINK 393F
ACRTSP 0036 BA70F 3946 BASICW 0040 BEGEX 0038 BRAKE 3AB6
ADDU 2144 BARTX 3D5F BASOUT 0033 BEGIN 3768 BRATE 3A08
ADHLA 3518 BARTY 3D57 BAUD 0005 BEGOT 3A59 BRATX 3ABF
AESCTB 000oB BARTZ 3051 BCO1 35B2 BEL 3AC3 BREAK 0038
ANHD 351D BARXM 3C13 BC2BK 35A8 BFILL 8100 BRTRY 80EO
ASCPL 3DFB BARYM 3C42 BCCIX 3A05 BHLAD 81D4 BS01 35ED
AUCNT 81B3 BASEX 0055 BCHK 3292 BK2BC 35BA BS02 35F1

AUTOX 0058 BASFL 81F1 BCHK1 32BB BKCOL 3928 BS04 365F
B2HEX 33AA BASICE 0046 BCRSX 3A2A BLIND 3A08 BS10 237E

LABEL

BS1 1
BS12
BS13
B85BO1
BSBO8
BSTR
BUCNT
BUFP
BXLOP
8YLOP
CARET
CARR
CBC
CBC1
CBC2
CCl
CCIX
CDQ3
CDO04
CDHD
CDOK
CDMK
CDNM
CDNU
CDRSET
CDSEC
CEND1
CENTR
CHAIN
CHDEL
CHDLR
CHPLO
CHTIM
CKEND
CLOSE
CLSEQD
CLX
CMASK
CMPDH
CMPHD
CMT1
CMT2
CMTAB
CODE
CODER?
COLFL
COLOR
COLW
COMND
COMOF
COMON
COPOO
COPO1
CPLOX
CPYDV
CR

CR1
CR2
CR3
CR4
CRATE
CRC
CRC1
CRC2
CRCX
CRET
CRLF
CRSLT
CRSRT
CRSUP
CRSXY
CRSY
CRTO
CRT1
CRT2
CRT3
CRT4
CRT5
CRTB
CRTCHI
CRTMO
CRTMSG
CRTR
CRTRAM
CRTRY
CRTSET
CRTUBE

HEX

2388
238D
2368
36C7
3652
33E9S
81B4
8047
3C30
3CB7
000D
3B4E
30F5
3108
3127
3A08
3A01

2215
2219
211C
36895
002E
3691

3683
218B
3654
2AA5
2A8E
3A08
00CE
2EFC
38FD
001C
26E7
2F26
3136
2858
81E0
3453
344D
2AB4
2ABF
257A
3996
38A2
81E6
3807
382C
0004
383B
393A
2B20
2B38
3EQ3
2C77
3872
2483
2488
24BF
24C3
81E2
247D
8043
8044
249F
3B56
3388
38F0
38B5
38FB
3A08
388D
0080
0081

0062
0063
0064
0065
0066
0080
25B7
25C6
0003
81AF
80E2
37C0
3968

HEX

0osC
006D
8181

81B2
2CB9
81B5
81B6
3A0B
358A
359F

005A
811D
819D
811D
29B5
2906
2A20
2A3C
2A44
2ABF

2A8A
2A88
O0O0F

2996

80F0

80F2

3476
2080
0006

2791

2799

27C5
2816
282A
2708
81BC
3581

3A80
6000
1000
226A
2B93
2BD8
81DD
2132
2149
2159
21869

216E

21AB
21C3
21D1

21EB
21EB
21F0

2201

3AF8
3838
004B
0008
0Q00F

0045
0015
003C
0024
000C
002D
0012
003F

3372
002A
0030
0033
0003
001E
0003
0O0O0F

0048
0006
334E
3AEC
0018
0018
2620
0015
0006
001B

FCSORG
FCSOUT
FCSX
FDBK
FDEN
FDRV
FEED
FERS1
FERS2
FFCN
FGO
FG1
FG2
FG3
FG4
FHAN
FILL
FLAD
FLBC
FNAM
FNEW
FPB
FPBE
FPBP
FPROM
FPTR
FREE
FREEX
FSAD
FSBK
FSIZ
FTYP
FULL
FVER
FXBC
GO1
GAR1
GAR2
GAREC
GB1
GCMA
GCTRK
GCUCNT
GDATAM
GDRET
GETBC
GETTO
GH1

HEX

0021

0012
2947
3851

2B8D
3836
3631

3637
26EB
0038
3A08
3AAA
81BF
32C8
32D1

32BE
3608
2354
0042
0ooc
0008
001B
0027
0036
81D6
0001

0007
25EF

25F2

25F8

2607
80F8

810F
8115
8117
25EC
262A
2622
81E1

25B7
3378
3301

810D
810E
8114
3B3D
2648
2B65A
8113

226C
226E
2272
227F

2286
8111

OOFF

8108
8107
80F9
0001

80F7

811D
80F3

0080
811B
3ACA
3A0A
810A
8103
8105
80FF

3A4E
8102
8119
3504
3258
3272

3257

3224
3488
256A
2570
2408
271E

37FC
2C0C
22DB

LABEL

GH2
GH3
GH4
GMO1
GMO2
GMO3
GMPRM
GN1D
GN1Z
GN2D
GN2Z
GNDE
GODBK
GTBYT
GXOoUT
HALF
HANER
HDVCT
HER1
HEX
HOME
HRTR
IDEV
IDM
INCXY
INIOO
INIO1
INIO2
INIO3
INIBAS
INITAD
INPCRT
INPFL
INPTB
INSEQO
INVEC
INVY
IRBK
IRBKI
IROLL
181
152
1S3
1S4
ISEC
ISERL
ISERX
IUNT
IVC
IWBK
IWBK
JMPD
JMPHL
JUMP
KBCHA
KBDFL
KBREP
KCHAR
KEDEL
KERDY
KEYBD
KEYCO
KEYOT
KEYTES
KTAB
LOO1
Loo2
LOOB
LOOB
LO07
Lo08
LOOS
LO10
LO11
LO12
LO13
L0114
L017
L0023
L025

HEX

22ER

22E9
22F3

2CCD
2CD0
2CBD
2CA4
34E7
34E4
34F9
34F6

2086
2FB5
322C
2564
3A4C
35FC
368E
22A5
8188
386E
C01E
368B
00&5
3D2C
2721

2761

2766
2768
37BD
0003
81C5
81E3
3728
30E7
3BC4
3BES
318E
3205
38C1

2240
224D
2265
2287
2235
3974
3991

368D
2604
3188
3202
2F01

3FDD
81E7
81FE
8IDF

384F
003E
001D
001E
3EB3
0028
3A53
0024
3FDE
2Db94
2DA2
2DC9
2E16
2E30
2E3D
2E40
2E4A
2E5C
2E75
2E82
2F14

2FB60

2E7E
2FAA
32ES
2E15
32F7

332A
3334
3348
2F03

LABEL HEX
LBYT 339B
LER1 294E
LER2 2952
LET 34B6A
LF 38BD
LHXD 33A4
LINBF 8046
LINE 3B45
LKC 81E4
LL1 3E41
LL10O 3EA4
LL2 3E4D
LL3 3E59
LL4 3EB5
LLS 3EBB
LLB 3E7D
LL7 3EB80
LL8 3E8C
LLS 3E8D
LLDA 28CD
LNSX 3837
LNBY 389E
LO 3392
LOAQOO 2869
LOCAL 3A4F
LODG 3472
LOFL 81F9
LOL" 28C83
LOL3 28EB
LOL4 28EA
LOLS 291F
LOLB 2936
LOL7 2930
LOLDA 288F
LS1 3883
Lse 3B34
LS3 3B9F
LS4 3BAO
LS5 3BAB
LS6 3BAC
LS7 3BBA
LS8 3BBB
LTIM 0B5A
LTNOR 347E
LTPEN 3B0OA
LTYP 2D5A
M1 356A
M2 357A
MASK 0008
MCHO1 2C2A
MCHQO2 2C41
MCHNK 2C1A
MDBLK 811E
MFIOA 0000
MODE 0006
MOVDH 343B
MOVHD 3444
MOVXY 3048
MS1 2CF7
MS 150 81FD
MSs2 2004
MS3 2D33
MS4 2Db42
MSTO1 3496
MSTO2 34A3
MSTO3 34AB
MSTQO4 34AD
MSTR 3485
MULHD 3562
NEGH 3524
NIBL 33B3
NKC 81E5
NOCHA 0040
NOLIN 0020
NOROL 3864
NOTH 3525
NROLL 3DA3
NSEC 000A
NTRK 0023
NTYP 2053
0BC 80E3
OCODE 80F5
ODDFL 81EE
OFFPB 26E5
OPDIR 2060
OPEN 2DAB
OPENX 2C86

REM Cont.

13 000

. T T M o B o 4 M 4 B o B 4 i o W B

00 1 O L

. M B 0 e o o g |

DUDDTU

PAMPT 3382
PROCES 338C
PROLL 0007
PSBYT 34CA
PSESP 30868
PSNUM 34D5
PSPAC 34B3
PSSTR 348D
PSTAT 81DB
PSTR 34C0
PTBYT 324A
PTREC 3285
PTYP 2057
PUP 81B7
PUTEZ 3DES6
PUTXD 3CS8B
PUTXZ 3DCB
PUTYD 3CEB
PUTYZ 3DCD
pPUTZZ 3DAD
PVREC 327B
PWRUP 37B1

E

L0 1P T O A T R B

<)) O s L)1)

ai8
Qo8
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q20
Q21
QLDA
QTYP
RATEA
RATEB
RBLK
RBLKI
RBYTE
RBYTEC
RCOMD
RO
RDOO
RDO1
RDO2
RDQO3
RDO4
REAQO
READ
READY
RENOO
RERR
RESET
RF1
RF2
RFLG
RGAPS
ROLDA
ROLFL
ROLL
ROLLN
ROT
RATR
RS0
RS02
RST1J
RSTBF
RTST
RTST2
RUNOOC
RUNO1
RUNO2
RWB1
RWB2
RWBCM
RWE
RWICM
RWSEQ
RXBUF
RXSER
S10UT
SAV00
SAVE
SBC
SBCHA
SCMN
SEC
SEC15
SEEK
SEEKF
SFR
SHIFF
SHLHD
SHRHD
SL1
SOK
SPB4C
SPNOR
SR1

HEX
3D13
3BF3
3EB8
3EBC
3ECS
3ECB
3EE7
3EEF
3EF7
3F07
3F2C
3F3F
3F43
3F54
3F81
3F85
3FSE
3FAC
3FC2
3FCB
2AAB
2AAE
0016
0Q2F
3182
31F9
24BA
2474
0017
2EFB
2411
241C
2429
2435
2438
26F1
2EA3
81FF
2AC1
2453
2BA5
2880
2883
B80E1
0003
0066
81DC
3A85
81CD
3EFE
000A
26AB
26CE
81C8
0002
33D5
3308
2956
2860
297C
31EC
34EF
318F
2ECS
3206
30C6
0000
0020
33C3
2833
3FDO
8042
398C
3554
80EE
81D7
2222
22AA
2F96
3B85
353A
3544
353E
0000
39B4
34860
3548

LABEL

SSOSE
STACK
TART
START
STARX
STATS
STEPCD
SEEPS
STIM
STOPIT
STOR1
STOR2
STP1
STP2
STP3
STPIN
STPOUT
STPTIM
STPWAT
STWO
STYP
SUBHD
suBU
SULD
SVCHA
SVCRS
SX0
SX01
SYSORG
TAB
TAU
TBADDR
TBC
TBLOO
TBL24
TBLK
TYDRV
TEMPO
TEMP1
TEMP2
TEMP3
TEMP4
TEMP5S
TEMPHL
TESH
TEST
TESTB
TESTC
TESTX
TFCN
TFILE
TFREE
THRUFL
TIM3X
TIM4X
TIM4Y
TIM4Z
TIME1
TIME2
TIMES
TIME4
TIMES
TIMX1
TIMX2
TIMX3
TIMX4
TIMX5
TMEM
TMODE
TMP1
TOFF
TPROG
TPROT
TRAM
TRK
TWOUT
TXBUF
TXCONT
TXOUT
TXPEN
TXSER
UPDATE"
UPTIM
VCRAD
VCRSY

LABEL

VEQO
VEO1
VEO2
VEO3
VEO4
VECTO
VECTY
VERR
VFILL
VHLAD
VISIB
VRTR
VTP
VTP1
VTP2
WATL
WATS
WB1
WBLK
WBLKI
WBYTE
WF2
WIG1
wiG2
WIG3
WL1
WL2
WR
WROO
WR01
WR02
WR0O3
WR04
WRQ05
WROB
WRDIR
WRIOO
WRITE
WRTR
WS1
WXYZ
X80
XDATA
XFBLK
XFBUF
XFDRV
XFER
XFFCN
XFHAN
XFXBC
XINTR
XORHD
X0UTO
XouT1
XTWO
XYMIT
XYTAB
XZERO
YDATA
YTWO
YZERO
ZERFL
ZFATR
ZFAUX
ZFBLK
ZFBUF
ZFDBK
ZFDEN
ZFDRV
ZFFCN
ZFHAN
ZFLAD
ZFLBC
ZFNAM
ZFPB
ZFPBE
ZFPTR
ZFSAD
ZFSBK
ZFSIZ
ZFTYP
ZFVER
ZFXBC
ZH
ZPTR
ZRAM
272727277

HEX

2305
2322
232A
2336
233D
3E2D
3BBE
2308
81CE
81D2
3A0A
0002
24DD
24EC
24F4
3429
341C
245F
317F
31F6
245E
284F
22BA
22C4
2202
342A
242D
2EF8
23A6
23BF
23C4
23D0
23D4
23EB
23F0
2F75
26EE
2ECC
0004
341F
2573
7000
81EC
81A1
81A3
81A0
219A
819F
819D
81A5
0010
3533
81AF
81B0
81EA
3B13
3087
81EF
81ED
81EB
81F0
38A8
8083
809A
80A0
80A2
8098
8099
809F
809E
809C
8093
8092
8084
8082
80AS8
80A6
8095
808E
8090
808A
808D
80A4
355E
3008
8082
3FFA

REM

the “call® function

Wiyron Steffy of Sun City, Arizona, has been an active COMPUCOLDR |l user since the “early days"”. Hehas been

> correspondent and his comments and suggestions are always appreciated. Myron submitted the following
article whichillustrates the use of the CALL function to load a screen display from RAM. His programis concise and
uldt be easy for most readers to understand.

o
]

‘For along time | have been trying to find a useful application for the “call” function in Basic. Dther than its use
with the "Soundware” device, | don't recall anything having appeared in Colorcue. One of the first programs |

originated in Basic was a satellite tracking routine for the series of amateur radio satellites generically known as

OSCAR". Not too long ago | was trying to show the satellite’s motion graphically on a map of the United States. At

Irst | used an erasing subroutine that worked well but left no trail. Then | decided that it would be better to leave each
track in place for a full day's run.

The next thing that cropped up was the necessity for recalling the map of the U.S. each time. This particular
araphic was stored on disc as a "Screen.Dsp” which required accessing the disc drive every few seconds. This
offended my sense of prapriety as | had all of this memary just sitting there. To put the rather elaborate graphic into
code was a task that | wasn't up to. This is the occasion for the use of the “call” function. -

The idea briefly is this: store the screen display in high memory and then move it into screen memaory ‘en biock’
with a machine language subroutine to be accessed by the call function. Strangely enough, it is the first piece of
assembly language that | have ever written that worked the first time. This | must publish!

The sourcefileis attached as well as a Basic routine that will enter the machine code. The procedure for calling it
upissimply "X = CALL {D) The display is recalled within one or two seconds without bringing up the disc drive. | can
think of a nurnber of uses for it — recalling a checker board or any other display that will be used over and over. Saves
a ot of wear and tear aor the machinery.

The disc contains the Screen.Dsp (courtesy of the Northern California Users Groupl; the source file for
“Reload” and its PRG. version; then you will find the Basic routine for “Reload” and a program called "Demo’” which
lustrates the use of the call function in the program.

Referring to the "Reload” program in Basic, line 200 samples the display at three paints to see if it has already
been loaded. If not, line 210 performs this function, placing it at the top end of a 18K memaory. The “Peeks” would
have to be changed for the particular display in use. Line 200 could be eliminated if subsequent “runs” were started
at line 230. Lines 220 to 250 load the machine code for the call routine. This is probably faster than toading the
assembly version from FCS. Line 260 inserts the call jump address which will be lost if "CPU Reset” is used. Line
280 clears the screen, fixes the “"page” mode, homes the cursar and executes the "Call JSump”.

As you will see from the source file, the program is structured to run on either 6.78 or 8.72 Basic and can be
used anywhere it is necessary to frequently recall a display. | have set it up for 16K although of course it could be
readily pushed up to the top of 8 32K RAM. | hope that it wili be of some use to the Colorcue readers.”

CALL ROUTINE TO LOAD SCREEN DISPLAY FROM RAM
by Myron T. Steffy, Sun City, AZ 11/28/80
for 5.78 or 8,79 Basic

SCREEN DISPLAY IS TO BE LOADED AT OAFFFH BY MAIN PROGRANM
BASIC PROGRAM MUST INCLUDE THE FOLLOWING STATEMENT:
"POKE 33283,33:POKE 33284,175:REM CALL JUMP”

TO CALL UP DISPLAY, USE "PLOT 8: X = CALL {(0)"

START: ORG OAEFFH ;. 447388
LI SP,STACK
CcAall SETUR i OWHICH BASIC?
LXI H, RELOAD
SHLD . 82034 i CALL JunP
NVE A,0C3H P JUNMP
STA 818FH ;. ESCAPET- 33215
LI H.RELOAD
SHLD B51C0OH ;. 33218
Lx! H, QAEFEH ;. PROTECT MACHINE LANGUAGE
SHLD BOACH . 32840
NV A, A45H i 'ETEXIT TO BASIC
JMP EXIT
RELOAD: PUSH PSSV i SAVE STATUS

REM cont.
=]

REM --—

SAVEH & L
LOW END OF DISPLAY

- B) SCREEN ADDRESS
» B, OBFFEH HIGH END
WA MO AL M FETCH CONTENTS TO BE MOVED
STAX D STORE IN NEW LOCATION
MO A H HIGH BYTE OF ‘FROM' ADDRESS
EMP B PAGE LIMIT?
JNZ INCAD NQO, CONTINUE TRANSFER
[V AL YES, GET LOW BYTE
P c LOW ADDRESS LIMIT?
JZ GHOME ALL FINISHED
CAD N2 H NQO, ADVANGE 'FROM' POINTER
N D ADVANCE 'TO' POINTER
JhAP NEWAD
[SH0ME POP H RESTORE H & L
POPRP PSW AND STATUS
RET RETURN TO CALLING PROGRAM
=407 JMP O0ooH TO BASIC
SETLUP: LDA 0Oo01H
CPI S8CH
JNZ VER87S
ERS78: LXI H,053AH EXIT
SHLD EXIT+1
RET
EAB 79 LXI H,2420H EXIT
SHLD EXIT+1
RET
DS 20H STACK AREA
STACK
END START

O S .S
s ()

0
00a0In

o N
)

200 IF PEEK (453963) + PEEK (47198) + PEEK (48225) = 558THEN 220

210 PLOT 27,4:PRINT "LOAD SCREEN.DSP AFFF".PLOT 27,27

220 DATA 245,229,33,265,175,17,0,112,1,255,191, 126, 18, 124
230 DATA 184,194,566,175,125,185,202,61,175,35,19, 195,44, 175
240 DATA 225,241,201,0,0,0
250 FOR AD = 4483370 44865:READ VL:POKE AD, VL:NEXT AD
260 POKE 33283,33: POKE 33284, 1 75:REM CALL JUMP ADDRESS
270 RESTORE
280 PLOT 12,27,24,3,0,0: X = CALL (M

REM

key scratchpad memory locations
These locations are offered in conjunction with the system software cross reference article which starts on page 6.
This is the system RAM reference listing with decimal value and description.

LABEL HEX

BASFL 81F1
BFiLL 81D0O

DECIMAL DESCRIPTION

33265
33232

BASIC output FLAG
Blind fill (+0= A7 bit, +1= CCI

10

LABEL

BHLAD
BRTRY
BUCNT
BUFP
CMASK
COLFL
CRATE
CRC1
CRC2
CRTRAM
CRTRY
CTRKO
CTRK1
CUCNTO
CUCNT"
DBF
DBFE
DBLK
DFDV
DFUN
DISPCK
DUPRPLX
ESCCRT
EXTBF
FATR
FAUX

FBLK
FBUF
FCSFL
FDBK
FDEN
FDRV
FFCN
FHAN
FLAD
FLBC
FNAM
FPB
FPBE
FPBP
FPTR
FSAD
FSBK
FSIiZ
FTYP
FVER
FXBC
HEX

INPCRT
INPFL
JUMP
KBCHA
KBDFL
LINBF
LKC
LOFL
MDBLK
MS1 80
NKC

HEX

81D4
80EO
81B4
8047
81E0
B81E6
81E2
8043
8044
81AF
80E2
8181
81B2
81B5
8186
8110
8180
8110
80FO0
80F=2
81BC
8100
81BF
8106
80F8
810F

8115
8117
81E1

810D
810E
8114
8113
8111

8108
8107
80F9
BOF~/
811D
80F3

8118
810A
8103
8105
80FF

8102
8119
8188
8189
81BA
818B
81C5
81E3
81E7
81FE

81DF
8046
814
81FS
811E
81FD
81ES

DECIMAL

33236
32882
33204
32839
33248
33254
33250
32835
32836
331398
32984
33201

33202
33205
33206
33053
33181

33053
33008
33010
33212
33245
33215
33238
33016
33038

33045
3304a7
33249
33037
33038
33044
33043
33041

33032
33031

33017
33015
33053
33011

33051

33034
33027
330238
33023
33026
330439
33208
33208
33210
33211

33221

33251

33255
33278
33247
32838
33252
33273
33054
33277
33253

DESCRIPTION

Blind cursor H&L address

Block reentry counter

Spare

FCS line buffer

Current mask register setting
Flag (FG/BG) O=off, 1=on
Current baud rate setting

1st CRC byte count for disk

2nd CRC byte count for disk

CRT RAM

‘Chunk’ reentry counter

Current track Micro Drive O
Current track Micro Drive 1

User count Micro Drive O

User count Micro Drive 1
Directory block buffer

End of directory block buffer
'This' directory block number
Default device (ASCI

Default unit (ASCID

Jump to display clock

Duplex FLAG => (O = local, — = full, + = half)
User ESCAPE A jump vector
External output port buffer
Attribute byte

New file closing size, or aux. byte count for
sequential routines.

Block number for transfer

Buffer pointer for transfer

FCS output FLAG

Directory block number

Directory entry number

Drive number

Handler function code

Handler address

Load address for ‘image’ file

Byte count of last block

File name

Open type code

End of system FPB

File parameter block pointer
Buffer pointer for sequential routines
Start address for ‘image’ file
Starting block number

Number of blocks

File type

File version number

Byte count for transfer

Binary fractions of a second

O to 59 seconds of real time clock
O to 59 minutes of real time clock
0 to 23 hours of real time clock
User input FLAG jump vector
Serial input FLAG

Jump used for cursor position — left, right, etc.
Keyboard character

Keyboard FLAG

BASIC Line buffer

Last key code

System output FLAG

Maximum directory block number
Counter for 150 milisecond delay
New key code

REM Ccort.
11

REM cont.

LABEL

oBC
OCcoDE
ODDFL
ORAM
OSEC
QOUTCRT
BT
OuUTHL
QOVERS
PCRAD
oL
P SEEAT
PUP
READ Y
RFLG
ROLFL
ROLLN
RST1J
sSB8C
SEC
SELM S
STACK
TBC
TBLK
TDRYV
TEMPO
TEMPA1
TEMP2
TEMP3
TENMPA4
TEMPS
TEMPHL
TFCN
THRUWFL
TMEM
TMPA
TRAM
TRK
VCRAD
VFILL
VHLAD
XDATA
XFBLK
XFBUF
XFDRV
XFFCN
XFHAN
XEXBC
XOuTOo
XOouT1
XTwQO
XZERO
YDATA
YTwWO
YZERO
ZFATR
ZFAUX
ZFBLK
ZFBUF
ZFDBK
ZFDEN
ZFDRV

HEX

80E3
80F5
81EE
80FO0
80ED
Ste=2
81F8
= Ei =]
80F6
8108
81DA
81DB
8187
81FF
80E1
81DC
81CD
81C8
8042
80EE
81D7
8042
80EB
80E7”
80EB
81F2
81F3
81F4
81F5
81F6
81F7
80DE
80ES
81DE
80E9
81AB
80DE
80EF
81CB
81CE
81D2
81EC
8141
81A3
81A0
819F
819D
81A5
81AF
8180
81EA
81EF
81ED
81EB
81F0
8083
808A
80A0
80A2
8098
8089
808SF

DECIMAL

32885
33013
33262
33008
33005
33218
33272
33275
33014
33240
33242
33243
33207
33279
32883
33244
33229
33224
32834
330086
33238
32834
33003
329389
32998
33266
33287
33268
33269
33270
33271

328890
32997
33246
33001

33185
32880
33007
33227
33230
33234
33260
33185
33187
33184
33183
33181

33188
33188
33200
33258
33263
33261

33258
33264
32888
32922
32928
32830
32920
32921

32827

DESCRIPTION

Old byte count
Open type code

FCS RAM

Old sector number

User output FLAG jump vector (table 8)
Output port FLAG

Output port H&L address

Original version

Plot cursor address

Current plot submode

Power up FLAG

Keyboard character ready flag
‘Restore’ FLAG / countenr
Roll FLAG =2 (0= no roll, 1= roll}
Roll count (O = no roli
Timer 2 jump vectonr
Sector byte count for disk
Sector number

Repeat key scan counter
Stack from screen to here
Byte count

Block number

Drive number

Temporary

Temporary

Temporary

Temporary

Temporary

Temporary

Free for future use
Function code

Memory buffer pointer

Used by COPY & maybe others?
Temporary RAM start in BASIC RAM
Track number

Visible cursor address (+0 = X, +1 = VY)
Visible fill (+Q = A7 bit, +1 = CCD
Visible cursor H&L address

Plot mode temporanry

Auxiliary block buffer

Auxiliary buffer pointer

Auxiliary drive number

Auxiliary handler function code
Auxiliary handler address
Auxiliary byte count

Current phase Micro Drive O
Current phase Micro Drive 1

Plot mode temporary

Plot mode temporary

FPlot mode temporary

Plot mode temporary

Plot mode temporary

Auxiliary FCS FPB storage
Auxiliary FCS FPB storage
Auxiliary FCS FPB storage
Auxiliary FCS FPB storage
Auxiliary FCS FPB storage
Auxiliary FCS FPB storage
Auxiliary FCS FPB storage

12

LABEL HEX DECIMAL DESCRIPTION

ZAEECIN 809E 32926 Auxiliary FCS FPB storage
ZFHAN 809C 32924 Auxiliary FCS FPB storage
ZFLAD 8083 32815 Auxiliary FCS FPB storage
ZFLBC 8092 32914 Auxiliary FCS FPB storage
ZFEFNAM 8084 32900 Auxiliary FCS FPB storage
ZFPB 8082 32898 Auxiliary FCS FPB storage
ZFPBE 80A8 328368 End of auxiliary FPB, End of BASIC input buffer
ZFPTR 80QA6 32834 Auxiliary FCS FPB storage
ZFSAD 8085 32917 Auxiliary FCS FPB storage
ZFSBK 808E 32910 Auxiliary FCS FPB storage
ZFSiZ 8090 32912 Auxiliary FCS FPB storage
ZFTYP 808A 32906 Auxiliary FCS FPB storage
ZFVER 808D 32908 Auxiliary FCS FPB storage
ZFEXBC 80A4 32932 Auxiliary FCS FPB storage
ZRAM 8082 32898 FCS stuff / BASIC input buffer
REM
system software map
RESTART EXT'D FILE CRT & AVAILABLE SCREEN SYSTEM USER
VECTORS DISK CONTROL PLOT ROM SPACE REFRESH SCRATCH RAM
INITIAL BASIC SYSTEM GRAPH FOR USER RAM PAD
VALUES ROM ROM ROM FIRMWARE HIGH/LOW RAM
0oao 0040 211C 36AB 4000 8000 8000 8200
to to to to to to to to
Q03F 211B 3I6AA 3FFF SFFF 7FFF 81FF FFFF

NOTE: In BASIC B000-82389 is System and BASIC Scratch pad RAM.
In BASIC B29A-FFFF is the actual user RAM availabte.
To use 4000-5FFF, an ADD-ON ROM STACK is required. (CC P/N 100980)

CORRECTION

handshake modification

Inarecentissue of Colorcue we published a handshake modification. Unfortunately, that data was incorrect and
caused a few problems. Below find the proper information:

1. Tie Pin 9 of the J2 edge connector to UD1 Pin 4.

2. Tie Pin 6 of UD1 to Pin 3 of UC1.

3. Tie Pin 4 of UC1 to Pin 10 of UE1.

4. Add a 10K 1/4 W resistor between Pin 4 of UD1 to +12VDC.

INTELLIGENT SYSTEMS ANNOUNCES:
the 3650 series

The Intecolor 3650 series of terminals and desktop computers, which was released in October, 1980, provides
a cost-effective solution for the small business requiring good capabilities at a low price. The 3650 preserves many
of the features of the 3621, while adding some design improvements that have upgraded the performance. For
example, the logic board is of a completely new design, and the disk controller is of high computer grade. The 3650
has a built-in 30K bytes mini-disk (instead of the 3621's micro) and offers the option of add-on disks such as
dual-sided double B-inch floppies as well as hard disk. The internal drive has been specially tested to ensure the kind of
reliability that is imperative in serious applications. For those users who already have significant software on
micro-disk, upgrading to the mini-disk is no problem — there’s a utility to transfer programs to the 3650, and almost
all BASIC programs will run without modification. Assembly language programs will need some slight changes. For
more information, contact our customer service department.

TS GRAPHIC!

bar graph and scaler

We've decided to add a graphics column to Colorcue because so many of you have questions about using the
graphics, and because, after all, graphics is one of the CCllI's major features. While you can easily find books that
teach assembly language or ‘DO’ loops or ASCII codes, finding written information about graphics is a little more
difficult. And even when you do get information, it may not be specialized to the CCll, so we thought we'd try to help

ITS GRAPHIC! corns.
13

IT'S GRAPHIC! cont.

out through Colorcue.

If you will recall the first two issues of Colorcue, they did include graphics information. We had the now-famous
‘Random Rectangles’ and the less ubiquitous ‘Circular Plots’. This month we're going to start where they left off and
explain another simple feature of the CClI's graphics — bar graphs. The program below creates a bar graph and
automatically scales it to reflect the data given for the graph. All changes necessary for Intecolor equipment are
contained in REM statements.

Line 100 of the program erases the screen with foreground green and background black. Lines 110 and 120
contain the data for the scaling factor. Line 130 dimensions the variables MR, SF, and SP, which stand for Maximum
Range, Scaling Factor, and Scaling Pointer. Line 140 is a loop to read this data. Line 150 initializes three variables.

Line 160 generates a random number between 12 and 8. Line 170 generates a minimum and maximum bar value.
Line 200 sets everything in readiness for drawing the bar graph. It sets the page mode, erases the page, and draws
the x and y axes of the graph. Lines 210 through 280 print variables on the screen.

Line 300 sends program control to line 470 to get the scaling factor. Lines 330 through 390 generate the
dashed line for the graph routine. Line 400 defines the y1 and y2 variables.

Line 410 sets the foreground to magenta and draws a vertical bar, as does line 420.

Line 480 starts the subroutine that contains the scaler for the program, with line 520 determining the scaling
factor.

90 REM BAR GRAPHS AND SCALER

100 PLOT B,2,12

110 DATA 10,1,3,15,2.5,5,20,2.5,4,25,2.5,3,30,5,5
120 DATA 40,5,4,50,5,3,60,10,5,.80,10,4,100, 10,3
130 DIM MR (10}, SF(10), SP(10)

140 FORI=1 TO 10 : READ MR, SF), SP) : NEXT |
150 YO=2: YX=0: YI=999

1680 R=RAND (1) *12-6 : R=10R

170 MI=—R+RND (1) *2*R : MX=MI+RND(1) *R

180 PLOT 27,88,15,6,2,12

180 X=127:Y=127: REM ON INTECOLOR 8001 USE X=159: Y=19"
200 PLOT 2,X,0,242,20,0,20,Y,255

210 PLOT 3,45,20: PRINT “MAX = ";:MX
220 PLOT 3,45,21 : PRINT “MIN = ;M
230 PLOT 3,45,23: PRINT “Y! = "Vl
240 PLOT 3,45,24 : PRINT “ YX ="YX
250 PLOT 3,45,26: PRINT “ S1 = ", S|
260 PLOT 3,45,27 : PRINT " SX = " SX
270 PLOT 3,45,23 : PRINT “ Bl = ", 8l
280 PLOT 3,45,30: PRINT “ BX = ";BX

290 Y=31: REM ON INTECOLOR 8001 USE Y=47
300 GOSUB a70

310 BT=M1

320 FORI=1TO 12: IF Y<O THEN =12 : GOTO 380

330 PLOT 3,0.Y,

340 FINTABSIM1/SF) 1 <1 THEN M1=0

350 PLOT 19 : PRINT RIGHTS" "+ STRBIM 1), D)

360 PLOT B,4: IFM1=0THEN PLOT 8,7

370 IFI1>1 THEN PLOT 3,11,Y : PRINT oo oo e 2
380 M1=M1+SF: Y=Y—SP (KK)

390 NEXTI

400 Y1=(MI—8T) *SPKK) *4/SF : Y2=IMX—BT) *SPIKK) *4/SF
410 PLOT B,5,2,40,Y0+VY1,242,40,Y0+Y2,255

420 PLOT B,5,2,41,Y0+Y1,242,41,YO+Y2, 255

430 IFY2-Y1<YITHEN YI=Y2-Y1 : SI=MI : SX=MX

440 IFY2-Y1>YX THEN ¥YX=Y2-Y1 : BI=MI: BX=MX

450 IFIS="A" THEN 230

460 GOTO 180

470 REM ** scaALE **

480 NO=MX—Ml: L9=L0OGABSIND/LOG(M1Q)

4890 D9=INTLS)—1 : MS=SGNINS] *INT(10ALS—D9)+.999)
500 FORII=1 TO 10: IF MS<=MRIU) THEN KK=Ii: I=10

510 NEXTI

520 IFKK>10 THEN KK=1 : D9=Dg9+1

530 SF=SFIKK) "10AD8 : M1 =INTIMI/SF) *SF

14

540 M2=MX: IF MX/SF< > INT (MX/SF) THEN M2=INTIMX/SF] *SF+SF
S50 IF IM2-M1N>(MRIKK)+.001) *10AD9 THEN KK=KK+ 1 : GOTO 520
5680 RETURN

layered design

The following is another simple program that uses the COMPUCOLOR II's graphics capabilities. It draws a
layered design in various colors. Changes required to run this pragram on Intecolor systems are given in REM
statements.

100 REM OVERLAYING GRAPHIC DESIGN

110 RT=RND(10*RNDI34))

120 PLOT 6,0,12,15,27,88

130 XX=122: YY=122: REM FOR INTECOLOR 8001 USE XX=154 : YY=1868
140 X=120: Y=120: REM FOR INTECOLOR 8001 USE X=152: ¥Y=184
150 PLOT 3,0,0,8,2

180 INPUT "HOW MANY LAYERS? (TRY 3) % LC : PLOT 28,11

170 BGH="N"

180 INPUT “STEP SIZE? (TRY 14);S: PLOT 28, 11

1890 REM

200 AC=ACH+1: IF AC>=LC THEN AC=0: FOR XD=1 TO 1000 : NEXT : PLOT 12
210 GOTO 400

220 X1=XA:Y1=YA: X2=XB: Y2=VYB: X3=XC: YB=YC: X4=XD: Y4=YD
230 A=INTZ*RND(1)+1)

240 IF BGS<>"N” THEN PLOT 12

250 XP=X1:YP=Y1: XQA=X2: Y@A=VY2

260 PLOT 29,18+A

270 S1=(X3—-X1VS

280 S2=(X4—X2)S

290 S3=(vY3—-Y1r/Ss

300 s4a=(va—-vYyays

310 FORXP=X1 TO X3 STEP S1

320 PLOT 2,XP,YP,242,XP,YP, XQ,YQ, 255

330 PLOT 2, XX—XP,YY—YP, 242, XX—XP,YY—YP, XX—XQ,YY—VY0, 255
340 PLOT 2,XX—XP,YP, 242, XX —XP, YP, XX —X@Q,YQ,255

350 PLOT 2,XP,YY—YP, 242, XP,YY—YP, XQ,YY—-YQ, 255

3680 YP=YP+S3: XQ=XQ+S2

370 YQ=YQ+S4

380 NEXT XP

320 GOTO 180

400 XA=INTXX*RND(1)+2)

410 YA=INTIY*RND(1)+2)

420 XB=INTX*RND(1)+2)

430 YB=INTIY*RND(1)+2)

440 XC=INTX*RND(1)+2)

450 YC=INTIV*RND(M)+2)

480 XDO=INT(X*RND(1)+2)

470 YD=INTIY*RND(1)+2)

480 GOTO 220

NEW PRODUCTS

comp-u-writer

If you still consider word processing a function strictly for the office, then you haven't been keeping up with the
progress that's been made in this field. WP (word processing) systems are used in all kinds of applications. The
number of word processing systems available in today's market is exceeded only by the number of stars in the sky,
and yet each of these systems has features and capabilities all its own. At ISC, we have two word processing
systems. Oneis a CP/M system for the Intecolor Business Systems, on which development started about two years
ago. Colorcue has been created and printed using the word pracessar from the very first issue. Now available for
COMPUCOLOR Il owners is a word processing system that allows you to create, edit, and update documents of all
kinds.

The system is "COMP-U-Writer”, and it was designed especially for the COMPUCOLOR Il. COMP-U-Whriter
uses color effectively to make learning and using the system easier.

The COMP-U-Writer compares very favorably with other WP systems available for microcomputers. It has
many of the sophisticated features found on expensive stand-alone systems. COMP-U-Writer lets you generate

NEW PRODUCTS . . . con.
15

NEW PRODUCTS . . cort.

text on the screen, and then allows you to make corrections or formatting changes with a few keystrokes. When the
copy reads exactly as you want it, you send the file through the RS232C port to a printer. With COMP-U-Writer, you
avoid all the typing, erasing, and retyping required with conventional typewriting. COMP-U-Writer uses function
keys to access its many capabilities, such as:

search and replace center
move delete
new page

COMP-U-Writer can be useful for the one-man business, but it has many uses for other computer users as well.
Students can write term papers on the COMP-U-Writer, and save time by obviating all the rewriting and retyping
normally needed. Many Compucolor Il users find COMP-U-Writer invaluable for personal correspondence as well,

We are pleased to enter the WP market with COMP-U-Writer, because we believe that it is a good system. It

was reviewed in InfoWorld a few months ago and received a very good recommendation. The system was evaluated
for:

Functionality Good
Ease of Use Excellent
Documentation Excellent
Error Handling Fair
Support Excellent

The COMPUCOLOR Il is ideal for WP because it has a commercial quality keyboard which so many of its
competitors lack. And color enhancement allows improved communication and operator response. COMP-U-Writer
sells for $262.50 and can be ordered from your dealer or from our factory. COMP-U-Writer requires at least 16K
and a 117-key keyboard.

ink-jet printer

PrintaColor Corporation of Norcross, GA, announces the introduction of their ISB001 Color Ink-Jet Printer.
Designed primarily for graphics applications, the 1ISB001 can print in seven colors (yellow, magenta, cyan, blue,
green, red, and black) on a white background. The IS8001 contains its own microcomputer, including 16K RAM used
as a data buffer, Since the printer is “intelligent”, it operates with a minimal burden on the host computer. The host’s
processing ability is not tied up except for the 8-10 second initial transmission of data to the printer.

The unit has 12 ink-jet nozzles, four for each of the three primary colors. Additional colors are made by
overlaying the primaries. Resolution is 30 dots per inch. The paper systemis continuous-feed, Z-foldand 1478 inches
wide with 80 characters per line capability.

Initial models of the 1ISB001 are compatible with the Intecclor 8001 series computers and terminals. Also
available are models compatible with the ISC 3600 series and the COMPUCOLOR II. The price of the unit is
$6000.00.

With its easier readability and additional computer functions, the Printacolor ISB001 can effect considerable
time savings and higher efficiency for the color CRT user.

For additional information, write to Printacolor Corporation, P.O. Box 52, Norcross, GA 30071, or call (404)
448-2675.

NUTS AND BOLTS

compucolor bell

Those with the version 8.79 software have available the option of installing a bell on their COMPUCOLOR lls. As
you know, there was no provision for a bell in the original design of the machine, but because a bell can be quite useful,
there is now a way to attach this device to the computer.

First, and most abviously, the bell is great for punctuating computer programs that require user input. You can
program the bell to sound when a mistake is made or when a response is required. The bell makes these programs
more interactive because it focuses user attention at critical moments and disallows error. In real-time applications,
the bell can add excitement with sound effects or indicate a time out.

Secondly, and this use is one you might not have thought of, the bell is very valuable in the debugging process.
PLOT 7 is the command sequence that rings the bell, and by inserting PLOT 7's at various points in a program, you
can determine if the program is passing certain statements. Or, if the program has to perform a given function a
specified number of times, you can insert a PLOT 7 and audibly count to see if it's successful.

Assembly and installation of the bell is not especially difficult, but it requires a little bit of time. You will need:

Sonalert assembly soldering iran

sponge, etc. needlenose pliers

wire cutters 60/40 rosin core solder
INS14 diode mounting bracket or glue

16-pin socket
It. gauge (24-28 AWG) insulated stranded wire
— two 12" lengths, one red, one black

168

The Sonalert assembly can be purchased from Compucolor Corporation. Order part number #010015. The
price is $21.00. Or, you may be able to find the Sonalert at radio supply/hobby stores. The sSpecs are:
Sonalert model SNP428
Volts 4 — 28 VDC
Amps .003 — .01B6
Manufactured by P. R. Mallory & Co., Inc.
All other materials are readily available at radio supply/hobby stores.
The procedure for equipping the COMPUCOLOR Il with sound is as follows:
1. Add the IN914 diode to the Sonalert by soldering the negative side of the diode to the plus side of the Sonalert;
and the positive side of the diode to the negative side of the Sanalert.

2. Attach the two 12 inch wires. A red wire for the +5VDC (+) side of the Sonalert, and a black wire for the minus
(=) side of the Sonalert. Lightly twist the wires together. Bare the free ends of the wires and tin them with
solder.

3. Attach the red wire to a +5VDC location on the logic board. One good place is Pin 8 of the J7 (internal disk drive
connector). The black wire can be connected to Pin 6 of J7.
4. As J7 is a socket that the internal disk drive plugs into, the best method of connecting the Sonalert is with

anather socket. Note the drawing below: SONALERT

TO DRIVE
VIEW OF COMPUCOLOR Ii LOGIC BOARD)

16-PIN CABLE (PLUG) 77
TO INTERNAL DRIVE

Connect (+ Plus) side of SONALERT to pin 8 of UJ7.

Connegt (- Minus) side of SONALERT ta pin 6 of UJ7. SoeKETRD JEPIN \s%;;,ép

Note: For COMPUCOLOR Il owners whose disk e SOCKET FORDISK ~~___

drive is mounted externally, no cable is used inside uJ7 . DRIVE CABLE > (e N

the machine to attach the disk drive. Therefore, the 41‘: @ T
UJ7 socket is unused, and only the 16-pin piug is BOARD)

needed to attach the SONALERT. FRONT VIEW T TokevBoaRD

5. Mount the Sonalert onto the inside of the COMPUCOLOR |l cabinet. You can do this by gluing the speaker in
place, or by using a bracket. The purists (and the daring!) can cut a hole into the COMPUCOLOR Il cabinet and
mount the Sonalert through the hole.

KEEPING IT SIMPLE

introduction to fortran

Largely because of its easy-to-use English syntax and its general purpose nature, BASIC has become the
standard language for personal computing. Still, BASIC does have its shortcomings as far as speed and flexibility are
concerned, and some applications are much more conveniently written in a different computer tongue. Assembly
language has been available on the COMPUCOLOR Il since its inception, and many of our most popular programs are
written init. In order to expand the capabilities of your COMPUCOLOR I, we now offer Microsoft FORTRAN as a
$75 option.

FORTRAN was first developed in 1854, which is practically pre-Cambrian on the computer time scale. But
FORTRAN was carefully designed and has continued to grow and develop over the last 20 years such that its
popularity remains very high. A high percentage of serious computer installations use FORTRAN in one form or
anather.

FORTRAN has some very specific advantages on the COMPUCOLOR II. FORTRAN is fast — almost as fast as
assembly language. FORTRAN allows you to generate the fast-moving graphics necessary for real-time video-game
applications. But FORTRAN is relatively easy to learn — almost as easy as BASIC. In fact, you can even write a
program in BASIC and then simply translate it into FORTRAN, since FORTRAN and BASIC have many similarities.
But FORTRAN is a higher level language than BASIC because it is compiled, not interpreted. This means that
FORTRAN, when read by the COMPUCOLOR II, actually generates assembly language code, whereas BASIC does
not.

FORTRAN also allows you to have more formatting control over hard copy, meaning that your output can be
tailored to precise specifications. FORTRAN has much to offer for both experienced and inexperienced users. In
order to make FORTRAN available to as many users as possible, we have priced it very well, far below a usual
single-copy price.

Creating a working FORTRAN program requires three steps. First, the program is written using an editor such
as our screen editor. Then the program is compiled — translated into machine language in a relocatable format.
Thirdly, the program is linked. The Linking Loader uses a library file to look up all of the routines that will be necessary
to run the program. From these routines the linker produces a runable .PRG program.

The program below introduces you to FORTRAN to let you get a taste of this popular computer language. Note
that it is somewhat different from BASIC in appearance. In FORTRAN, line numbers are not necessary on every line,
since statements are always processed in sequential order. Note also that all logical comparisons in FORTRAN are
called with a two-character name surrounded by points.

The FORTRAN “DO" loop is similar toa “FOR NEXT" loop, except that it has some different rules about what can
be contained in the loop. This program does an exchange sort on integers. Even those of you who do not plan on

KEEPING IT SIMPLE . . . cont.
17

KEEPING IT SIMPLE . . Cont.

investing in this second language for your CCIl should find exposure to this widely-used computing language
worthwhile.

C INTEGER EXCHANGE SORT (20<N<Q)
PROGRAM SORT
INTEGER VAL, NUMBER (20), TEMP
10 WRITE(S, 100)
READ(1,110) N
IF (N.GT.20) GOTO 10
DO 20 1=1,N
WRITE(3, 120) |
READ(1, 130) NUMBER ()
20 CONTINUE
VAL = N—1
30 LASTSW = 0O
DO 40 1=1,VAL
IF INUMBER®O). LT. NUMBERC + 1)) GOTO 40
TEMP = NUMBER(D
NUMBER() = NUMBER(I+ 1}
NUMBERII+ 1)} = TEMP
LASTSW = |
40 CONTINUE
IF (LASTSW.LT.2) GOTO 50
VAL = LASTSW—1
GOTO 30
50 WRITE (3, 140)
DO 680 1=1,N
WRITE (3, 150) NUMBER)
680 CONTINUE
100 FORMATC+HOW MANY VALUES TO SORT?)
110 FORMATUIS)
120 FORMATU+#,13,>1
130 FORMATUE)
140 FORMATY,” THE SORTED LIST:", /A
150 FORMATITX,I6)
STOP
END

BOOK REVIEWS

We've decided that a place for book reviews is definitely needed in Colorcue, since most of you report that books
have been a prime source of your computer knowledge. In the past months, several of you have written in to let us
know of your experiences with various volumes, and we appreciate your taking the time to keep us informed. Now
we'd like to return the efforts by supplying, in every issue, reviews of two computer books which are generally
available. We've chosen a review format which will make deciphering our comments easy. We will answer these
questions about each book:

1. At readers of what programming level is the book aimed?

2. How adaptable are the book's programs and theory to the COMPUCOLOR [I?

3. What is the overall usefulness of the book?

PROBLEMS FOR COMPUTER SOLUTION — Donald Spencer (Hayden Publishing) Paperback, 125 pages. a few
diagrams, mostly text.

1. This book assumes that the reader has some understanding of a computer language. It offers problems of
varying degrees of difficulty and of various types. The book is divided into subgroups according to subject matter.
The book can be used by either a teacher or student as an instructional aid, and is also useful for the hobbyist. There
are no programming instructions in any language, nor does the book assume that the problems will be worked in a
certain language. No solutions are given to the problems in the book, answers must be obtained through individual
perseverance.

2. The book is adaptable to any computer, including the COMPUCOLOR li. All the programs can be written and
solved on the COMPUCOLOR Il without any difficulty since the book does not demand any specific language.

3. PROBLEMS FOR COMPUTER SOLUTION is a great aid to someone learning a computer language,
especially BASIC. The author seems to subscribe to the maxim that experience is the best teacher, and the book
offers the user a chance to get lots of experience. This book is potentially very useful for teaching BASIC if used with
another book which gives specifics about the BASIC language. Since the bock has a generic approach as far as

18

languages are concerned, and does not specify any one language, the pragrammer can use this text over and over
again as he sets about becoming a computer polygiot. This book is recommended to anyone in the process aof learning
& computer language.

HOME COMPUTERS CAN MAKE YOU RICH — Joe Weisbecker (Hayden Publishing) Paperback, 119 pages, no
listings, a few pictures.

1. This book talks to people wha are interested in making maney from microcomputers. It is relatively jargon-
free and written so that anyone who has a basic understanding of what a computer is can start prafiting from his
knowledge. The book explains how to profit either from ane's own efforts, or through hiring someane else. The book
does not require extensive background in computers, and is directed at the average personwho has some interestin
the growing computer market.

2. The book contains a great deal of information about how to offer a computer service or program. This
information is readily adaptable to the COMPUCOLOR Il

3. The book is informative and offers interesting advice to anyone who desires to profit from perscnal
computers. It gives some new ideas an how to sellin this specialized market. For the person with a serious interest in
selling software, the book is certainly recommended.

USERS NEwWS

clubs

Those of you in the Chicago area will be pleased to know that a COMPUCOLOR Il users/discussion group has
been formed. It will be a sub-section of CACHE, the Chicago Area Camputer Hobbyist Exchange, and willmeet at the
regular CACHE meetings — every third Sunday at DeVry Institute of Technology. For further information, contact
Bill Cody, who is organizing the discussion group. He can be reached at (312) 973-4237.

The Canadian Users Greoup has a new president, Doug Peel. He can be reached at 21 Dersingham Crest,
Thornhill, Ontario, CANADA L3T4P5. The phone number is (416) 751-8421. Doug's company, Quality Software
Assaciates, has just come out with an entertainment disk that includes the popular arcade game INVADERS, with
sound that doesn’t require Soundware. The disk also has versions of Battleship and tic-tac-toe. The disk is marketed
through Compucoclor dealers or it can be purchased directly from Quality Software.

correapondants

Any users in the Anchorage area can contact:

Arthur Lawton, Jr.
SRA Box 1721A
Anchorage, AK 89507

He'd like to get some dialogue going with fellow COMPUCOLOR i owners. And in Toledo, Ohio,

Doug Loomis
5850 Yarmouth
Toledo, OH 43523

would like to start a group of users in his area. If you're in northern Ohic, drap him a line.

creativity abounds

One of the COMPUCOLDR Il owners in the Huntsville, Alabama area has an artistic bent. His name is Tany
O'Neil and he manufactures solid bronze belt buckles customized ta any design specifications. His most recent
effort is the ISC logo. He has cast it in a 2x3 chunk of bronze which fits belts up ta an inch and a half wide. If you're
interested in sporting this designer label, priced at $8.00, order from

The Bronze Bear
P.0. Box 2251
Huntsville, AL 35804

Postage is $1 domestic, $2 foreign.

hiatory library

Graphic-History, a company in Atlanta, Georgia, has developed a fascinating package for the COMPUCOLOR I
which uses color and graphics to describe World War 1I's Normandy Invasion. The program is a good one — easy to
use and very informative. The end-user price is $33.95 (plus $2.00 shipping) and the package, which includes a
Sof-Disk and documentation, can be abtained from:

Graphic-Histary
39 Executive Park Dr., NE
Atlanta, GA 30329

For more information, call Mark Whitworth or Carlton Joyce at (404) 321-7810. Graphic History is working on a
series of historical programs that witll become available aver the next year.

18

AL
Intelligent ystems Corp..

225 Technology Park/Atlanta
Norcross, Georgia 30092
Telephone (404) 449-5961

TWX 810-766-1581

