
Colorcue

Aug/Sept I982 $2.

Colorcue
A bi-monthly publication by and for
Intecolor and Compucolor Users

Editors:
Ben Barlow
David B. Suits August/September 1982

Volume 5 , N.Imber 1 Compuserve: 70045,1062

3 Editors• Notes

5 Reader Feedback

7 FORTRAN Programming, by Howard Rosen
An overview for beginners

9 Plot 3D Figures with FORTRAN 80, by Doug van Putte
Faster than a speeding BASIC program

13 A Music TUtorial Using the Compucolor II and
Soundware, by D. B. Grant
Notes for the real begginer

17 Assembly Language Programming, By Ben Barlow
Part VII: M80 -- The Macro Assembler

25 Another Debugger Bug, by Joseph Norris
Help for V9.80 machines

25 Compucolors For Sale

4, 15, 23 Tech Tips

Advertisers: A good way to get in touch with potential customers is through
the pages of COLORCUK. You will find our advertising policies attractive.
Write for details.

Authors: This is a user-oriented and user-supported publication. Your
articles, tips, hints, programs, etc. are required to make it go. Write
or scribble your ideas down; we'll edit them and provide all artwork. Send
your articles or write for information.

COLORCUE is published bi-monthly. Subscriptions are US$12/year in the
U.S., Canada and Mexico, and US$24 (includes air mail postage) elsewhere.
Some back isaues are available. All editorial and subscription correspon
dence should be addressed to COLORCUK, 161 Brookside Dr., Rochester, NY
14618, USA. All articles in COLORCUE are checked for accuracy to the best
of our ability, but they are NOT guaranteed to be error free.

-

Editors'
Notes
Considering the ping pong history of
Color cue, I'm sure you're glad to see
this issue arrive. We appologize for its
lateness; what originally was a wait to
determine whether or not renewals would
justify continued publication turned into
a wait to see just how many renewals we'd
have to determine our press run, and then
some experiments at reformatting failed,
and it's just added up to more time than
we thought. We'll try to get back on
track.

Many thanks to all of you who resub
scribed. Our spirits were flagging in
midsummer, but renewals picked up, passed
the number we felt we needed to continue,
and, in fact, are still trickling in.

Late Breaking News!
(And Questions.)

Susan Sheridan, a past Colorcue editor
many of you may remember, has given birth
to a bouncing seven pound boy, her first
child. Congratulations, Susan!

David B. Suits, a current Colorcue editor
has recently returned from a stint in
California, programming a game for Walt
Disney Production's Epcot center in
Orlando, Florida. Epcot will use ISC com
puters to control rides, as well as run
games of the type David wrote, which
visitors will be able to play as they
stand in line. Look for it! It's a taxi
driving game, and the player "drives" a
taxi across town by moving his finger
over a touch sensitive screen.

The Source, a popular telecomputing com
pany which until now has concentrated on
the home market, is being forced by
recent losses to shift its focus to busi
ness user, reports Data Communications
magazine in its Sept.1ssue-:-ft- giv--es-an
interesting comparison of prices for the
Source (23,000 subscribers) and Compu
serve (28,000).

Vance Pinter is looking for information
on how to connect and handshake with a
Diablo 630 printer. Anyone with informa
tion, please drop Vance a note: P 0 Box
230, Columbus, GA 31902.

Andy Mau is interested in forming a user
group in the NYC area. If you're interes
ted in participating, write Andy at 5
Eldridge Street, Ground Floor, New York,
NY 10002.

CUWEST, an active group in Australia, has
told us of an excellent screen editor
produced by Doug Pankhurst in another
Australian user group. Called COLORTEXT,
it's filled with features, like merging
files, search and replace, search and
delete, and more. For information, write
to Doug Grant, CUWEST Librarian, 2 Brook
side Ave., South Perth, Western Australia
6151.

ISC News: New products include CATS 80, a
computer augmented training package,
which allows a trainer to " ••• present
material to a student in any combina
tions of text, color graphic displays
(both static and animated) or with
interactive audio and interactive video."
Spectra-Text, the word proceesing package
running on ISC' s CP/M machines,is now
available in a Spanish language version.
ISC is making a big push with its Execu
tive Presentation System, a package which
can create graphic presentations for 35mm
slides, overhead projector transparen
cies, or paper prints.

Vendor News

Jim Helms, 1121 Warbler, Kerrville, TX,
78028 (NOTE: This is his NEW address) has
a host of programs available, and more
coming. They're all written in assembly
language, so they're quite fast. The list
includes a Personal Database, Cross
Reference Genera tor, General Ledger,
Screen Editor, Assembler, Disk Editor,
some games, and assorted other utilities.
For several months now I have been using
his screen editor I assembler combination
which loads into my Devlin RAM board at
4000H. His programs have certainly made
my assembly language programming more ef
ficient! The assembler has some clever
features (such as a printer driver and an
excellent screen display during program

3

listing). The screen editor is top notch:
it has all the functions of the ISC
screen editor, plus some notable extras.
You can merge files, copy blocks of text
from one part of the document to another,
and delete blocks. You can search and
replace text. A status line at the bottom
of the screen tells you how much memory
you have left in RAM and on the disk, and
tells you how large your file is. You can
change colors and enter special charac
ters. There are still more useful fea
tures to this editor, but I'll let you
purchase your own so you can be pleasan
tly surprised. Write to Jim for his cata
log, or contact an authorized distributor
(Quality Soft ware Associates, I CS, or
Howard Rosen).

Advert i s i ng! ! !

If you like to read advertisements, sear
ching out the small but innovative com
panies offering products to the micro
world, the Computer Shopper may be just
the thing. It's a big tabloid style of
publication chock full of ads for
hardware, software, newsletters - every
thing. They also have articles and a user
group bulletin board. More advertising
than Byte!!

Mini Book Review

Several readers have written to say that
while they en joy the occasional hardware
articles we publish, they wish we would
run a hardware tutorial series to intro
duce them to electronics and digital
logic.

As much as we'd like to do that, we have
found a book that does a much better job
than we could hope to do, and presents
the material in an easy to understand,
hands-on way that will serve the purpose
very well.

The book is Digital Electronics .:. ~ ~ands
on Learning Approach by George Young, a
professional electronics teacher who ran
a series of articles in the first issues
of Kilobaud Microcomputing. His approach
is well thought out, his technique capti
vating, and his method is simple to
follow. It won't make you an expert, but

4

after completing the book and the experi
ments in it, you'll know enough to under
stand the articles you read here, and
also those of Steve Ciarcia in BYTE. It's
published in paper back by Hayden~-copy
right 1980.

1\\>Ving?

If you're changing your address, please
let both the Post Office and us know of
your new address. (Tell us your old
address and your ne~ one.) We don't want
you to miss a single issue of Colorcue.C

Tech Tip

by David Zawislak
5739 N. California Ave.
Chicago, IL
60659

Another bell. I've been usmg this bell
on my 6.78 CCI I for over a year with no
problems. Put the circuit on a small
piece of perf board and mount it in the
upper right corner of the back of the
computer, where there are already some
holes (for the old TV antenna). Put a 16
pin wire wrap socket in the disk con
nector socket, and plug the disk connec
tor into that. The long wire wrap pins
allow a length of 3-conductor ribbon
cable from the perf board to connect
easily. Get +5V from pin 9, GND from pin
11+, and the bell trigger from pin 6. All
parts are available at Radio Shack. C

r------------------t

8 7 b 5

LM555

2 .3 "

Pin 6 273-060
onJ7 1\a./•o

Shac.k.

~--------------------

Reader Feedback

We have received a tremendous number of comments from renewing subscribers,
and many, many requests for articles on a variety of topics. We've grouped
these into major categories - we end up with nine - and present them below
with some of the ideas. As you know, Colorcue is largely a reader-written
publication; we're just the editors. But even our newest reader can write
articles with this list as a guide. Our community has a wide range of in
terests, so whatever you write and share will help someone. Check this list,
pick a topic, and write. We'll edit, so you can forget spelling, punctuation
even. The list (no order):

1. Applications
Business applications, such as insurance or construction estimating
Scientific applications, esp. those of use in a high school science lab
Engineering, statistical, mathematical programs
Home record and budget keeping
Investment analysis, portfolio management
Hobby applications - HAM radio, horse racing

2. Tutorials - How do you do something, and why.
Assembly language - continue with this.
Novice level BASIC - use of primary BASIC statements, style
Guts - how does the computer work? Nits and grits of the chips, clocks
How to create source, PRG files step by step

3. Interfacing to existing devices through existing mechanisms
Printers - various type and idiosyncrasies
Modems - best type to use, whole area of communications
Other devices such as plotters, voice synthesizers

4. Software - utilities and useful routines as distinguished from applications
Languages available, benefits and use, routines of value
Utilities - in BASIC or any language, disk directories management, etc.
Subroutines - auto repeat keyboard routine, type-ahead, graphics

5. Hardware - Purchasable and buildable
How to use the 50-pin bus for A/D conversion, music, outside interface
Repair information for Compucolor owners

6. ISC Product related
ROM and RAM maps for software for various models
Availability, compatability and differences between models
List of hardware and software suppliers
List of and/ or specific engineering changes

7. User Group corner
List of groups, what they are and do
User Group submitted articles (get your secretary going!)

8. Games (many requests for and against)
Adventure type game information
Puzzles and their solutions
Interesting BASIC games
Zork adaptations

9. Reviews
Books, games, packages, hardware, anything applicable

5

6

H 0 W A R D R 0 S E Nt I N C.

LEDGER

P.O. Box 434
Huntingdon Valle~t Pa.
19006
(215)-464-7145

BUSINESS SOFTWARE

Ever~ business and hoMe should have this prograM.
LEDGER allows ~ou to do a Receipt page, a
DispersMent page, a Dues Collection List, a 8udgett
and an~ other forM that ~ou Ma~ have developed that
uses rows & coluMns for nuMerical data storage with
Titles. This eas~ and useful to use prograM allows
31 coluMns of data, and a 32nd coluMn totals e ach
row. There are 80 rows for each coluMn and coluMn
totals. InterMediate row sub-total arithMetic is
user defined. The arithMetic functions perMitted
are +t-t*tlt=• Savingt Loadingt and Replacing data
to . the File Control S~steM <FCS)t Printing the
Ledger sheett and eas~ trial entries and changes
Make this a power-house. Requires 32K RAM and
117-kes ke~board.

LEDGER disk includes LEDGER, Instructions,
DRIVER, & Printer Driver Instructions.

PRINTER

price 75.00

PERSONAL DATA BASE
PDB written in AsseMbl~ Language allows ~ou to
create a data base file consisting of data base
records. Records are coMposed of a Mix of literal
and nuMerical fields as required. The records Ma~
then be used for statistical analssist Mail Merge
insertions for the Mail Merge word processort data
storaget retreival and sorting. Records Ma~ be
added, changedt deletedt & searched. 32K holds
1200 records.

Personal Database II price 85.00
Options:

Plotting prograM - screen/printer price
Distribution Anal~sis - Statistics price
Encode/Decode Data/Hold Files price
Math Option I - <+t-t*tl> price
Math Option II - <St+t-> price
ForM Processing price
Left/Right Justification price
Mail Merge Insertion price

NOTE: PERSONAL DATA BASE and an~ 4 options priced
discount.

30.00
30.00
15.00
15.00
15.00
35.00
10.00
20.00

at 10/.

EXECUTIVE WORD PROCESSOR
MAIL MERGE WORD PROCESSOR

price 299.00
price 349.00

FORTRAN Program1ning

by Howard Rosen
P.O. Box 434
Huntingdon Valley, PA 19006
(215) 464-7145

Instead of a series of lectures on the FORTRAN language, the approach will be to
simulate sitting at a Compucolor II (CCII) and writing short, but executable,
FORTRAN programs.

The first step will be writing the source code (the program) with the EDITOR (an
ASCII editor such as the SCREEN EDITOR or the TEXT EDITOR, but not FREDI; he's
strictly for BASIC). Since FORTRAN code must start in column 7 or greater, the TAB
key will be pressed prior to writing any line of code except for statement labels
which appear anywhere in columns 1 through 5 and are numbers. A "C" in column 1
allows that line to be a non-executable comment line and any character in column 6
is for the purpose of making that line a continuation of the previous line. Our
first program will simply write a line to the screen. I'm going to use the SCREEN
EDITOR for writing my program. Remember, you must have the FORTRAN disk to compile,
link, and attach the library. More about that later.

Load the editor and reply to the prompt with:

FORO 1 .FOR

The file for a source code named FORO !.FOR has now been initiated, but nothing has
been written to the disk, yet. Let us begin. Remember to TAB.

WRITE (3, 10000)
DO 1000 I= 1,10
INX = INX + I
WRITE(3,11000)INX,DINX

1000 CONTINUE
WRITE(3,12000)
STOP

10000 FORMAT(' THE INTEGER AND FLOATING POINT VALUES
1APPEAR BELOW'/10X, 1INTEGER 1 ,8X,'FLOATING POINT'/)

11000 FORMAT(11X,I5, 14X,F6.2)
12000 FORMAT('O YOU HAVE SEEN THE CCII IN FORTRAN')

END

The above progam represents a very simple but direct approach to starting in FOR
TRAN. If you feel you've made no errors, then save the program by pressing the FNl
key.

Next, the source program (FOROl.FOR which you just created) must be compiled. If you
have one disk drive, remove the source disk and insert the FORTRAN compiler disk. If
you have two disk drives, insert the compiler in drivE;r CD 1:

7

ONE DRIVE TWO DRIVES

FCS>RUN F80 FCS>RUN 1 :F80
Remove compiler disk Leave disks in drives
Replace program disk
F80>FOR01 F80>FOR01
F80>control C F80>control c

Remove program disk Leave disks in drives
Insert compiler disk
FCS>RUN L80 FCS>RUN 1 :L80
L80>FOR01 L80>FOR01
Remove program disk Remove compiler disk
Insert Library disk Insert library disk
L80>FORLIB/S L80>1 :FORLIB/s

(Relax. This will take several minutes.)

Remove library disk
Insert program disk
L80>FOR01/N
L80>IE

Leave disks in drives

L80>FOR01/N
L80>/E

At this time the program (all linked) is being written to disk. When finished, get
the disk directory and notice that FORO l.FOR, FORO l.REL and FORO l.PRG are all on
disk. FCS)RUN FORO! will execute your program.

There is another way to link and execute a FORTRAN program. There is a relocatable
element called EQ.REL on the FORTRAN compiler/linker disk. With EQ.REL, the absoute
element will use less space. Follow the steps below to experiment with EQ.REL.

Insert compiler disk Insert compiler disk in DC1
FCS>RUN L80 FCS>RUN 1 :L80
L80>/ P:AFOO L80>/P:AFOO
Insert program disk
L80>FOR01 L80>FOR01
Insert compiler disk
L80>EQ L80>1 :EQ
Insert program disk
L80>FOR01/N/E L80>FOR01/N/E
Insert library disk Insert library di sk in CD1
FCS>RUN LIB FCS>RUN 1 :LIB
Insert program disk
FCS>RUN FOR01 FCS>RUN FOR01

The PLOT command from BASIC is not available, but it can be simulated by deciaring a
type LOGICAL orB YTE in your FORTRAN Program.

BYTE RED,GREEN,YELLOW,BLUE,CR,LF,ERASE
DATA RED,GREEN,YELLOW,BLUE/17,18,19/
DATA CR,LF,ERASE/13,10 ,12 /

Now write to the 1 o g i c a 1 unit 3 (L UN /13) , the screen, with a non- F 0 R M.A. T ted w r i t e
statement, e.g.:

WRITE(3)ERASE,YELLOW

That staternent ~ill e ras e the screen and prepare for the screen display to be i r1

ye 1 low. IC

8

Plot 30 Figures ~ith FORTRAN 80

by Doug Van Putte
18 Cross Bow Drive
Rochester, NY 14-624-

FORTRAN 80 is a superior language for
wn t1ng 30 graphics programs for the
Compucolor or Intecolor because it han
dles the math operations very effec
tively. When Howard Rosen read my article
"30 Graphics" in the Feb/Mar issue of
COLORCUE he called to suggest that
FORTRAN programming was an excellent way
to improve the speed of the many math
operations required to move objects
around the screen. Thanks to Howard, I
accepted the challenge of converting the
primary 30 operation of rotation of an
object to a structured FORTRAN program.

The first hurdle to pass was to under
stand the method of plotting to the
screen. While BASIC has the convenient
PLOT statement, screen graphics in FOR
TRAN 80 require the use of LOGICAL vari
ables. After the chosen variables are
defined by the LOGICAL statement, they
can be assigned the required plot values
identical to the familiar BASIC PLOT
values. Plotting is then achieved by the
unformatted WRITE(LU) AI statement, where
L U stands for the device logical unit,
and AI are the plot variables. For
example, to plot a point, x,y, consider
the little program in Listing 1.

Listing 1

PROGRAM PLOTXY
C DEFINE VARIABLES AS LOGICAL

LOGICAL P2,LX,LY,P255
C ASSIGN VARIABLES PLOT VALUES

P2 = 2
P255 = 255
LX = 40
LY = 50

C PLOT THE POINT X,Y ON THE SCREEN
WRITE(3) P2,LX,LY,P255
END

The value of (3) for the Logical Unit is
the device number of the console. So, the
unformatted WRITE is the statement that
the programmer uses to convey values
directly to the memory, just like BASIC's
PLOT statement.

This all seems somewhat awkward, doesn't
it? Keep in mind that you end up with
fast, compiled PRG programs or sub
programs which can solve complex problems
with double precision. The subprograms
can become entries in a personal library
which can be linked and run with a main
program at any time. In addition, a large
library of math functions are at the
programmer's disposal. Another strong
advantage is that the source code, "as
is", can probably be compiled on just
about any micro which supports FORTRAN
80. This should give the program entre
preneur a broader market for his programs
and the venerable Compucolor owner some
comfort that his source programs will be
useable on his next machine.

Now consider the concept of a 30 plotting
program which draws a box and rotates it
in 10 degree increments sequentially
about all three axes, changing its color
on each rotation. The functions in flow
chart form are given in Figure 1.

Since wanted to use subprograms to
perform the functions in the boxes, the
next learning experience was under
standing how to communicate between the
main program and a subprogram. Any vari
able that is passed to and from a sub
program must be identified in the CALL
statement and in the SUBROUTINE def
inition statement. The main program
variable names are used in the CALL
statement, while dummy variable names are

9

used 1n the SUBROUTINE statement.
Recognize, however , that the forms of the
variable lists in both statements must be
identical. The dummy names in the SUB
ROUTINE statement are changed by FORTRAN
a t execu tion tim e so th ings come out
right. This concept allows a subprogram
to be used with any main program with the
proper CALL. Also, in the CALL variable
list the actual dimensions of a main
program array must be present following
the array name in the list.

Several other hard-learned rules are
related to dimensioning and to the
definition of variables. The first rule
is that arrays and dummy arrays must be
dimensioned where they are used in both
the main program and the subprogram. The
last rule which was troublesome is that
specially defined variables must be
defined locally where they are used also.
There is no "global" variable concept in
FORTRAN 80. Further development of these
ideas plus much more can be found in
Microsoft's FORTRAN 80 manual.

The FORTRAN 80 source program which
demonstrates the above features is given
in Listing 2. After the data is loaded by
the program, the four main functions are
performed by the general subprograms. The
equations in the subprograms are written
as explicitly as possible to eliminate
the necessity for DO loops which slow
down the execution. If you have FORTRAN
80, type in the program with an editor,
then compile, link and run the PRG pro
gram and watch the results. '\lext, put in

MULT. ROT. CHANGE
MAT. * I---.-! COLOR
OBJ. PTS.

your own 3D figure in array P, your ow:-1
value of "NOPTS", and repeat.

The subprograms can be used in any sum
lar program with some limitations, dS

fo 11 ows:

1. PL TOBJ -- An object with any
number of connected points can
be drawn. If your object con
tains some figures which are
not connected, you will need
to CAL L the subprogram for
each figure.

2. INIIv\AT This routine simply
3* 3 transform initializes the

matrix.

3. ROTf\1\A T -- This establishes the
element values for the 3*3
rotation matrix, depending
upon the axis of rotation and
the rotation angle.

4. ML TMA T -- This multiplies the
3* 3 rotation matrix with each
object point to compute the
new coordinates of the object.

Frankly, like the prospects of using
FORTRAN on my Compucolor for the advan
tages I have stated. But beyond that, I
was schooled and experienced in FORTRAN
long before BASIC and I'd forgotten how
comfortable it feels. Are there any FOR
TRAN 80 people out there besides Howard
and myself? [Yes! There's more to come
next issue. -- eds.] As Howard said to
me, "Try FORTRAN 80. You'll like it!" C

COMPUTE i
ROTATION
MATRIX

CHANGE
y ROT. AXIS

INCREMENT
ANGLE
6 TIMES2_j

n ADD 10 DEG.
ROT. ANGLE

Figure 1

10

Listing 2

PROGRAM PLOT3D
DIMENSION P(3,18),G(3,18),T(3,3),I1(3),I2(3),
DEG (3) , TI (3, 3)
LOGICAL CLEAR,COLOR,P2,P242,P255
DATA P/0.0,0.0,0.0,30.0,0.0,0.0,30.0,30.0,0.0,

1 30.0,30.0,30.0,30.0,30.0,0.0,0.0,30.0,0.0,
2 o.o,o.o,o.o,o.o,o.o,3o.o,o.o,3o.o,3o.o,
3 30.0,30.0,30.0,0.0,30.0,30.0,0.0,30.0,0.0,
4 o.o,o.o,o.o,o.o,o.o,3o.o,3o.o,o.o,3o.o,
5 30.0,30.0,30.0,30.0,0.0,30.0,30.0,0.0,0.0/
6 I 1 , I2/ 1 , 1 , 2, 2, 3, 3/
7 TI/1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0/
8 IB,NOPTS,NS,ANGLE,DX,DY/16,18,1,10.0,60.0,60.0/
9 P2,P242,P255,CLEAR/2,242,255,12/

CALL PLTOBJ (NS,NOPTS,P,3,18,CLEAR,DX,DY,P2,P242,P255)
DO 30 IR=.1 , 3
DO 10 JR=1,6
COLOR=IB+JR
WRITE(3)COLOR
CALL INIMAT (T,3,3,TI,3,3)
CALL ROTMAT (T,3,3,I1,3,I2,3,IR,ANGLE)
CALL MLTMAT (NOPTS,P,3,18,T,3,3)
CALL PLTOBJ (NS,NOPTS,P,3,18,CLEAR,DX,DY,P2,P242,P255)

30 CONTINUE
GO TO 1
END
SUBROUTINE PLTOBJ(NDS,NODPTS,DP,M1,M2,DCLEAR,DDX,DDY,
PD2,PD242,PD255)
DIMENSION DP(M1,M2)
LOGICAL LX,LY,PD2,PD242,PD255,DCLEAR
WRITE(3)DCLEAR
LX=DP(1,NDS)+DDX
LY:DP(2,NDS)+DDY
WRITE(3)PD2,LX,LY,PD242
NSP=NDS+1
DO 10 I=NSP,NODPTS
LX=DP(1,I)+DDX
LY=DP(2,I)+DDY
WRITE(3)LX,LY

10 CONTINUE
WRITE(3)PD255
RETURN
END
SUBROUTINE ROTMAT(DT,N3,N4,ID1,N5,ID2,N6,II,DANGLE)
DIMENSION DT(N3,N4),ID1(N5),ID2(N6)
RADIAN=(3.14159*DANGLE)/180.0
K=ID1 (II)
J=ID2(II)
DT(K,K)=COS(RADIAN)
DT(K,J)=-SIN(RADIAN)
DT(J,K)=SIN(RADIAN)
DT(J,J):COS(RADIAN)

II

i

I
I
I
I

I
I

I
I

10

RETURN
END
SUBROUTINE INIMAT (DT,M1,M2,DTI,M3,M4)
DIMENSION DT(M1,M2),DTI(M3,M4)
DO 10 I= 1, M 1
DO 10 J=1 ,M4
DT (I, J) =DTI (I, J)
RETURN
END
SUBROUTINE MLTMAT (NODPTS,DP,M1,M2,DT,M3,M4)
DIMENSION DP(M1,M2),DT(M3,M4)
DO 10 I=1,NODPTS
PX=DP(1,I)
PY=DP(2,I)
PZ=DP(3,I)

l __ 10-

DP(1 ,I)=PX*DT(1,1)+PY*DT(1 ,2)+PZ*DT(1 ,3)
DP(2,I)=PX*DT(2,1)+PY*DT(2,2)+PZ*DT(2,3)
DP(3,I)=PX*DT(3,1)+PY*DT(3,2)+PZ*DT(3,3)
CONTINUE
ii.ETURN
END

8 K R A M B 0 A R D

8K OF ADDITIONAL RAM ADDRESSED AT 4000H-5FFFH, THE SPACE UNUSED

BY YOUR COMPUCOLOR AND AVAILABLE FOR PROM. Now You CAN usE

ADDITIONAL RAM INSTEAD, ALLOWING YOU TO INCREASE THE MAXIMUM RAM

OF YOUR MACHINE TO 40K, !NSTALLATION IS EASY, REQUIRING A SMALL

MODIFICATION TO THE LOGIC BOARD. !T IS COMPATIBLE WITH THE

FREPOST CoMPUTERS, !Nc., BANK SELECT ROM BoARD.

US $65.00 PLUS $2,50 POSTAGE AND HANDLING

ToM DEVLIN
3809 AIRPORT ROAD
WATERFORD, MI 48095

FoR MORE INFORMATION, SEND SASE OR SEE APRIL/MAY (OLORCUE.

--------·------------'

12

..

A Musie Tutorial
Using the Compueolor II

and Soundw'arelM

by D. B. Grant
2 Brookside Avenue
South Perth 6151
Western Australia

(Reprinted by permission from the CUWEST
users group newsletter.)

Music is made up of notes of varying
sounds and varying lengths in varying
arrangements, and that is about all that
we need to know.

If you look at the sheet of music you
have chosen for your first "masterpiece",
you will notice that it has two sets of 5
lines. One set, correctly called the
Treble Staff, is the only one in which we
are interested. The other staff is called
the Bass Staff.

Figure 1

The large S type figure on the Treble
Staff is a Clef, but more importantly you
will notice that it cuts through one line
four times. This line, for our purposes
only, is called H, and you must fix that
firmly in your mind while you are writing
music for your computer. As soon as you
finish with the computer you must forget
"H", because there is no such note in
music. (There will be other things which
we will use that will apply only to us,
so watch who you air your musical know
ledge with.)

H is the middle key on the second line of
the keyboard, and, with the addition of a
"ledger line", we can cheat again and
make H the middle of our musical range of
notes.

'S' is on our "ledger line" and is nor
mally called MIDDLE C in all other music.

If possible, the music you wish to com
pose should come within the range "A" to
":". These are our "white keys". A piano
keyboard has a line of white keys plus a
lesser number of black keys in groups of
2s and 3s. Our equivalents for the black
keys are E R Y U I P @.

If you are able to play the piano "by
ear", you could now go ahead and compose.
For the rest of you ... read on.

With your Soundware unit plugged into the
modem port at the back of the computer,
insert the Soundware disk and hit AUTO to
bring up the MENU, then hit M for Music
Composer. After the Music Composer dis
play comes up on the screen, it is best
to wait a few moments before starting
work. Read the list of commands to make
life easier later on.

The keys are all named for you, but more
theory is needed at this stage.

Back to the music. We have all the white
keys named on our staff, but not the
black keys. The black keys are used when
you see an odd looking "b" or "II" on the
line or in the space. The "b" means that
the original note is to be "flat", and
the "II" means that the original note is
to be "sharp". For instance, if on the
line which is our "D" line there is also
a "b", we must hit "E" instead of "D". If
we had a "II" on the "D" line, we would
need to hit "R ". Try these three keys and
note the difference in sound. If the "b"
or "II" is placed at the beginning of your

I3

p1ece
s 1 gtJ'
1nusic
would
whose

of music right near the Treble Clef
then every "D" m the piece of
would be "flat" or "sharp", as

any other note on whose line or in
space these signs were placed.

However, there are exceptions to this
rule, and you'd best know about them. If
a note has been "flat" or "sharp", and
you then see a " q " sign near one of
the notes you are to play, then--and only
then--that note reverts to the original
note until the next BAR LINE, unless told
otherwise.

What's a Bar Line? This is a vertical
1 ine from top to bottom of the staff, and
there are lots of them. If a note has not
been flat or sharp from the beginning of
the music and you suddenly carne across a
flat or sharp sign, then that also
remains in force only until the next bar
line, unless told otherwise. This may
sound a little strange, but so will the
mus1c if you don't get it right.

Now let's go on to the varying lengths
part of the notes. By a very basic code a
musician knows the duration of any note
he is to play, and we can easily learn
this code.

An outline of an egg (on its side) 1s
called a whole note:

()

Hang a tail on this egg and it 1s halved
in duration (a half note):

J
Fill in the hole and we have a quarter
note:

Hang a flag
eighth note:

on the tail and, yes, a one

Another flag makes it halve agam:

)i
All these code signs have names, but who
cares? We don't! Look at a piece of music
and see how many types you can find. They
won't all be there, thank Heaven; some
peices of music use only one or two of
them, and, with a bit of luck, you'll
have chosen one such piece.

14

One last point on note duration is that a
dot right near the note means that the
duration of the note is increased by 50%,
and you may as well know the reason for
this too. The Bar Lines, as well as
telling you about changes in sounds (when
necessary) also tell you about the RHYTHM
of the piece. Have a look at the very
beginning of the music again and you will
see two numbers, for example: 4/4 3/4
2/4 6/8, or just a large "C". The
bottom number tells you that the basic
note is a quarter note if it is a 4, or
an eighth note if it is 8. The top number
tells you how many such basic notes are
to be between any two Bar Lines, or the
equivalent of this number of basic notes.
There rnay be 4 quarter notes, 1 whole
note, 2 quarters plus 4 eighths, or any
other combination, but they must add up
to the same each time, between any two
bar lines. The large "C" at the start is
the same as 4/4. Add up the notes in a
few different Bars (the space between two
bar lines) and you will usually get the
same answer ... with a few exceptions; so
sorry about this.

The exceptions are that, often in the gap
between the Clef Sign and the first bar
line there are not enough notes to add up
to the required number, but if you look
at the very last bar you will most likely
find the balance ... with a few ex
ceptions! These last exceptions (hooray!)
are the RESTS.

an eighth rest

t = a quarter rest

--- :: a half rest

---- = a whole rest

Okay, NOW add 'em up and they will
always, always be right, and you must
keep them that way in your composing too.
If you don't you will not get the results
you would prefer. Don't forget the fact
that a dot after a note increases the
duration of that note by 50%.

If you are still keen to compose, then we
will begin.

Hit ERASE PAGE then SPACE BAR to clear
all those notes you tried out earlier,

then hit 8 followed by S. You will hear a
long note. Now try all the other numbers
1 to 9, in any order, to hear the dif
ferent lengths available, for any note.

Hit Right Arrow and you will hear a re
play of all the notes you have entered.

Hit ERASE PAGE again if you tried out any
additional notes and you will be left
with only the S. Hit 8 then D F G H J K L
followed by Right Arrow and you will hear
a scale of long notes.

Hit L then 4 K J H G F D S S (again) 2 D
FGHJKL.

Now try Right Arrow to hear the tune you
have entered.

You will hear the scale in three ver
sions; first with long notes, then with
notes half as long, and then half again.
You can replay these scales as many times
as you wish by hitting Right Arrow after
each replay. When you've digested what
you have entered, hit ERASE PAGE to clear
it all, except the very first note ... in
this case S.

The only way you will get rid of that
first note is by hitting the Space Bar.
This only applies to the first note of
any tune.

If you make an error while entering a
tune, you delete the last note by hitting
the Left Arrow, and you can keep on going
back deleting notes one at a time with
Left Arrow. (And the Right Arrow will NOT
restore them.)

Note that when you set the length of a

be 12 long, and you can't use a length
over 9 (or under 1).

Look at your first note and compare its
position to Figure l. Hit the appropriate
key, followed by the length number you
need. Go on to your next note and do the
same. If this second note is to be the
same length as the first note then you
don't have to hit a length number at all;
you only have to do that when you get a
change in length, and then you hit the
new length number AFTER the note you wish
to change as this will then change the
length of that note and all subsequent
notes until you change it again. If you
hit a wrong length number then you only
need to hit the right length number to
alter it; it will change only the length
of the last note entered.

Hit Right Arrow often to hear how you are
going. Left Arrow deletes the last note
only, including rests. Oh yes. Rests. If
you come to a sign denoting a rest, then
you enter it at its correct length by
hitting Space Bar followed by the length
of the rest.

The tune is the thing that all this is
about, and when you have passed your own
examination then you save the tune by
hitting B. You will be asked for a name
for your tune (less than 7 letters), and
after a pause your music will be saved.
You hit C to have any music loaded from
disk, then Right Arrow to hear it played.

It's a good idea to write down the names
of the tunes you save, as this saves you
the bother of going to the Directory to
find out.

note on your scales, all the notes that Lots of music to you. II:
followed were also at that length until
you changed the length.

Before you start on your tune you must
decide just what length you are going to
make your shortest note. Glance through
the piece and find the shortest note. If
tn a 3/4 tune (waltz) the shortest note
1s a ~ then rnake it a 2 and you will
find that you will be using 4 and 6 for
d and d· . If you come upon an eighth

note ./' then you can use 1 for that
note. If you had used 4 for your shortest
note then you would be in for trouble
when you came to d. as it would need to

Tech Tip

By David B. Suits

The space bar on the ISC keyboard is
notoriously stiff. The stiffness comes
not from the bar itself, but from the
strong spring in the switch. Unsoldering
the space bar switch and swapping it with
another (e.g., the CPU reset switch) is
an ideal and inexpensive solution. II:

I5

*

*

Add 16K RAM
TO YOUR 16K COMPUCOLOR 11 (V6.78, V8.79 & 3621)

for on I y $10 0 , u.s.)

• Completely assembled and tested.

• No soldering required. Just plug in.

• Full installation instructions included.

• All RAM chips are in sockets (8).
• Spare RAM CHIP included.

• 90 Day warranty.

• Price includes air mail costs. (Aust.=$100 Canada =$130)

PROGRAM PACKAGE INSTALLERS,

8 Hillcrest Drive,

DARLINGTON,

WESTERN AUSTRALIA 6070

Add lower case
TO YOUR COMPUCOLOR 11 (V6. 78, V8. 79 & 3621)

for only $29 (U.S.)

• Completely assembled and tested.

• No soldering required. Just plug 1n.

• Full installation instructions included.

• 2716 EPROM in socket.

• Switchable between Lm,.,er case and graphics. (switch incl.)

• 90 Day warranty.

• Price includes air mail costs. (Aust.=$29, Canada=~39)

PROGRAM PACKAGE INSTALLERS,
8 Hillcrest Drive,

DARLINGTON,

WESTERN AUSTRALIA 6070

*

*

Assembly Language
Programming

by Ben Bar low

Part VII:
M80 - the Macro Assembler

The Macro Assembler can save you time
writing and debugging programs! and it
can save space on your disks. It's a
1 i t t 1 e t o u g he r t o u s e t h a r, t he r e g u 1 a r
A~Se111bler, but the benefits are well
worth the learning if you do any kind of
ser1ous assembly language work. This
small tutorial on M80, the Macro Assem
bler, will explain the benefits, tell
you how to use the package itself, and
explain how to take advantage of the
major features that M80 offers. First,
let's examine the benefits.

l'vbdularity
M80 allows you to break your program into
functions (a fancy term for rational
pieces), and separately code and test
each function independently. L80, the
Linkage Editor supplied with the M80
assembler will combine those separate
functions for you into a complete pro
gram. The smaller chunks of code are
easier to edit, they take less disk
space, and best of all, if you define
them properly, they are easily reused -
without reassembly. So you save time in
the edit-assemble-test phase, you save
disk space. and you save time writing new
programs when you can reuse existing fun
ctions.

Some Definitions
What? Wait a minute. What is a "Linkage
Editor", a function- a "rational piece"?
OK. A little definition rnay O)e in order.
Starting with the source file, a text
file of assembly languagelnst ructions
constructed wtth an editor of some sort
or another (the screen editor or its
var iants are good choices), an assembler
(the .Asse:nb ler or \13 0) reads t~eso-urce

file and translates it into ~bject code
which it places into a file. Object code
is not quite machine code, but is much
closer than the original source. The
Assembler produces an object file of type
LDA which can subsequently be LOADed and
RUN by FCS; but M80 produces a
gELocatable object r:!_lodule. The REL (for
short) file cannot be LOADed and RUN by
FCS, because FCS does not understand its
format. Being "relocatable" means that
the object code in the module can be
placed anywhere in memory. M80 does not
generate absolute addresses, but instead
produces "offsets" to a zero origin. (An
origin can be specified, but the object
module produced is not then relocatable,
and many advantages are lost. Unless
necessary, don't put ORG statements into
your M80 source files.) The REL file must
be processed by !::.§.Qz. .!_b~ Lin~~g~ ~ditor
before it can be used. The linkage editor
takes the REL file (and possibly other
previously assembled REL files) and com
bines them, relocates them (which means
;naking all their address references
fixed), and creates a file of type PRG,
which can subsequently be RUN by FCS.
Sound complicated? I'd be lying if I said
it wasn't, and you wouldn't believe me
anyway. The User's Manual is good for
reference, but useless for training. It
does say, however, that it " ... is not
intended to serve as instructional
material, and presumes the user has sub
stantial knowledge of assembly language
programming." Some perseverance, a little
experimentation, and careful reading
should get you off the ground, though.

Reusability
Being able to combine previous work with

17

new work is probably the biggest benefit
of the whole package. As an example, you
could design a small routine (function)
to read a joystick input and return a
value. Once written and tested (probably
with a small driver, or test program) the
function can be used over and over simply
by linking it in with the other parts of
the program. You know it works, and you
know how to use it. A set of screen
handling routines, or the Sort routine
published in a past Colorcue are other
examples of reusable functions. Once done
and working, they stay that way, and you
don't need to spend time retyping or
editing or assembling them. Your program
ming style has probably benefitted by
your trying to decompose the overall
problem into a set of independent
functions. So much for modularity.

Macros
The second big benefit of M80 is the
ability to use macros in your source
code. Like the REL files which perform
specific functions and are reusable,
macros define functions in source lan
guage and permit their reuse, with the
same benefits as modularity. Once
developed, a macro can be reused, you
know it will generate the right code, and
you save coding and debugging time. A
macro is a named set of source statements
appearing at the front of your source
file (or sucked in from a collection of
them on a disk, called a macro library)
which M80 will substitute for a call upon
that macro - a reference to its name. A
macro is really a sort of shorthand. Its
definition by name at the front of the
source says to M80, in effect, "Here's a

set of assembly language instructions
named (whatever). As you read along and
come to the op-code (whatever>, substi
tute these instructions." That seems easy
enough. Things get a little more compli
cated because the macro can have
argumen,ts, and can do some limited
testing of those arguments during the
generation steps to modify the code pro
duced, but we'll get into that later.
(The concept of macros is not unique to
assembly languages. Many high level lan
guages derive a lot of power from their
use. PL/ 1 and C come immediately to
mind.) Macros can save a lot of
repetitive coding, and can reduce errors
by simplifying the instruction set.

Conditional assembly
The ability to conditionally assemble
statements can be a big help to writers
of general purpose programs, or to
writers of fancy macros. They allow a
macro to be tailored more closely to the
situation in which it is called, by gen
erating different code depending on the
presence or absence, or the type of some
of its arguments.

Exaq>les
Let's look now at some examples. We'll
develop them from the assembly language
program on page 16 of the June/July 1982
Colorcue. These programs, which colored
the entire screen, will be shown in
listings below, so if you've wrapped fish
in the June/July issue, don't despair.
First, we'll develop two useful macros,
to save registers at the entry to a
routine, and to pop them back at its
conclusion. Here is their definition:

ENTER MACRO ;begin the definition of ENTER
PUSH
PUSH
PUSH
PUSH
ENDM

EXIT MACRO
POP
POP
POP
POP
RET
ENDM

18

H
D
B
PSW

PSW
B
D
H

;save h,l (first instr to be genn'ed)
;second instruction
;third
;fourth
;end the definition

;begin the definition of EXIT

;these will be generated when EXIT is used
;end the definition

Now, let's use the macros and see what
happens. Listing 1 shows the areas of the
program where the macros are defined and
used. M80 puts a + sign before each
instruction generated by a macro. Note
that while we code only one line (ENTER
or EXIT), M80 generates four or five
instructions. That's a productivity
multiplier, and you won't have to remem
ber any longer in what order you put
things on the stack. But (there's always
one of those), we don't have quite what
we want. Although our ENTER and EXIT
macros generate code, it's not quite the
code we want. When called by FCS, as the
first routine in the example is, we must
return a value tn the B register as an
error indication. If we don't, FCS will
dtsplay a red error message of some sort
on the screen after RU'Jning our program.
So, we've got to change the EXIT macro a
bit to accept a return code for the B
register. We'll do this with condttional
a'isenbly:

test to see if an argument was given on
the call line at all. That's what the
IFNB and matching ENDIF do. IFNB stands
for IF Not Blank, and means, "if an R VAL
argument was specified, generate every
thing between here and the matching
ENDIF. M80 also provides other tests
(e.g., IFB - TF Blank) and we can put
many arguments in our macro definition,
not just one; but one illustrates the
use.

Look at the genera ted code in Listing 2.
You will quickly note that the POP of B
in the first routine is somewhat useless,
when we come along and change it two
lines later. Assuming that C, which is
part of the register pair BC, isn't
needed, that's right. We could have
tested the R VAL argument before doing the
POP B, and avoided it. If we were to do
that, though, ENTER would also have to be
changed too, so it did not PUSH B. Then
we'd have to match ENTER types and EXIT

EXIT MACRO RVAL ;begin the definition (this macro must
;replace our old EXIT macro)

POP PSW
POP B
POP D
POP H ;do the pops as before
IFNB

MVI
<RVAL>

B,RVAL
;test to see if RVAL used in macro call
;if it was, put RVAL value into B

END IF ;if RVAL was not present in call, MVI
;will not be generated.

ENDM

\'ii e can use this macro in the first
routine now, which is called by FCS.
Stmply replace the macro call we had put
tn as:

EXIT ;and return to FCS
wi t'-1:

EXIT 0 ;and return to FCS

R VAL, as coded on our macro's definition
line, is an argument. When the macro is
used, as we did immediately above with
EXIT 0, we can include or omit this argu
ment. If included, the macro will
generate a

MVI B,RVAL
instruction,:.rt.:.: i(!place R VAL with what
ever we code on the call line. With EXIT
0, it woul<i qenerate

tW[8,0
as you iTlight expect. The macro can also

types, and we're trying to simplify, not
complicate. So, at the expense of a
couple of bytes of unneeded code, we've
got generality. (If you're unwilling to
spend the two bytes, and want to write
the tightest possible code, you're
probably not interested in coding and
debugging speed.)

To complete the example, we' 11 put the
macro definitions into a library,
separate the program into two modules,
and assemble each independently. A little
absurd, given their size, but a reason
able example. Their listings are shown in
Listing 2. (Even though the first
routine, SETUP.MAC is small, it is
general purpose enough to use with any
programs you want to link into BASIC that
are entered through the CALL vector.)

:SYSTEM EQUATES - ADDRESSES OF THINGS WE'LL NEED 0000' START: ENTER
0000' E5 + PUSH H

CALLVEC EQU 33282 ;ADDRESS OF VECTOR FOR CAl 0001, D5 + PUSH D
TOPMEM EQU 32940 ;ADDRESS OF TOP OF MEMORY 0002' cs + PUSH B
SCREEN EQU 7000H ;ADDRESS OF SCREEN MEMORY 0003' F5 + PUSH PSW

ENTER MACRO 0004' 3E C3 MVI A, \JMPl
PUSH H ;BEGIN DEFINITION
PUSH D 0006' 32 8202 STA CALLVEC
PUSH B 0009' 21 001C' LXI H,CALL
PUSH PSW OOOC' 22 8203 SHLD CALLVEC+1
ENDM ;END DEFINITON

EXIT MACRO ;BEGIN DEFINITION OOOF' 21 FFFF' LXI H,START-1
POP PSW
POP B 0012' 22 BOAC SHLD TOPMEM
POP D
POP H EXIT 0

RET 0015' F1 + POP PSW
ENDM ; END DEFINITION 0016' C1 + POP 0

"
0017' D1 + POP D

START: ENTER ;MACRO: SAVE ALL REGS 0018' E1 + POP H
+ PUSH H ;BEGIN DEFINITION 0019' 06 00 + MVI B,O
+ PUSH D 0018' C9 + RET
+ PUSH B 001C' CALL: ENTER
+ PUSH 001C' ES + PUSH H

001D' 05 + PUSH 0
001E' cs + PUSH B

EXIT ;MACRO: POP REGS AND RET. OOlF' F5 + PUSH PSW

+ POP PSW
+ POP B 0020' 21 7001 LXI H,SCREEN+1

+ POP 0
+ POP H 0023' 73 LOOP: MOV M,E

+ RET
0024' 23 INX H

CALL: ENTER ;MACRO TO SAVE REGS 0025' 23 INX H
+ PUSH H ;BEGIN DEFINITION
+ PUSH D 0026' 7C MOV A,H
+ PUSH B 0027' E6 FO ANI OFOH
+ PUSH PSW 0029' FE 70 CPI O?OH

0028' CA 0023' JZ LOOP

;MACRO: POP REGS AND EXIT EXIT
+ POP PSW 002E' F1 + POP PSW

+ POP B 002F' C1 + POP B

+ POP 0 0030' D1 + POP D

+ POP H 0031' E1 + POP H

+ RET 0032' C9 + RET
END START

END START

Listing 1

Macro Definitions and Use in Program

20

The Linkage Editor
In splitting the single program into two
pieces we've created a problem for L80 to
solve; namely that of linking the two
sections into a single whole. In SETUP,
.\;\ 8 0 n o 1 on g e r " k no w s " t he add res s o f
CALL, which has been relegated to the
other program, COLSCR. So we tell 'v\80
that CALL is really external to the SETUP
source file, and not to worry. The
mechanism for that is the EXTRN state
ment, which you can see in the listing.
L80 will then know, when linking the
object modules for SETUP and COLSCR, that
locations in SETUP that refer to CALL
must be replaced with CALL's actual
address. How will L 80 know CALL's ad
dress? We've got to tell it. We do that
with the ENTRY statement you can see in
COLSCR. For correct linkage, every EXTRN
in a module must be paired with an ENTRY
in some other module. (ENTRY's can be
"left over" without harm.)

The basics of the M80 and L80 tools are
now clear. (?) Further use, reading, and
experimentation will make you an expert,
and you'll find your coding time de
creasing, and the number of projects you
can tackle increas1ng. In addition,
interesting macros or functions will make
good topics for Colorcue.

Using the Tools
The one problem rema1n1ng is actually
using the bloody things. The ISC- supplied
documentation is so poor, that once you
get a source file, it's difficult to
figure out how to assemble and link it.
Since it would be grossly unfair to stir
up your tnterest so far, and then leave
you stranded, let's look at the nitty
gritty of using M80 and L80.

Unfortunately, we haven't space to cover
source program creation with the Editors.
The documentation should help you through
that, although as I remember, I never did
master the line Editor that came on the
Assembler disk. It's best to get a copy
of a screen based editor if possible.

Once the source f tle
to run it i1to rv\80.

JS built, it's time
If you constructed

the source file with a . . \lAC file type,
'v\80 wit: be happy if you allow it to use
a defau!t. Otherwise. vou'll have tc)

specifv the file type (e.g.. .SRC) each

time. iv\80 offers several options, and
we'll cover the basic ones of L (list on
printer) and N (don't make REL file}. You
can experiment with the others on your
own. Let's go through the process step by
step. (The computer's output is in bold
type.)

1-,CS>RUN M80
H80>SETUP/N
M80>COLSCR/N
H80>(control C)

2
3
4

Step 1 simply runs M80 from your default
disk. (if you have two drives, you will
probably want one to have your editor,
M80 and L80, and the other to have the
source files and REL files.) Step 2 ass
embles the SETUP program, and Step 3
assembles the COLSCR program. For this
first pass, we just want to check for
errors, so we didn't specify list option,
and we did specify the "no REL file"
option. Errors, if there were any, would
be listed on the screen. Step 4 quits
M80. If your assemblies went cleanly,
ami t Step 4, and go on to Step 2 below.
After editing the source file to remove
the errors, let's go through the steps
again and obtain both a listing and a REL
file. (The printed output is wider than
80 columns, so set your printer up ac
cordingly, or suffer the overlap if you
can't.)

FCS>RUN M80
H80>SETUP/L
H80>COLSCR/L
H80>(control C)

1
2
3
4

Now look at your disk directory. You
should see SETUP.REL and COLSCR.REL
there. Your printer should have pages of
printed listings. On to the Linkage
Editor.

L80 has even more options than M80 did.
Again, we will select only a few to il
lustrate the process and produce a
working product, and let you extend be
yond by yourselves. The sequence of com
mands to produce a .PRG file loaded at
90CJOH (hex) a re shown:

FCS>L80
L80>/P:9000
L80>SETUP,COLSCR/M
L80>TEST/N
L80>/E

1
2
3
4
5

2I

c INCLUDE IIACS ;PULL IN IIACRO DEFS AND EQUAl C INCLUDE !'lACS ;PULL IN IIACRO DEFS AN c ;IIACRO LIBRARY AND SOliE HANDY EQUATES. c ;IIACRO LIBRARY AND SOliE HANDY EQUATES.
c c
c ;SYSTEII EQUATES - ADDRESSES OF THINGS WE ' LL NEED c ;SYSTEII EQUATES - ADDRESSES OF THINGS WE ' LL NEED
c c
c CALLVEC EQU 33282 ;ADDRESS OF VECTOR FOR CALL c CALLVEC EQU 33282 ;ADDRESS OF VECTOR FOR CALL
c TOPIIEII EQU 32940 ;ADDRESS OF TOP OF IIEIIORY P c TOPIIEII EQU 32940 ;ADDRESS OF TOP OF IIEIIORY P
c SCREEN EQU 7000H ;ADDRESS OF SCREEN IIEIIORY c SCREEN EQU 7000H ;ADDRESS OF SCREEN IIEIIORY
c c
c ENTER IIACRO c ENTER IIACRO
c PUSH H ;BEGIN DEFINITION c PUSH H ;BEGIN DEFINITION
c PUSH D c PUSH D
c PUSH B c PUSH B
c PUSH PSN c PUSH PSN
c END II ; END DEFINITON c END II ; END DEFINITON
c c
c EXIT IIACRO RVAL ;BEGIN DEFINITION c EXIT IIACRO RVAL ;BEGIN DEFINITION
c POP PSN POP PSN
c POP 8 POP 8
c POP D POP D
c POP H POP H
c IFNB <RVAL> IFNB <RVAL>
c IIVI B,RVAL II VI B,RVAL
c END IF END IF
c RET RET
c ENDII ;END DEFINITION END II ;END DEFINITION

EXTRN CALL ;CALL IS DEFINED OUTSIDE THIS ENTRY CALL ; IIAKE NAIIE KNOWN OUTSIDE

START: ENTER ;IIACRO: SAVE ALL REGS CALL: ENTER ;IIACRO TO SAVE REGS
t PUSH H ;BEGIN DEFINITION t PUSH H ;BEGIN DEFINITION
t PUSH D t PUSH D
t PUSH 8 PUSH B
t PUSH PSN PUSH PSN

IIVI A, !JIIPl ;SET JUIIP OP CODE (LXI H,SCREEN+I ;POINT TO FIRST CCI IN
FOR REGULAR ASSEIIBLERl

STA CALLVEC ;PUT IT INTO CALL VE LOOP: IIOV II,E ;PUT NEW CCI CODE DONN
LXI H,CALL ;SET ADDRESS OF CALLABLE SUBR
SHLD CALLVEC+I ;AND PUT IT INTO VECTOR, 6 INX H

JIIP CALL INX H ;STEP TO NEXT CODE; IT'S TNO

LXI H,START-1 ;SET ADDRESS OF LAST BYTE 0 IIOV A,H ;CHECK TO SEE IF WE'VE GONE P
;IIEIIORY, ANI OFOH ;ZAP OUT LON ORDER 4 BITS

SHLD TOPIIEII ;AND PUT INTO BASIC'S POINTE CPI 070H ;IF IT SETS TO 80, IT'S TOO
JZ LOOP ; STILL IN RANGE.

EXIT 0 ;IIACRO: POP REGS AND RET.
+ POP PSN EXIT ;IIACRO: POP REGS AND EXIT
+ POP 8 POP PSN
+ POP D POP B
+ POP H POP D
+ IIVI B,O POP H
+ RET RET

END START END
SETI.P Progran CU.SCR Program

Listing 2

22

Lines 2 through 5 could have been written
on one line as:

L80>IP:9000,SETUP,COLSCR/M,TEST/N/E

Line 1, of course, loads and runs L80.
Line 2 sets the beginning of the PRG
program to 9000H. We have no ORG state
ment, remember, so we need to tell L80
where the program should reside when run.
(L80 will supply a default value of 8200H
for CCI I and 36 21, A 120H for 8000 series,
and maybe even other values. On the
Compucolor, L80 loads the program before
returning to FCS, and will load the pro
gram r ight over the return stack, causing
strange crashes at the very end of L80.
To avoid them, place programs at 9000H
instead of allowing L80 to use the de
fault, or allow the crash and just hit
CPU RESET. The PRG file will be OK.) Line
3 links our two routines; the /M option
provides a map of all the external ad
dresses and the beginning and ending
addresses of the program. Step 4 assigns

Tech Tip

by Gene Bailey
28 Dogwood Glen
Rochester, NY
14-625

Some Compucolor owners who are bothered
by colored squares of light on their
screens will be interested in this:

Sometimes this problem can be caused by
corroded connectors which corrode the
power to the video RAM, which is esp
ecially sensitive. To cure the problem,
with the power off and the plug out,
remove the back cover, and remove and
replace each of the three open-wire con
nectors on the right rear corner of the
logic (bottom horizontal) board. Slide I
them up and down slightly to clean the 1
contacts. Do the same with the connector
on the power supply board (on the remov- I
able back cover). Put it all carefully I
back together. I

I

a name (TEST) to the PRG file, and Step 5
saves the PRG file, loads it, and exits
L80. Listing the directory shows that
TEST .PRG has been placed on disk, and is
ready to be RUN.

For all its length, this article is just
a brief overview of the Macro Assembler
and related utilities. A full treatment
would require a book. I hope that enough
material is present that you can begin to
use the program, and feel comfortable
enough to experiment beyond the scope of
this article. To wrap it up, there are
some sections of the manual that should
be ignored. They apply to other machines
(those with CP/M or ISIS-II). There are
other sections that should be deferred
until you are at ease with the basics.

Ignore 2.1, 2.2,
Defer 2.6.1- 3,

2.6.28-29,

2.2.1' 2.2.2,
2.6.7' 2.6.14-,
2.8 II:

YOU'VE JUST FOUND

2.11
2.6.23,

THE MISSING LINK!

Computer Shopper IS your lrnk to individuals who buy . sell and trade com
puter equ1pment and software among themselves nat1onw1de. No other
magaz1ne lilts th1s vo1d in the mari<etplace cha 1n .

Thousands of cost-consc;ous computer enthus1asts save by shopprng in
Computer Shopper every month through hundreds of classified ads. And new
equipment advertisers offer some of the lowest prices in the nation .

Computer Shopper 's unbiased articles make for some unique readrng
among magazines and there's a "Help " column to answer difficult problems
you may have with interfacing . etc .

Subscribe to Computer Shopper for 12 months for only $10. MasterCard &
VISA accepted. ---------------Help yourself and your club (a port1on of the subscription money will be
rebated to your club) by clipping out th1s coupon and send1ng 1t with your pay-

ment to @ COmPUTeR SHOPPeR
f.Fl P.O Sox F e Titusville. FL 32780 ' 305·269·321 t

NAME:

ADDRESS: ____ _

CITY: - --·-- ----

I
I
I
I
I
I

(ed. - This simple trick does
seem to work.) 11:

I STATE: . . ZIP: I

L cLuBNAME !C~I1€S1ER. AR~ ll!>~R~ G~euP J

23

24

PROGRAM PACKAGE INSTALLERS

New Compucolor Product: 8 May 1982

PROGRAM SELECTABLE CHARACTER SETS: PSC1

This small hardware unit plugs into the 50-pin bus
to allow character sets held in EPROM to be selected either
from the keyboard or within a BASIC program. Up to four sets
of 128 characters con be selected using the OUT co~mand.
This considerably increases the flexibility of your
Compucolor. All text can be in upper and lower case, while
being able to rapidly switch to images using the full
graphics set. An additional 256 characters can be selected;
such os mathematical, electronic and music symbols. <Model
PSC14)

The PSC1 can be connected to the existing dual
character sets <graphics and lower case> to replace the
panel switch. Three wires require reconnection.

In addition to its primary function, the PSC1 con
also be used to switch on and off up to 8 remote devices.
All data output lines ore buffered otad ·J.voiloble with •l

positive or negative strobe pulse. The board also has spore

gates and an.IC socket for experimenters.

If supplied with EPROM character sets, no
soldering is required for installation. A manuol-overide
switch is available as on option. <PSCMS>

PRICES <U.S. ond Aust.$. Canada x1.25)

COMPUCOLOR 11

PSC1 <For existing dual character sets>
PSC12 <Including dual graphics/lower case)
PSC14 <Including four character sets>
PSCMS Three-position manual overide switch
PSCDC Define your own characters. Per 32:
MSC12 Dual ch•uacter set with 2-pbs switch
MSC14 Quad character set with 4-pos switch

PSCl-36 <For existing dual character sets
on Intecolor 3651)

<All prices include airmail postage.>

:$45
:$75
:$95
:$10
:$20
:$34
:$56

:$65

P .P. I.
8 Hillcrest Drive,
Darlington,
Western Australia 6070

Another Debugger Bug
by Joseph Norris
David Hailer Co.
5910 Cresent Blvd.
Pleasantville, NJ 08109

4) Re-enter FCS with ESC D.
5) FCS>SAVE MLDP.PRG;J S000 1F80

Some versions of !SC' s Machine Language
Debug Package (MLDP) will fail to run on
Series 3600 computers, V9.80. The dif
ficulty is caused by a CALL to an im
proper RO,'v1 address. The symptom can be a
keyboard "lockout" or a continuous scrol
ling of the prompt at run time.

6) MLDP.PRG;01 may now be deleted and the
new MLDP.PRG;03 RENamed MLDP.PRG;01

B. For MLDP.PRG;02 (i.e., 32K versions):

1) FCS>LOAD MLDP.PRG;02
2) Go to BASIC with ESC E.
3) In immediate mode enter:

To correct the problem, the first four
teen bytes of the program must be set to
zero (NOP). The following simple pro
cedure from BASIC will accomplish this.
(Be sure to observe the single spaces in
the lines typed 1n after the FCS
prcrnpts.)

fOR N=33280 TO 33293:POKE N,O:NEXT N

4) Re-enter FCS with ESC D.
5) FCS>SAVE MLDP.PRG;04 8200 1F80

A. For MLDP.PRG;Ol (i.e., 16K versions): 6) MLDP.PRG;02 may now be deleted and the
new MLDP.PRG;04 RENamed MLDP.PRG;02

1) FCS>LOAD MLDP.PRG;01
2) Go to BASIC with ESC E.
3) In immediate mode enter:

FOR N=57344 TO 57357:POKE N,O:NEXT N

An additional bug in the 16K version 1s
discussed in the OCT /NOV 1981 issue of
COLORCUE, page 3. C

COMPUCOLORS FOR SALE

CCI I, 32K, V 6.78, std keyboard, manuals, disks. Factory reconditioned. $1300.
Mel Bomze, 516-724-2054 evenings.

CCII, 16K, std keyboard, basic set of games, :\ssembler, Compuwriter,
editor, FRED I.
Charles Lovejoy, 49 South St., Natick, MA 01760 800-225-2465xl365 days

CCI I, 16K, V 6.78, 71 key keyboard, manuals, disks, Assembler, games.
Asking $1000 (list $2200.) Darryl Nadvornick, 213-864-0440 eves (PST)
213-868-043lx'+l4 Weekdays 8-4 (PST)

CCII, l6K, 117 key keyboard, prog. and maint manuals, soundware, games and
some household programs. Includes Paper Tiger 460 printer w/ 2K buffer,
graphics, cable, plus free box of paper and 5 binders. Like new, $2200.
Darrin \!\iller, 238 Alderson, Billings, MT 59101, 406-259-1924 eves.
406-252-2299 days.

25

26

COMPUCOLOR I I C32K)

Tft.XDr~AT I ON

BUSINESS & EDUCATION SOFTWARE

INCOME TAX UTILITY program written for tax pro
fessionals (1981 tax season). It handles all

validation to meet the IRS. Has internal computation for
earned income credit, excess FICA etc. Program is using the
24-hour banking arrow-type instructions.

Also comes with FED form 1040, l040A, Sch A,B,G:
New York IT200, IT20l, IT214.

PRICE $200.00

CASH REGISTER SOFTWARE (FOR RESTAURANT)
Designed for general business as well as for
restaurant. Display 30/60 items per screen,

inventory control, cash/credit management, order entry/
billing. It is excellent for Telephone Orders, Normal In
House and Fast Food Orders. Will convert to other computers.

PRICE $500.00

CHINESE MAJONG GA~E
A complete simulation of ancient Chinese Majong
on CompuColor II, written in BASIC. It is a one

player game. Program will display the actual Chinese + Graphics.
PRICE $200.00

QSORT Utility program to sort fixed length record,
variable key location, and length of key.

PRICE $ 20.00

INTERACTIVE OS
Interactive Operating System written to integrate
your MENU program to make most control of your

computer (like TSO) • It has 30 commands which include calcu
lator, set date and time, create data file, list CCII key
memory location, printer control(l4 commands) etc. Excellent
for education demon. or hardware demon. Ten-page of program
listing enclosed. PRICE $ 79.99

* *

MAU CORP (212) 431-1277
5 ELDRIDGE STREET1 STORE NORTH
NEW YORK1 NY 10002

*

SOFTWARE DEVELOP~ENT
CUSTOMIZE PROGRAMMING
SYSTEM DESIGN

Back Issues Sale

Back issues of Colorcue are an excellent source of information about
Compucolor computers, ISC computers, and programming in general. Inter
views, interesting articles, and programs are all there with a touch of
history.

The list below includes every Colorcue ever published. If it's not on the
list, then there wasn't one.

MULTI-ISSUES at $3.50 each
Oct, Nov, Dec 1978

__ Jan, Feb, Mar 1979
Apr, May/June 1979
Aug, Sept/Oct 1979

IIIDIVIDUAL ISSUES at $1.50 each
Dec 1979/Jan 1980 Feb 1980

__ Apr 1980 __ May 1980

IIIDIVIDUAL ISSUES at $2.50 each
__ Dec 1980/Jan 1981 __ Aug/Sep 1981

__ Dec 1981/Jan 1982
__ June/July 1982

POSTAGE

__ Feb/Mar 1982

Mar 1980
__ Jun/ Jul 1980

__ Oct/Nov 1981

__ April/May 1982

US and Canada -- First Class postage included.
Europe, S. America-- add ·$1.00 per item for air, or

$.40 per item for surface.
Asia, Africa, Middle East-- add $1.40 per item for air, or

$.60 per item for surface.

DISCOUNT
For orders of 10 or more items, subtract 25% from
total after postage.

ORDER FR<»>: Color cue
Editorial Offices
161 Brookside Dr.
Rochester, NY 146 23

Color cue
Editorial Offices
161 Brookside Dr.
Rochester, NY 14618

BULK RATE
U.S. POSL\GE

PAID

A<'..<:hester; N. Y.
Permit No. 4 1 5

olorcue
Computer Aided Design 'fk.m,twJ--~ ~ Computer Aided Design Computer Aided Design Computer Aided Des

r Aided Desig-n Computer '3en Design Computer Aided Design 'fk.m,~ ~ ~ Computer Aided Design

puter Aided Design Computer Aided Design Computer Aided De /gn Computer Aided Design Computer Aided
J ~ Computer Atded Design Computer Aided Design ~ Aided Desig-n Computer Aided Design

er Aided Design Computer Aided Design Compu = -~ ~ .JJd.d. !/)~Computer Aided Des

Computer Aided Design '€fHA,~ .JJd.d. Computer Aided Dave Computer Aided Desigr

r Aided Design Computer Aide n omputer Atded Desig-n Computer Aided D
puter Aided Design Compu u er g-n Computer Aided Design Computer Aided
d. ~ Computer Ai .. puter Aided Design C Aided Desig-n Computer Aided Desig-n

er Aided Design Computer 1-r(r(computer Alded/?esi~~ omputer Aided Design Computer Aided
Computer Aided Design ~ ~ •ded De Computer Aided Design Computer Aided Des

r Atded Design Comp ~sign Cc. ?esig omputer Aided Design Computer Aided D
puter Aided Design Comp fesign, ?d D~ gn Computer Aided Design Computer Aided .
d. ~ Computer Ai pmputer ?mp{) Aided Design Computer Aided Design

er Aided Design Computer omp estgn jwi-- .JJd-1. !/)~Computer Aided Des

Computer Aided Design . ~ .ded De~ Computer Aided .Design Computer Aided Des1
!

rAided Destgn Comp~ . .tded De.y omputer Aided Design Computer Aided D
puter Aided Design Compd ,_,uter Ait{.r/ n Computer Aided Design Computer Aided .
d. ~ Computer Aid: mputer Aided Des~/ Aided Design Computer Aided Desi~n

er Aided Design Computer omputer -~ Jw'-- .JJd.d. ~ Computer Aided Des

Computer Aided D~sign C [~id_e~ ~ . Aided Design Computer Aided Design Computer Aide,

r Atded Design Comp ~ ~ . Aided .Design 'fk.m,jwl-~ :/)~ Computer Aided Design

puter Aided Design Comp · · .' ter Atded Design Computer Aided Design Computer Aided .
.J ~ Computer Aid "'l ompute Design Computer Aided Design Computer Aided Design

er Aided Design Computer Design Com tded Design 'fk.m,jwl- .JJd.d. ~'fl., Computer AideJ .Des

Computer Aided Desig-n Computer Aided l ,omputer Aided Design Comput,- r Aided Design Computer Aidet

rAided Destgn Computer Aided D~n 0 ~f(! Design Computer Atded Destgn Computer Aided D,
puter Aided Design Computer Aided \)esig\ t r. .'~fled Dest gn Computer Atded Destgn Computer Aided
.J ~ Computer Atded .Design or, · ' , . ·~ ~!' ~~ r.puter Atded Dest gn Computer Atded Design

er Aided Design Computer Aided Design'(o\ '\:: J"" [>(stgn 'fk.m,jwl- .JJd.d, :/)~Compute, Au(ed .Des

Computer Aided Design computer A ... \ I\ r"\ r Aided Design Computer Aided Design Computer Aiaet

r Atded Desig·n Computer Aided Des . ~ rttaed Destgn 'fk.m,jwi--~ :/)~ Computer Aided Design

puter Aided Design Computer Aided De.sign Computer Atded Design Computer Aided Desirn Computer Aiied .
,J, ~Computer Aided Design Computer Aided Design Computer Atded Destgn Computer Aided D~sign

er Aided Design Computer Aided Design Computer Atded Dest gn 'fk.m,jwi- .JJd.d. :/)~ Computer Aided Des.

i~o~;.:t:: A~:e~-~:St~:=~~~_P~~~~ ~~~~od ,.,~:~~~~:. C~7j~:er n~~d;e~- D~ign. ~om~~~e~ ~~ed ~::~.~a~o~~~~e~ A~d~E~

Oct/Nov I98%

Colorcue
A bi-monthly publication by and for
Intecolor and Compucolor Users

Editors:
Ben Barlow
David B. Suits August/September 1982

Volume 5, Number 2 Compuserve: 70045,1062

3 Editors• Notes

5 A CAD Program, by Doug Van Putte
Computer aided design

9 Disc Data Recovery, by Myron T. Steffy
Bring 'em back alive

18 Cueties

11 Software Handshake for Diablo 638, by Vance Pinter
Easy printer handler

13 Typematic Keyboard, by Doug Pankhurst
Software auto repeat

14 Keyboard, by Bob Smith
Full function keyboard layout

15 Calendar Printer, by David B. Suits
Any month, any year

19 Compucolor Transistor Equivalents

28 Converting Screen Editor Files to
COMP-U-writer .DOC Files, by J. J. Charles
Secret bytes revealed

23 Keyboard Expansion, by Bill Anthony
Make your small keyboard larger

24 Assembly Language Programming, by David B. Suits
Part VIII: Simple math

Authors: This is a user-oriented and user-supported publication. Your
articles, tips, hints, programs, etc. are required to make it go. Write
or scribble your ideas down; we'll edit them and provide all artwork. Send
your articles or write for information.

COLORCUE is published bi-monthly. Subscriptions are US$12/year in the
U.S., Canada and Mexico, and US$24 (includes air mail postage) elsewhere.
Some back issues are available. All editorial and subscription correspon
dence should be addressed to COLORCUE, 161 Brookside Dr., Rochester, NY
14618, USA. All articles in COLORCUE are checked for accuracy to the best
of our ability, but they are NOT guaranteed to be error free.

Editors'
Notes

Compucolor owners have often been left in
the cold when their machines break down;
dealers have gone out of business or
switched to other lines and factory ser
vice is not always satisfactory. Colorcue
has located two sources that may be
helpful:

Gary Sipple
Digital Devices
20560 West 8 Mile Road
Southfield, MI 4807 5
(313) 356-5140

Fred Calev
Canpuworld
125 White Spruce Blvd.
Rochester, NY 14623
(716) 424-6260

Both companies will handle 11 shipped-in 11

machine service, but should be contacted
first, of course.

Australian ISC and Compucolor owners are
active, as you've no doubt noted from
past issues of Colorcue. The maintenace
tips in this issue come from CUVIC, of
Melbourne - editor Barry Holt, 19 Wood
house Grove, Box Hill North, 3129, Vic
toria, Australia. Local membership is
$10. per year; non-Australian must be
more, but we don't know exactly how much.
The Western Australian User Group CUWEST
is also active, and their newsletter
typically runs 3 or 4 pages of worthwhile
information.

Several times over the last year, we have
received letters from subscribers saying
that 11 such and such an issue of Colorcue
didn't arrive." As y ou know, we use bulk
mail (first class mailing would wreck our
budget) and the Post Office seems to
treat such mail with very low priority.
If you miss an issue, or think you have
(be careful - we seem to be running late
recently), just let us know, and we'll
send off the missing copy (first class).

User Groups - are you alive?? Drop us a
note so we can publish an up-to-date user
group list.

Notice to hardware and software sup
pliers: Our readers are frequently un
aware of the availability of your wares
and would like to be customers. Colorcue
would like to spread the word - your
word- to them. We can do this in two
ways:

1. Through advertising. Our rates are
low, and our readership is eager
for your products.

2. By listing all known suppliers,
which we plan to do in the Jan/Feb
issue.

Our big problem - even we, who have been
around for four years, don't know all the
suppliers and their present status. So,
if you supply hardware or software for
Intecolor or Compucolor computers and
would like to have more business, let us
know. Even if you don't want to adver
tise, send your name and address for our
suppliers listing.

In the last issue we promised to bring
you more Fortran in this issue. We ap
pologize to you Fortraners, but it'll be
next issue before we get back into
Fortran with a demonstration program and
a set of subroutines to make use of the
special ISC graphics features.

Bug Report!
Howard Rosen reports that a bug crept
into his Fortran program in the last
issue, ~Qg!g~!i Programming. After the
·line:

INX=INX+I
should have been a line like:

DINX = DINX + I
If you got strange results, take note.

Flash! It seems that a second (or is that
a third by now?) BASIC compiler is in the
works, somewhere Down Under. Hold your
breath. We hope to have more details by
next issue.

Intelligent Systems Corp. has announced
that it has reached an agreement to ac
quire the Quadram Corporation. The acqui
sition is valued at $3 5,000,000 and will
be financed through an issuance of ap
proximately 1, 7 50,000 addi tiona! shares
of ISC stock. When the transaction is
completed, ISC will have approximately
4,3 57,000 shares outstanding.

Peter J. Curnin, ISC president, stated
that Quadram has a leadership position in

3

the design, manufacture and marketing of
accessories for the IBM Personal Compu
ter. Quadram will continue to operate as
an independent business unit, and Tim
Farris, co-founder and President of Quad
ram, and Leland Strange, Vice President
and co-founder, will be added to ISC' s
Board of Directors.

transparancies, 3 Smm slides, and paper
prints and plots. The EPS includes a
graphics language that utilizes English
statement commands such as PIE, BAR and
LINE. EPS is a complete system featuring
the Intecolor 8001R and ISC's newest
microcomputer, the Intecolor 7000. Since
EPS is device independent, the user can

ISC has announced the Executive Presenta
tion System (EPS), which provides all the
hardware and software users need to pre
pare presentation-quality color graphic
visuals, including overhead projector

include output devices such as 8-pen
color plotter, color camera system, and
an 8-color ink-jet printer. And the reso
lution is determined by the output
device.

4

M>ving?

If you're changing your address, please
let both the Post Office and us know of
your new address. (Tell us you r old
address and your ne~ one.) We don 't want
yo u to miss a single tssue of Colorcue .E

Dear Ben and David:

I have occasionally lost some data by accidentally hitting the
CPU reset key when reaching for the erase line key. I have hit
upon an idea to make it more difficult to press this key. Pick
up a piece of surgical rubber tubing a couple inches long. You
can get this at a chemical supply house, or possibly a well
stocked drug store. The tubing should be one fourth inch inside
diameter, and have 1/16 inch thick walls.

Use a sharp knife to cut a piece of tubing exactly 5/Bths of an
inch long with good square ends. Pry the CPU reset key from its
switch, and slide the t ubing piece over the socket i n the
underside of the key cap. The key can be then replaced. Test
this setup to see that you can still depress the key, but that
it requires a firm push to make contact. Just a slight change in
the length of the tubing will make quite a change in the
pressure required to depress the reset key. This way a normal
typing touch will not reset the computer, and you may get a
second chance at your data.

Gary A. Dinsmore

ACAD Program
by Doug Van Putte
18 Cross Bow Drive
Rochester, N.Y. 146 24

A clever and educational Computer-Aided
Design (CAD) program for a microcomputer
appeared in the MACHINE DESIGN magazine
which I have con-"Verted to ISC BASIC. The
program, written for the APPLE II,
appeared in a Tech Brief entitled
'Drawing Isometric Views with a Micro
computer' in Volume 54, Number 25. It
was written by Professor Dad-Ning Ying,
University of Wisconsin. The article
gives a brief overview of the program but
leaves the reader lacking the visuali
zation of the conversion from a 3D object
to 2D screen views. I intend, through
use of a figure, to explain the conver
sion process for those interested in
learning more about CAD.

The program in Listing 1 converts a three
dimensional object, stored in coordinate
form, to the conventional drafting views:
Front, Top, and Profile. In addition, an
Isometric view of the 3D object is drawn.
At this point, the reader should run the
program to obtain an understanding of the
types of views created of the stored
object. The lower left hand view on the
screen is the Front, the lower right hand
view is the Profile, and the upper left
hand view is the Top. Now consider Figure
1, a representation of the aformentioned
conversion process. The figure depicted
here is a 'bookend' style object on its
side. Note that the figure is represen
ted by the dimensions of u, v, w on a
cartesian coordinate system with the axes
labels of X, Y, and z. The X and Y co
ordinates are the typical screen coord
inates, while the Z axis can be thought
of as an axis which is perpendicular to
the screen. The equations for computing
the screen coordinates from the object
coordinates are shown on Figure I.
Without further explanation, they simply
resolve the u, v, and w coordinates of
the object to the screen coordinates, X

and Y, depending on the values of the
rotation angles specified. See Professor
Ying's article for further explanations
of the equations. The rotation angles,

8 and ¢ are what I will discuss
in more detail in the paragraphs that
follow.

To visualize the creation of each view by
rotation, the object in Figure 1 should
be rotated by the angles indicated in the
table at the bottom of the page. For the
Front view, no rotation is required. The
screen X values become the u values and
the screen Y values become the w values
when the angles are substituted in the
equations. For the Profile view, the
object is rotated about the Y axis by 90
degrees. The X values become the v
values and the Y values become w values.

For the Top view, the object is rotated
about the X axis by 90 degrees. The X
values become u values and the Y values
become v values. By now the pattern
should be clear, the object is rotated
and its dimensions are projected by
trigonometry to the plane of the screen
to obtain the various views.

The isometric view is created by rotating
the object thru two angles. To be
strictly correct, the object should be
rotated 45 degrees or its supplement(135)
about the Y axis and 35.26 degrees about
the X axis. To eliminate hidden lines
from this view, the program cheats a bit
by not plotting the last four data
points. Other simulated 3D figures or
axonometric views can be made by speci
fying different angles on line number 230
in Listing I. To obtain the typical
engineering drafting views, rotations are
not required about the Z axis. These
manipulations can be made after modifica
tions are made to the equations. (See the

s

3D Graphics article in the Feb/Mar Issue
of Colorcue).

stored in files. With the program al
tered to read a specified file, unlimited
types of figures could be plotted. This
sounds like an excellent project for a
high school drafting class to learn more
about computer-aided design, doesn't it?

The program can be changed to draw other
figures. I suggest that the new figures
be layed out on a coordinate system sim
ilar to Figure 1 to assign the u, v, and
w values, including the proper signs.
Enter the number of data points in line
310 and the object data in groups of u,
v, w values in the subsequent lines. As
Ying suggests, the object data could be

Pay attention, students of design of all
ages, this is the design method of the
future that is making a significant im
pact today... C

6

0 REM LISTING 1: AN ISC BASIC INTREPRETATION OF
20 REM 'A PROGRAM FOR ISOMETRIC AND THREE VIEWS'
22 REM
24 REM
30 REM WRITTEN BY DAO-NING YING, U. OF WISCONSIN.
40 REM CONVERSION OF PROGRAM WHICH APPEARED IN
50 REM 'MACHINE DESIGN', V.54, #25, 1982 BY D.A. VAN PUTTE.
60 REM ARTICLE WAS ENTITLED 'DRAWING ISOMETRIC VIEWS
70 REM WITH A MICROCOMPUTER'

80 DIM U(100),V(100),W(100) ,X(100),Y(100)
90 PLOT 12 , 15

:SC = 6. 1 :REM INPUT SCALE OF I MAGE
100 READ N :REM READ NO. OF DATA POINTS
110 FOR J= 1TO N :REM READ 3-D DATA POINTS
120 READ U(J),V(J),W(J)
130 NEXT J

140 FOR K= 1TO 4
:PLOT 16+ K

150 FOR I = 1 TO N
:REM COMPUTE & PLOT VIEWS

160 REM TOP VIEW PARAMETERS
170 IF K= 1THEN TH= 0* .0174533

:FI= 0* .0174533
: XO= 15
:YO = 50
:GOTO 250

180 REM PROFILE VIEW PARAMETERS
190 IF K= 2THEN TH= 90* .0174533

:FI: 0* .0174533
:XO= 90
:YO= 50
:GOTO 250

200 REM TOP PARAMETERS
210 IF K= 3THEN TH= 0* .0174533

:FI= 90* .0174533
: XO= 15
:YO= 110
:GOTO 250

: REM COMPUTE & PLOT SCREEN COORDS

Figure 1

w

220 REM ISOMETRIC VIEW PARAMETERS
230 TH= 135* .0174533

:FI= 35.26* .0174533
:XO= 90
:YO= 110

240 REM COMPUTE TWO DIMENSIONAL COORDINATES
250 X(I)= U(I)* COS (TH)- V(I)* SIN (TH)
260 Y(I)= - U(I)* SIN (TH)* SIN (FI)- V(I)* COS (TH)* SIN (FI)- W(I)* C

OS (FI)
270 X(I)= INT (X(I)* SC* .8+ XO+ .5)

:Y(I)= INT (Y(I)* SC+ YO+ .5)
280 IF I= 1THEN PLOT 2,X(I),Y(I),242

:GOTO 300
290 PLOT X(I),Y(I)
300 NEXT I

:PLOT 255
:NEXT K
:INPUT '"';ZZ :REM HANG HERE TO KEEP SCREEN CLEAR

310 DATA 29 :REM COMPLETE FIGURE HAS 33 DATA POINTS
320 DATA 0,0,0,0,5,0,-2,5,0,-2,0,0,0,0,0,0,0,5
330 DATA 0,3,5,0,1,1,0,5,1,0,5,0,0,5,1,4,5,5
340 DATA 4,3,5,0,3,1,0,3,5,4,3,5,4,5,5,6,5,5
350 DATA 6,5,7,6,0,7,6,0,5,6,0,7,-2,0,7,-2,0,0,0,0,0,0,0,5
360 DATA 6,0,5,6,5,5,6,5,7,-2,5,7,-2,0,7,-2,5,7,-2,5,0
370 END

Rot. L.' s
VI EWS e ¢

fr ont 0 0
t op 0 90
profi l e 90 0
is ome t r ic 135 35.26

Equations: X u cos9- v sin¢
Y -u sine sin

- w cos¢

Screen Coord.
K .L
u -w xi -.707 u -.577 v
u -v YI -.408 u -.471 v -.817 w

-v -w
xi YI

7

8

H 0 W A R D R 0 S E Nt I N C.

liC lit lit lit

LEDGER

P. 0. E:o:< 434
Huntingdon Valle~, Pa.
19006
(215)-464-7145

BUSINESS SOFTWARE lit lit lit lit

Ever~ business and hoMe should have this prograM.
LEDGER allows ~ou to do a Receipt page, a
DispersMent page. a Dues Collection List, a Budget.
and an~ other forM that ~ou Ma~ have developed that
uses rows & coluMns for nuMerical data storage with
Titles. This eas~ and useful to use prograM allows
31 coluMns of data. and a 32nd coluMn totals each
row. There are 80 rows for each coluMn and coluMn
totals. InterMediate row sub-total arithMetic is
user defined. The arithMetic functions perMitted
are +•-•*•!,=. Saving. Loading. and Replacing data
to. the File Control S~steM CFCS>t Printing the
Ledger sheet, and eas~ trial entries and changes
Make this a power-house. Requires 32K RAM and
117-ke~ ke~board.

LEDGER disk includes LEDGER, Instructions,
DRIVER, & Printer Driver Instructions.

PRINTER

price 75.00

PERSONAL DATA BASE
PDB written in AsseMbl~ Language allows ~ou to
create a data base file consisting of data base
records. Records are coMposed of a Mix of literal
and nuMerical fields as required. The records Ma~
then be used for statistical anal~sis, Mail Merge
insertions for the Mail Merge word processor. data
storage, retreival and sorting. Records Ma~ be
added, changed. deleted. & searched. 32K holds
1200 records.

Personal Database II price 85.00
Options:

Plotting prograM - screen/printer price
Distribution Anal~sis - Statistics price
Encode/Decode Data/Hold Files price
Math Option I - (+,-,*,/) price
Math Option II - ($,+,-) price
ForM Processing price
Left/Right Justification price
Mail Merge Insertion price

NOTE: PERSONAL DATA BASE and an~ 4 options priced
discount.

30.00
30.00
15.00
15.00
15.00
35.00
10. 0 0
20.00

at 10/.

EXECUTIVE WORD PROCESSOR
MAIL MERGE WORD PROCESSOR

price 299.00
price 349.00

Disc Data Reeovery

by Myron T. Steffy
10833 Brookside Drive
Sun City, Arizona 85351

Have you ever accidentally dumped a disc
containing a source file which meant
hours and hours of work down the drain?
Well, I have and if you work in assembly
language it will happen to you some day.
It has always been my practice to main
tain duplicate files of work in progress
but this time, even that wasn't enough.
Somehow, the program which was quite
long, developed an unexpected oug after a
test assembly. I might mention that I
have two of Tom Devlin's RAM cards at
4000H and park the screen editor in one
and the assembler in the other which
allows me to use them alternately without ·
reloading.

When I tried to bring up the source file
in question some unexpected things hap
pened, probably due to the remnants of
the defective program still in memory •
The disc drive started but instead of the
source file, I got some little red let
ters on the screen, saying 'ENVE'. This
usually means that the directory is wiped
out and the disc must be re-initialized.
Oh well, the back-up disc will take care
of the problem, said I confidently.
Well, I should have run a program that I
keep on hand that clears all of the mem
ory but I didn 't. Would you believe that
I blew the second disc the same way?

When I stopped shaking, I tried to figure
out a way to salvage at least part of the
file. Due to its length, there were
probably only two versions of it on any
single disc. Here is the way I went
about it: contrary to what you may have
thought, when you re-initialize a disc,
only the directory is affected. The file
names are still present but the essential
information of where they begin and their
size has been erased. A new file IS

simply written over the old.

There is a command in the FCS system
called 'READ' that you may have never
used. This is not to be confused with
the Basic command of the same name which
performs a different function. What we
need to do is get the information on the
disc into memory where we can look at and
possibly salvage it. We will assume that
you have 3 2K of RAM and also have a
'Debugging' program similar to the
Comtronics 'DBUG' or the later version,
'NBUG'. If you have it available at
4000H, so much the better. Load it so
that it is ready to run.

Here is what we do with 'Read' function
mentioned earlier. The command is 'READ
CDO:OO 8200-FFFF' which reads 7DFFH bytes
off the disc into RAM starting at block
00. The first three or more blocks will
have the directory names still present

. but no information about location and
size of the file. Now bring up the NBUG
program and start looking. If you remem
ber a key word in the heading of the
file, there is a 'Find' command in 'NBUG'
that will locate it in a hurry.

Start at 8ZOOH and make a note of the
actual RAM location where the file be
gins. Now locate the end of the file the
same way only this time the search word
could be 'END'. Then place a fresh disc
in the default drive and enter the com
mand 'SAVE PROGRM.SRC 8580-89DC' where
the two hex limits are the start and end
of the file you have just determined. If
you do everything right, you have a rep
lica of the original source file that can
be brought up with the screen editor in
the usual manner. Don't worry about the
load address appearing as '8580' on the
disc directory. The editor will supply
the correct address when it loads the
file.

9

If you can make an educated guess of how
far down the disc your file is located,
you won't have to look through the entire
51K. Otherwise there will be OFBH blocks
left on the disc, a little less than half
(190H-OFBH), because you took off OFFFFH
8200H = OFBH. The next time start at
block number OFAH for a little overlap
and read off the rest of the di sc. If
you don't have the debugger at 4000H, you
probably have it at OAOOOH or OEOOOH.
Use t he latter and only read off 8200H
ODFFFH. This will be SDFFH divided by
80H or OBBH blocks at a chunk. The
second starting block would then be OBAH.

Your search will be from 8200H to ODFFFH
and will take a few more steps but will
accomplish the same result.

Cueties

How Did Sam Die? (A Computer Puzzle)
By David B. Suits

If the arithmetic is confusing, remember
that a disc contains 190H blocks of 80H,
which total OC800H or 51.2 K in decimal.
Most formatters set you up with the first
three blocks as directory. This is
really not enough so mine allows five
automatically. If you happen to remember
approximately what the file's starting
block number was, you won't have to look
far. The NBUG 'Find' command i s a real
asset and the job i s much less fo r midab l e
than it sounds here. Don 't panic and
jump off the bridge until you t ry this
first. Better yet, make a practice run
before you are forced t o use the method.

IIC

Here's a little puzzle for the mystery lovers among us. The program tells t he
tale. How did Sam die? Your computer knows. Can you figure it out without its
help? (If n ot, type in t he program e x actly as it appears below and RUN i t f or
the answer.)

10

10 TRU E = NOT(FALSE)
20 SAM I S DEAD = TRUE
30 SUICI DE = SAM IS DEAD AND NOT (ACCIDENT) AND NOT (HOMICIDE)
40 HOMI CIDE = SAM I S DEAD AND NOT (SUICIDE OR ACCIDENT)
50 PRINT "SAM'S DEATH WAS: ";
60 I F ACCIDENT TH EN PRINT "ACCIDENTAL"
70 IF HOMICIDE THEN PRINT "HOMICIDE"
80 IF SU ICIDE THEN PRINT "SUICIDE"

Was Einstein Correct? (A Computer Puzzle)
By David B. Suits

Decades after Einstein's momentous Theory of Relativity, scientists still
debate the question, 11 Was Einstein correct? 11 Your computer knows. Can you tell
before asking its counsel? (T o check your answer, key in the program below and
R UN it.)

10 IF E = MCA2 THEN EI NSTE IN = CORRECT
20 IF EINSTEIN = CORRECT THEN PRINT "EINSTEIN WAS CORRECT"
30 IF EINSTEIN = NOT(CORRECT) THEN PRINT "EINSTEIN WAS NOT CORRECT"

Sofhvare Handshake for Diablo 630

by Vance Pinter
P.o. Box 230
Columbus, Georgia 31902

I decided to use software handshaking
with my Diablo 630 so that it wouldn't
have to be modified internally. The stock
630 does not provide a "busy" signal
unless so modified.

(2) Signal to printer. Diablo pin 3 to
CCII edge connector pin 3 or ISC
DB25 pin 2.

(3) Signal to computer. Diablo pin 2
to CCII edge connector pin 5 or
ISC DB25 pin 3.

The Diablo 630 buffer holds 768 charac
ters. When the buffer is nearly full the
630 sends DC3 (hex 13, decimal 19) out on
pin 2. It continues printing until the
buffer is nearly empty and then sends DC1
(hex 11, decimal 17). The cable requires
three wires:

Diablo pin 4 must be connected to Diablo
pin 6. Use a short wire inside the prin
ter plug.

Here is an assembly language routine
which sends a byte to the printer after
checking the status of the 630. E

(1) Ground. Diablo pin 7 to CCII edge
connector pin 1 or 7 or ISC DB25
pin 7.

;Character to be printed is in register E.
;S10UT is the CCII serial output routine,
;V6.78 address 33C3H, V8.79 address 17F9H.

S10UT EQU

OUT232: CALL
OUTOO 1 : CALL

RET

33C3H ;V6.78 address, V8.79 is 17F9H.

STATUS ;Wait until clear to send.
S10UT ;CCII serial output routine.

;Status routine returns only when "Clear To Send"

STATUS: IN
ANI
RNZ
IN
CPI
RNZ

03H
20H

OOH
13H

;Diablo buffer full.

;TMS 5501 status register.
;Diablo status present?
;No, return, clear to send.
;Input Diablo status.
;Diablo buffer full? (DC3)
;No, return, clear to send.

;STLOOP will loop until DC1 is received from 630.

STLOOP: IN
ANI
JNZ
IN
CPI
JNZ
RET

03H
20H
STLOOP
OOH
11 H
STLOOP

;TMS 5501 status register.
;Diablo status present?
;No, wait until it is.
;Input Diablo status.
;Diablo buffer empty? (DC1)
;No, continue loop.
;Diablo buffer empty, return.

11

12

RRRR
R R
R R
RRRR
R R
R R
R R

UIWWPBB'B'"E--P"W"M'P -
000 BBBB 000 TTTTTTT

0 0 B B 0 0
0 0 B B 0 0
0 0 BBBB 0 0
0 0 B B 0 0
0 0 B B 0 0

000 BBBB 000

w A R s

(cl 1982 BY Steve Reddoch
(L•.fi th !::ouncl)

T
T
T
T
T
T

$19-95 u_s_
For 5 1/4 inch disk drive only

MBR

Fast machine language almost like the arcade
game Robotron(c). There are 2 songs. the sound

never affect the speed of the program, and there
are 8 different looking aliens. There are 3 skill

levels that control the speed of one of the
alien's shots. Also the high scores are save on disk.

For the Compucolor II & Intecolor computer
F~t.\fl ~::. CHI ~ .. _.hji" El(l ~! t.)\~-:,. :: '?~=~ ~ ~/~3 .. ~,7Cf ~ (. ._.19" f-]()··-·(J::::.

!.I!::F?!:' t·t-1r-::~ ful I col n1'· I.Jr.3.phi c:<:::

capibility of the Compucolor Illlntecnlor
(F:eq u :i. r e•;:. :1 h k F;:(\1"!)

Please send check or money order for $19.95 tn:

Ut f?VI-? F;:F•cldoch
11 ~=;u '.'i ;,:-, Ftnl z ;:,nc:;

Santa Barbara, Ca 93111

Ca. Residents add 6% Sales Tax
{\ 1 ~:-:;o inc: ltJC:k-' '/F:'r •:c. :inn number·· o+ c omp ut F'r-

Please do nnt send cash

---~~~~~~-llllliillllll<liiiiiiiiiiiiiDIIIIUatlllllllllliNiilllllllllllllttM----

I

..

by Doug Pankhurst

Reprinted by permission from CUVIC
(Compucolor/Intecolor Melbourne
User Group newsletter, November, 1982)

19 Woodhouse Grove
Box Hill North
3129 Victoria
Australia

;Sixty times a second an interrupt is generated which ini
;tiates a keyboard scan. Routirtes in RQ!I! get the code fot'
;the key that ~~~as pressed and store it irt focatiort 81F~
;hex !33278 dec) and sets location 81FF hex !33279 dec) to
;Be hex (or 50 hex if the key pressed was the BREAK key). .
'I I I I I I I I I I I I I I Ill I I I I I It I

SYSTEM EQUATES .
'I I" I I I I I I I I 1 I I I I I I I I I I

;These should be included irt the Syste111 Equate table at
;the start of the program.
KBDFL EQI.J 81DFH ;33247 decimal. Locatiort of key-

;board interrupt vectc•r flag. By
; inserting 1 F hex in here pro~r·am

;control will vector tc. !NPCRT.
LKC EQI.J 81E4H ;33252 dec. Last key code.
NKC EQI.J 81ESH ;33....~ dec. New key code.
LWAIT EQU 240~ ;Courtt for initial wait wher, us-

;irtg auto reoeat feature. (40e<-~

;approx. equal to eight per sec-
;ond).

INPCRT EQI.J 81C5H ;33221 decimal. User ir,put vector
; in which a JI'IP (user rout irteJ is
;inserted.

KBCHA EQU BlFEH ;33278 dec. After keyboard scan,
;code of key pressed (zero if
;none} irt here.

KBRDY EQU BlFFH ;33279 dec. Set to 80H if key is
; pressed, or 50H if key was BREPK. .

, ... 1

INITIALIZATION .
, •• ••••••••••••••••••••••••••••• 11.111111111.1111.11111111111

;This routine should be carried out at the start of the
;program to initialize interriJpt vectors. Note that if
;other interrupts use the vector INPCRT the CHRI~~ needs
;to determine where the interrupt was ger,erated arid what
;action, if any over and above that taken by the RO~ based
;routines, needs to be taken.

ORG 9000H ;START HERE
START:
KYINIT: LXI H, KBDFL ; Set user vector into keyboard

;flag.
MYI M1 1FH ;
LXI H, INPCRT;
MYI M,OCJH ;Opcode for JMP.
LXI H,CHRINT;Address of user interrupt

;routines
SHLD INPCRT+t;into user i/p interrupt vector.
••• continue with •ainline prorram. .

'I I I I I I I. I" I I. I I I I I I I a I I I I I a I I I I a I 8 a a I I I I 8 I I I .I I I I I I. I I I I I I

JIIIP MAIN .
'I a. I I I I a I a I .I I 8 I I a I I I I I a I .I I I I I I I I I I I I I

INTERRUPT SERVICE . 'I. I I 8 I 8 .I I 8 8 I I I I I I I I I e I I I .I I I I. I .I I I .I

;Vector here from INPCRT and carry out any tite critical
;routines, determine whence the interrupt cane if Multiple
;interrupts may occur (i.e. use i/p vector I~PCRT) and
;carry out any user interrupt routines in addition to the
;ROM based system routir~. The interrupt service MUST end
;with an RET instructiort. The conter,ts of all registers on
;entry will be preserved. BREAK key detection should be
;included here if the ability to break out of a routine is
;required. A BREAK may be detected by a code of 50H in the
;KBRDY flag as opposed to 80H for any c•ther key. If a
;BREAK detection is used and program control is trans
;ferred elsewhere, remew~ber to adJust the Stack Pointer,
;as it has art extra returr, address or; t1e top (from the
;periodic keyboard scan interrupt routine that got us
;herel •

ORB 0A000H ;
CHRINT: RET ;i/p vector - simply return.
;Note that by takirtg no action here, ar1y ~ey with the
; except iort of the CPU RESET key may be passed c•n to the
; user via GETCHA or GETKEY arid used for any purpose
;(i.e. the action taken is entirely uo to the user to de-

;fir.el. All codes frorn 00H up to FFH !255 dec) are avail
;able. Be aware that the BREAK key, as well as settir,~
;KBRDV to 50H, puts zero into KBCHA. . ,

SET CHARACTER RCUTINES . , .. .
;These routines 11ay be included at ar1y place withir, the
;progra11 and may be called by any user. Be aware that both
;will hang until a key is pressed !or accept the last ~ey
;pressl. Both routines preserve all resisters except the A
;register, in Mhich the value of the key pressed is re
;turned.
MAIN: ~p HMWRK ;
;Get character with no auto repeat.
GETCHA: EI ;Get keypress, returr, character

14

Keyboard
By Bob Smith
498 Brown Street
Na.pa., Ca.lifornia. 94558

FO F1 F2
VAL ASC CHR$

OUT LOAD
OUT LOAD

blk blu

PUT POKE
PUT POKE
re d mag

PLOT PRNT
PLOT PRNT

grn cyn

SAVE LIST
SAVE LIST

yel whi

COMMAND

F3
LFT$

AUTO

WAIT
ESC

RUN
TAB

CNTL

SHFT

CALL GKEYl ;wi thc•ut autc• repeat
PUSH PSW ; in Ace.
XRA A
STA KBRDY ;Clear ~/board ready
STA KBCHA ;and character buffer
POP PSW ;for single char
RET ; operat i Ctr~.

;Set character with auto repeat as lorsg. as key is
;pressed.
GETKEY: EI

F4
RHT$

TAB(
FGON
FLGOF

THEN
1

CALL

CALL
PUSH
XRA
STA
POP
RET

F5
MID$

TO
BGON
FLGON

NOT
2

FRE

GKEY1
PSW
A
KBRDV
PSW

F6

FN

;Typematic key get.
;Go get keypress
j

;and c-lear k/board
;ready flag.

F7 F8

GET REM
BLNK BL/A7 A7

ON OFF ON

STEP + -
3 4 5

INP POS SQR

PUT LIST DIM PLOT LOAD
Q w E R T

FOR SAVE INPT READ FILE
A s D F G

F9

WAIT
[

•
6

RND

CLR
y

GOTO
H

DEF CONT DATA PRNT NEXT REM
z X c v B N

CAPS SPACE
LOCK

F10

ON
\

I
7

LOG

POKE
u

IF
J

)
R;,·

!1

!
j

-

F 1 1

TAB(
J

A

8
EXP

RUN
I

; Subroutir1e used by GETCHA aml GETKEY. RET ;character il'l A
GKEY1: PUSH H j GKEYEX: LXI H,LWAIT ;else set up lor1g wait

LHLD REPCHR ;Get wait counter. SHLD REPCHR
GKLOOP: LDA LKC ; If l ast key code is zero, GKEY3: LDA KBRDY ;ar1d wait

ORA A ;go wait for ar10ther ORA A ; for keypress.
JZ GKEYEX ;keypress, JZ 6KEY3 i
DCX H ;else start decrement i ng LDA KBCHA ;Get character into A
MDV A, L ;HL ur1ti 1 zero or POP H ; and ret urr1.
ORA H ; 1 ast key codE> is zer.:,, RET
JNZ GKLOOP i ; TEMPORARY STORAGE

GKEY2: LXI H, SWAH ;Set liP for short REPCHR: DS 1 ;Repeat rate counter used
S!-lD REPCHR ;wait and get last ;by auto repeat feature.
LDA KBCHA ; key pressed. ; ...
ORA A ;Is it zero' END OF KEYBOARD ROUTINES
JZ GKEYEX ;If 1'1ot, go exit ! ; ... c
POP H ;else return with

Top
Center -
Bottom -
(Bottom)-

Token when struck with COMMAND (Control and Shift)
Character that appears on keys
Token when struck with Control
Token when st r uck with Shift

ON GO SUB RESTR CPU
F12 F13 F14 F15 E/P G E/ LN RESET

(ON)

TO FN DEF GOTO CLR -,..
HOME D/CHR I/CHR D/LN I/LN - (DEF) (GOTO) (CLR) -

AND SPCI PEEK IF ATTN
9 0 - BRK

cos ABS < (IF)

GET OUT END RETURN '
.... AND ST R$

0 p @ 7 8 9
LOG EXP cos I NT

RESTR GO SUB > OR + - • •
4 5 6 X K L . : ENTER ' TAN SIN POS SQR RND •

TRN ATN LEN STR$ THEN NOT STEP PEEK

' . I SHIFT 1 2 3 -
= SGN I NT CALL FRE INP <

SPC(LEN = +
REPT 0 . = +

ABS SGN = +

15

:.iarv f!lnsaore' s

Presents

BOOK

BOOK is a programed text that
can turn the Compucolor into a
teaching machine. The keyboard
is under complete control, so
young fingers find it difficult
to derail the program. Courses
can be designed using an editor
program, or I will adapt your
material to BOOK~ for use in
your teaching arena. Comes with
complete doccumentation manual
that shows you how to set up the
lessons and run the programs.
Self testing freature allows you
to judge your students' per
formance by the number of false
starts made. Each correct re
sponse is reinforced, and wrong
responses elicit helpful hints
to put the student back on the
right track.

BOOK isn't just for kids
either. I currently have written
two courses on Assembly language
programing. An introduction
course that teaches you about
the 8080 CPU and the Compucolor
Assembler. What the format of
the instructions is like and a
number of other very basic
concepts to get the complete
novice started. There is also an
intermediate course that breaks
down all · of the op. codes into
logical groups and tells you how
to use them. A third course
still being written goes into
applications used by the Compu
color.

1&

SURVEY

SURVEY is a program that will
allow you to be your own
polster. Place your Compucolor
out in your place of business
and invite your customers to
take a confidential survey. Ask
them what they think of your
service, your product, your
competitors. Ask them if they
will vote for Regan again in
1984! You write the questions,
the Compucolor records their
responses as a percentage of
persons responding to the survey

A complete doccumentaion man
ual will assist you in putting
together your survey, or I will
take your material and adapt it
to SURVEY. Like BOOK, SURVEY has
keyboard control to be fairly
idiot proof. Text and questions
are created using an editor
program.

Write to:
Gary Dinsmore
Creative Software
Rt 3 Box 3216
Warren Oregon 97053

BOOK $29.95
SURVEY . $29.95
Introduction to Assembly $11.95
Assembly Language Programing •

• $11.95
~Cl~£>V<word processor/editor>

• $29.95

Calendar Printer
by David B. Suits

Here's a program for a new year. It is
written for the Okidata Microline 82A

printer, but it would require only minor
changes to work for any other printer. C

10 REM HHHHHHHHfHf-HHHHHHHHffHf-HHHH

15 REM * *
20 REM I CALENDAR PRINTER *
2SREM * *
30 REM I FOR I'IICROLINE 82A t

35 REM I •

40 REM I D. B. SUITS, 14 AL t

45 REM I *
50 REM * ALGORITHM BASED UPON I

5S RE~ I "DAY OF WEE<" PROGRAM FROM *
f.0 REM * SOME COMMON BASIC PROGRAMS *
65 REM I (OSBORNE & ASSOCIATES, 1978l *
70 REM * +
75 REM • NOTE: Color char1ges entered from the key- *
80 REM * board are given in brackets. Thus, t

85 REM 1 [17J is red, [18] is green, etc. *
~REM* t

95 REM HfHHflffftHfffHffflflfffflfflf-IIHIHflfff-11

97
98 REI'! Set up screen.
9'3

100 CLEAR 200
110 GOSUB 9000
197
198 REM Get starting year, etc.
199
200 GOSUB 8000
?!37
?!38 REM Set up printer.
299
300 PLQT 27,1814 :RE~ Baud rate= 1200.
310 POKE 33289,255 :R::M Lots of room or1 terminal outout.
320 PLOT 27,13 :REM Output to prir,ter.
330 PLOT 24 :REM 'CAN' = cJ. ear 1winter buffer.
340 PLOT 27,6 :REM 6 lines/inch.
350 PLOT 27, 65 : RE~ l or•g 1 i ne.
360 PLOT 30 :RE~ 10 cpi.
370 PLOT 27,5 :REM Top Ctf form.
397
398 REM Print the caler~ar.
39'3
400 GOSUB 1000
497
498 RD! More'
499

17

....
QD

500 POKE 33265, 0 :REM Out put to CRT.
510 PRINT :PRINT
520 INPUT "[19JWOULD YOU LIKE At(}THER? ";A$
530 A$=LEFT$!A$1 1l:IF At="Y" OR A$="0" THEN 200
540 IF A$ 0 "N" THEN 520
549
550 END
997
998 RE~ ********** Subroutine to print the calendar.

1000 IF YEAR <100 THEN YEAR=YEAR+1 900
1010 M=STARTM0NTH:Y=YEAR:IF STARTM0NTH>2 THEN 1030
1020 M=STARTM0NTH+12:Y=YEAR-1
1030 A=M+M+INT(.6f(~+1ll+Y+INT(Y/4l+INT!Y/400l-INT!Y/100l+2
1040 COLUMN=FN ~(7l:REM PRINTCOLUMN=A MOD 7
1099
1100 FOR INDEX=STARTM0NTH TO START~4TH+NUMM0NTHS-1
1110 A=<INDEX-1l:M0NTH=FN M!12l+1
1117
1118 REM Top margin.
1119
112~ FOR J=1 TO 6:PRINT :NEXT
1127
1128 REM Prirtt mortth's name irt double width letters.
1129
1130 PRINT TAB!MARGINlCHR$131lMO$!M0~~HlCHR$!30l:PRINT
1136
!137 REM Print year AD land AL for year l 1968!. .
1138 REM Al = Armc• Lurtae. !First moor, lartding was 1'369. l
1139
1140 AD$="AD"+STR$!YEARl:AL$="Al"+STR$!YEAR-1968l+"
1150 PRINT TAB!MARGINl;:!F YEAR\1969 THEN 1170
1160 PRINT AL$;
1170 PRINT AD$
1179
1180 PRINT :PR!NT :PRINT :PRINT
1190 PRINT TAB!MARGIN-5lj
1197
1198 REM Prirtt rtames of days.
1199
1200 FOR J=1 TO 7
1210 PRINT SPC(7lDAY$!Jl;
1220 NEXT
1221
1230 PRINT
1237

1238 REM Now a horizontal line.
1239
1240 SOSUB 7000
1249
1250 DAYS=DAYS(M0NTHl
1257
1258 REM Is it February?
1259
1260 IF ~TH(l2 THEN 1290 :REM No.
1267
1268 REM Yes. Check for leap year.
1269
1270 A=YEAR
1280 IF !FN M!4l=0) AND <<FN M!100l <}0) OR !FN M!400l=0ll THEN DAYS=29
1289
1290 FOR JJ=1 TO DAYS
1297
1298 REM Vertical lines.
1299
1300 GOSUB 6000:PRINT :REM CR artd LF.
1310 GOSUB 6000:PLOT 13 :REM CR only.
1319
1320 PRINT TABO!IARGIN+10tCOLUMN+11lRIGHT$!" "+STR$(JJl,3l;
1330 COLUMN=COLUMN+1
1340 IF <COLUMN<7l AND (JJ<lDAYSl THEN JJ=JJ+l:GOTO 1320
1347
1348
1349
1350
1360
1370
1380
1381

REM End of week (or month).

PRINT :IF COLUMN=7 THEN COLUMN=0
FOR L=1 TO 3:SOSUB 6000:PR!NT :NEXT :REM
SOSUB 6000:PLOT 13:GOSUB 7000

NEXT

Vertical lirtes.

1390 PLOT 12 :REM Next page.
1400 IF M0NTH=12 THEN YEAR=YEAR+1
1410 NEXT
1411
1420 RETURN
5997
5998 RE~ ********** Subroutine to prir1t the vertical divisions.
5999
6000 PRINT TAB !MARSIN-1);
6009
6010 FOR J=l TO 7
6020 PLOT VBAR:FOR KK=l TO 9:PLOi SPACE:NEXT

...
.0

6030 NEXT
6031
6040 PLOT VBAR
6050 RETURN
6997
6998 REM ********** Subroutine to pdnt a horizOYital line.
6999
7000 FOR J=1 TO MARGIN:PLOT SPACE:NEXT
7010 FOR J=l TO 69:PLOT UNDERLINE:NEXT
7020 PRINT
7030 RETURN
7997
7998 REM ********** Subroutir1e to Qet startirrg year, etc.
7999
8000 PRINT
8010 INPUT "(19JENTER STARTING YEAR FOR THE CALENDAR: U7J";Y$
8020 YEAR=VAL!Y$l:IF YEAR!0 OR YEAR<>INT!YEARl THEN 8010
8030 PRINT
8040 INPUT "[19JENTER START MONTH (1 FOR JAN, 2 FOR FEB, ETC. l: UT:";M$
8050 STARTM0NTH=VAL(M$)
8060 !F STARTM0NTH<1 OR STARTM0NTH!liNT<STARTM0NTH) OR STARTM0NTHl12 THEN 8040
8070 PRINT
8080 INPUT "[19JENTER NUMBER OF MONTHS DESIRED: I17J";NUMM0NTHS$
8090 NUMM0NTHS=VAL!NUMM0NTHS$)
8100 IF NUMM0NTHS<1 OR NUMM0NTHS!liNT!NUMM0NTHSl THEN 8080
8110 PLOT 15, 18
8120 PRINT :PRINT
8130 PRINT "TURN ON PRINTER AND SET TO TOP OF PAGE."
8140 PRINT :INPUT "[19JPRESS [23JRETURN [19JWHEN READY: ";A$
8150 RETURN
8997
8998 REM ********** Subroutine to get data.
8999
9000 DEF FN M<MDl=INT!Al-INT<MDltiNT!INT!Al/INT!MDll:~ A MOdulo MD.
9010 DIM DAYS<12l,M0$!12l,DAY$(7)
9019
9020 DATA Jar.uary, 31, February, 28, March, 31, Apri 1, 30
9030 DATA May,31,June,30,July,31,August,31,SepteMber,30
9040 DATA October131 1November1 301DeceMber,31
9050 DATA Sun,Mon, Tue,Wed1 Thu,Fri,Sat
9059
9060 FOR J=l TO 12:READ MO$(Jl,DAYS(J):NEXT
9070 FOR J=1 TO 7:READ DAY$(J):N£XT
9079
9080 PLOT 14,6,6,291 12

9090 PRINT TABllSl "C A L E N D A R P R I N T E R"
9100 PLOT 15
9110 PRINT TAB<20l"FOR MICROLINE PRINTER":PRINT
9119
9120 MARGIN=6 :REM left margir:.
9129
9130 REM Codes for PLOTting.
9139
9140 SPACE=32
9150 UNDERLINE=9S
9160 VBAR=124
9169
9170 RETURN

Carnpucolor Transistor Equivalents

Reprinted by permission from CUVIC
(Compucolor/Intecolor Melbourne
Us~r Group newsletter, November, 1982)

[We felt that this information was
important enough to reprint, although it
has been published in several other news
letters. - eds]
Here are some equivalent components for
the high val tage transistors on the
Compucolor analog board:

'IRANS I S'Iffi I.s.c. EXPIVALENf
Ql BUSOO BDX32
Q2 Ff410 BUX81
Q3 MJE3439 2.N5657
Q4 MJE3439 2.N5657
(E A43A BF336

or 2.N5551
or M'SA43A

Video drivers 2.N2905A BFX30

In order to keep the voltage on most of
these transistors below their limits,
keep the width of the screen display such
that there is about 1.5 ems border on
each side. Because this squeezes up the
characters, the brightness should be
lowered a little. C

------------ -------- - ---~--

Converting Sereen Editor Files
to Co111p-U-Writer .DOC Files

by Joseph J. Charles
P.o. Box 750
Hilton, NY 14468

We have been using a screen editor as a
poor man's word processor to create files
for school reports, letters, and other
documents. Recently my son started typing
the rough draft of a new book I'm writing
for the Timex/Sinclair computers. While
the original intent was simply to get a
legible rough draft, it became more de
sireable to do the whole job (through to
camera ready copy) on the Compucolor
computer. Therefore, after having my son
type about seventy double spaced pages
using a screen editor (CTE), I bought the
COMP-U -writer word processor.

COMP-U -writer is designed to format disks
and create files that are not compatible
with normal FCS format and file struc
ture. However, COMP-U-writer comes with
enhancements to allow one to create and
use files in regular FCS format. These
files are customarily named with a .DOC
file name extension. If you then try to
load any file other than a COMP- U -writer
FCS-compa tible file, you will find that
the first line of the text is garbage,
and COMP-U-writer will not respond
properly to commands. However, it is easy
to make any file of ASCII characters
compatible with COMP-U-writer.

COMP- U -writer creates a directory entry
of 128 bytes for each file, whereas FCS
directory entries are only 21 bytes. The
additional space in COMP-U-writer direc
tories allow 29 character file names. The
directory also contains the values for a
number of document parameters such as:
number of characters per line, number of
lines per page, baud rate, etc. When an
FCS compatible file is created, these
document parameters are still saved, but
since there isn't room for them in the
FCS directory, they are saved in the file

%0

itself in 64 bytes which are added to the
beginning of the file. Thus when any type
of file other then a .DOC file is used,
the first 64 bytes of the text are taken
as the document parameters. This is
enough to foul things up since the para
meters are now extremely unlikely to be
correct. The solution is to simply add
the correct values for the parameters as
the first 64 bytes of the file. This
could be done with a BASIC program or
with FCS commands.

I must admit that I haven't taken the
time to determine the meanings of all the
bytes that are added to the file. Several
bytes were zero for every file we
created. However, we did not use every
document option available. Knowledge of
the meanins of the bytes will allow you
to make the conversion easily, and, once
converted, additional options could
easily be set in the COMP- U -writer file.
The bytes whose meanings we discovered
are given in Table 1. (For two byte
entries, the low byte is given first,
then the high byte.)

I use the following procedure in FCS on
my 32K machine to add COMP-U-writer type
file parameters onto the front of a file
created by a screen editor:

1. Use an existing .DOC file to get
the first 64 bytes into memory:

FCS>LOAD filename.DOC 8500

2. Load the file to be modified into
memory 64 (40 hex) bytes after the
start of the previous file:

FCS>LOAD screeneditorfilename
.SRC 8540

..

3. Save the file including the ad
di tiona! 64 bytes (you will have
to calculate the new end of file
address):

FCS>SAVE screeneditorfilename
.DOC 8500-endaddress

A BASIC program to do the job is given in
Listing 1. C

Table 1 Byte DescriEtion

1 I ines/page
2
3 characters/ I ine
4
5 left margin
6
7 indentation
8
9 baud rate

10
11 starting page mmber
12 "
13 1st tab colllln
14 2nd
15 3rd
16 4th
17 5th

lZ+no. of tabs+l 255
+2 0
+3 double space (0/255)
+4 0
+5 cont forms (0/255)
+6 0
+7 two col/page (0/255)
+8 0
+9 j us t r t mar g f0/255)

+10 0
+11 marked text (0/255)
+12 0
+13 page n~.Im (0/255)
+14 0
+15 2-side print (0/255)
+16 0
+17 parallel port (0/255)
+18 0
+19 ?
+20 ?
+21 ?
+22 ?
+23 ?
+24 ?
+25
+26 ?
+27 ?
+28 255
+29 ?
+30 ?
+31
+32 ?
+33 ?
+34 ?
+35 page width
+36 0
+37 text starts here

Typical value

55
0

60
0
8
0
5
0

176
4 4x256+176=1200

13
0
I
9

19
29
39

255 end of tabs
0

255 O=no; 255=yes
0
0
0
0
0

255
0
0
0

255
0
0
0
0
0
0
0
0
0
0
0
0
0
0

255
0
0
0
0
0
0

85
0

2I

Listing 1

REM [whtJPROGRAM! [redJCONVRT.BAS[SrnJ

22

2
3 REM
4 REM
5 REH
6

[whtJCONVERTS ANY ASCII FILE TO A [yelJ,DOC FILE FOR USE[SrnJ
[whtJWITH THE [yelJCOMP-U-WRITER [whtJWORD PROCESSOR AND SAVESrsrnJ
[whtJTHE [yelJ,DOC [yelJCOPY ON DISK.[SrnJ

7 REM
8 REM
9

[YelJWRITTEN BY J,J,CHARLES & J,J,CHARLES JR , [grnJ
[yelJOCT 11• 1982 10!23 PM[grnJ

10 REM [cynJPOKE DEFAULT VALUES INTO MEMORY AT 9000[grnJ
20
30 FOR I= OTO 63!READ DV!POKE 36864+ I,DV!NEXT I
40
50 REM [c~nlGET DIRECTORY INFORMATION FROM USER[SrnJ
60
70 PLOT 15,12
80 INPUT "[SrnJINPUT DISK DRIVE NUMBER! [redJ"iDN
90 IF DN< > OAND DN< > 1THEN 80

100 PLOT 6,6
110 PLOT 12,27•4!PRINT "DIR"iDNi"!"!PLOT 27,27
120 INPUT "[SrnJENTER THE FILE NAME! [whtJ"iFit
130 INPUT "[SrnJENTER THE FILE TYPE! [whtJ"iFTt
140 INPUT "[SrnJENTER THE VERSION NUMBER! [whtJ"iVN
150 INPUT "[SrnJFILE SIZE FROM DIRECTORY [yelJC4 DIGITSl[SrnJ: [whLJ"iSZS
160 INPUT "[SrnJFILE LAST BLOCK COUNT [yelJCLBC-2 DIGITSJ[grnJ! [whLJ"iLBCS
170
180 REM [c~nJLOAD .SRC TYPE FILE AT 9040[SrnJ
190
200 PLOT 27•4!PRINT "LOA "iDNi"!"iFiti"."iFTSi"i"iVNi" 9040" ! PLOT 27,27
210 REM [c~nJCONVERT NUMBER OF SECTORS TO DEC[srnJ
220
230 Nt = SZt!GOSUB 5000
24 0 SZ= N
29
260 REM [c~nJCONVERT NUMBER OF BYTES IN LAST SECTOR TO DECCsrnJ
270
280 Nt= "00"+ LBCt!GOSUB 5000
290
300 REM [c~nJCALCULATE FILE SIZE IN DECIMAL[SrnJ
310
320 NN= csz- 1 >* 128+ N
330
340 REM [c~nJCALCULATE END OF FILE LOCATION[SrnJ
350
360 NN= NN+ 36927
370 PRINT !PRINT "FILE END <DECl = "iNN
380
390 REM [c~nJCONVERT TO HEX[SrnJ
400
410 GOSUB 6000
420 PRINT "FILE END CHEX> = "iN$
430
440 REM [c~nJSAVE FILE AS .DOC TYPE[SrnJ
450
460 PRINT "[yelJINSERT THE DISK ON WHICH YOU WISH TO SAVE THE FILE[SrnJ"

470 INPUT "[YelliN [whtJDRIVE 0 [YellAND HIT RETURN[SrnJ"iAZ
480 PLOT 27,4!PRINT "SAVE "iFISi",DOC 9000-"iNS!PLOT 27,27
490 INPUT "DO YOU WISH TO CONVERT ANOTHER FILE? "iAN$
500 IF ANt= "Y"GOTO 70

1000 END
4997
4998 REM [redl***** [whtJHEXADECIMAL TO DECIMAL SUBROUTINE [redl*****CSrnJ

. 4999
5000 N= 0
50 01 FOR I = OTO 3
5002 N1 $= MID$ CN$,4- I,l l
5003 N1 = ASC CN1$l
5004 IF N1> 48AND N1< = 570R N1>
5005 RETURN
500~ IF Nl > = 65THEN N2= N1- 55
5007 IF N1< = 57THEN N2 = N1 - 48
5008 N= Nt N2* 16t I
5009 NEXT I
5010 RETURN

65 AND Nl < 7 0GOTO 500 6

5997
5998
5999
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6150
9998
9999

REH (redJ***** CwhtJDECIMAL TO HEXADECIMAL CONVERSION [redJ*****[srnJ

N= NN
IF NN> = OAND NN< = 65535GOTO 6030
N= - l:PLOT 6•2:RETURN
FOR I= 3TO OSTEP - 1

FOR J= 15TO OSTEP - 1
T= J* 16t I
IF T> NNTHEN NEXT J

D< I l= J
NN= NN- T

NEXT I
N$= ""

OSTEP - 1 FOR I= 3TO
IF Dl I l>
IF Dl I»

NEXT I

OAND DIIJ< = 9THEN N$= NSt CHR$ <D< Ilt 48)
= lOAND DII .J< = 15THEN N$= NSt CHR$ ID(llt 55>

RETURN

10000
10010
10020
10030

REH [cynJCOMP-U-WRITER'S 64 DEFAULT VALUES[srnJ
DATA ss,o,s6,o,a,o,o,o,l28,37,1,o,2SS.2Ss.o,o,o,o,o,o
DATA o,o,o,o,o,o,o,o,o,o,o,o,o,o~o.o.o.o,o.o

DATA o.o,o.o,o,o,o,o.o,o,o,o,o,o,o,25S.o.o.o.o
DATA o,o,;2,0

Keyboard Expansion
by Bi 11 Anthony
655 E. Wells Way
Camano Island, ~ 98292

This article e xplains how to expand a
small Compucolor keyboard to a large one,
a relatively easy task for anyone with a
desire fo r a la rge r keyboar d and a
fondness for money. The tools required
include a Phillips screw driver, a
soldering i r on, some s o lder, a
desoldering tool , a dri ll, and a keyhole
saw . You'll also need some k e ys with
key top s t o add to the board. The n umber
will depend on the extent of your
exp ansion. From smallest to largest size,
46 keys are needed.

If you live near a good surplus store,
you may find the Cherry keys and approp
riate tops there, or perhaps through a
local electronics store, such as
Schweber. One good source for keys and
tops is Arkay Engravers, 2073 Newbridge
Road, Bellmore, New York 11710, phone
516-781-9859. Ken Kaplan is a good
contact there.

With everything assembled, and with the

computer OFF, disconnect the keyboard and
turn it over onto a towel to prevent
scratching. Remove the two small screws
h olding the cover to the keyboard, a n d
slip the cover off the circuit board.
Disconnect the cable leading to the key
board, (mark it first so you can replace
i t the same way) and set all the parts
a s i de except the circuit board.

With your s oldering i ron a nd d e solde ring
tool (e i the r wick or suc tion t yp e),
remove t he so lder fr om the h o les of the
keys you plan to add. The location of
each key is marked on the bottom of the
circuit board, so that shouldn't be too
hard. Use caution, and don't overheat.

Next, insert the keys into the metal mask
and very carefully push them all the way
in. Watch that the leads go through the
holes you have so patiently cleared and
don't bend. Then solder the leads to the

Conhnued on page l!ti

23

Assen~bly Language
Programming

by David B. Suits

Part VIII:
Simple Math

Rotating

The contents of the accumulator may be
"rotated" left or right. A left rotation
will move each bit one position to the
left. The MSB (Most Significant Bit) will
be moved around to become the n ew LSB
(Least Significant Bit). For example:

Before left rotation: 1 0 0 1 l 0 1 0

After left rotation: 0 0 1 1 0 1 0 1

Another version of the rotate instruction
involves the carry flag. The bit that is

"shift" instruction. Unfortunately, the
8080 has none. Thus, you'll have to use a
rotate instruction and then mask out the
unwanted bit with an ANI instruction. For
example, the sequence :

RLC
ANIT 11111110B ;or ANI 254

will shift all bits to the left, insuring
that the LSB is zero. By the way, that
will have the same effect as:

AID A

shoved off the end during the rotate except that the flag settings might dif
instruction will replace the carry flag, fer. And this brings us to the subject of
and the bit that was in the carry flag addition.
will move into the other end of the ac-
cumulator. In effect, then, the carry
flag acts as though it were the ninth bit Addition
of the accumulator. For example:

Before left rotation:
Carry: 0

Accum: 1 0 0 1 1 0 1 0

After left rotation:
Carry: 1

Accum: 0 0 l 1 0 1 0 0

As with some other 8080 mneumonics, the
rotate and rotate-through-carry instruc
tions appear to be what they are not.
"RLC" does not stand for "rotate left
through carry", and "RAL" does not stand
for "rotate accumulator left". Nope. It's
the other way around. Similarly for the
right rotate instructions RRC and RAR.

If you don't want the bit from one end to
"wrap around" into the other end of the
accumulator, you will want to use a

24

The first thing to notice about addition
is that it is done two numbers at a time.
Even if you're adding up a whole column
of numbers, you can do it by adding the
first two numbers, then adding their sum
to the next number, and so on. One
consequence of this is that the largest
carry during such an addition will be 1.
Or, to put it another way, there is
either a carry (i.e., 1) or there isn't
(i.e., a "carry" of 0). This is not
peculiar to binary arithmetic; it's true
in all bases--decimal, hexadecimal, and
so on. So if you add two 8 bit binary
numbers, their sum cannot possibly be
more than 9 bits.

Using the 8080 instruction set, there is
an easy way to determine whether there
has been a carry: the carry flag will be
set. Of course, it is not always an easy
task to extend the number of bits rep
resenting a number just because there has

been a carry. So in any given program we
will decide in advance what the allowable
range of numbers will be. If there is a

LXI D,-128
DAD D

carry out of that range, then you can If the results of a DAD are greater than
have the program either ignore it or else two bytes, the carry flag will be set.
signal an overflow error.

Suppose we wished to limit the range of
numbers from 0 to 255. (That's con
venient!) How do we carry on byte ad
dition? Simple. Put one number in the
accumulator and other other number in a
register (including M, the pseudo regis
ter which is actually the byte of memory
whose address is in HL). Then the
instruction:

ADD <reg>

If you want to add still larger numbers,
you'll have to write a more complex--but
still fairly simple--routine. Consult an
8080 assembly language book for some
examples.

Since multiplication can be seen as rep
etitive addition, we shall advance to our
next topic ••••

Mll tipl ication

will add the two numbers and leave the The ADD A instruction multiplies the
results in the accumulator. The carry contents of the accumulator by two. To
flag will be set if the sum was too large multiply by four, simply ADD A twice. ADD
t o fit into one byte. For example: A three times to multiply by eight. And

so on by powers of two. How about multi-

MVI B, 6
A, 253
B

B: 0 0 0 0 0
1 1 1 1

O plication which won't fit that scheme?

MVI A: 0
ADD sum: 0 0 0 0 0 0

The result in the accumulator is 3, which
is actually 6+253 = 259 MODULO 256 = 3,
and the carry flag is set. (The zero,
sign and parity flags are also affected,
but we're not concerned with them here.)

Multi-byte addition is easy. To add a one
byte number to a two byte number, it's
probably easiest to use a routine in ROM
called ADHLA (at 3518H for V6.78 and
194EH for V8.79), which adds the number
in the accumulator to the contents of HL.
The result is in HL •. (You might want to
fire up your debugger and take a look at
that ROM routine.)

Suppose you want to multiply the contents
of the accumulator by six. First, notice
this equality:

6*A = 2*A + 4*A

Since the factors 2 and 4 are powers of
two, the multiplication by six can be
accomplished by two multiplications and
an addition. But each of those two
simpler multiplications is easy.

ADD A
MOV B,A
ADD A
ADD B

; *2
;Save 2*A
; *4
; *6

Similarly, multi"plication by, say, 13 can
be expressed as:

13*A = A + 4*A + 8*A A simple way to add a two-byte number to
another two-byte number is to put one of
them in DE (or else BC) and the other in And a routine to do that would be:
HL. Then the instruction DAD D (or DAD B)
will add them, with the result in HL.
This 11 Double ADd 11 instruction is fre
quently used for adding offsets to poin
ters. For example, HL might be keeping
track of something on the screen. To
paint up one line, 128 (for a 64 charac
ter line) must be subtracted from it.
These assembly language instructions
would do it:

MOV B,A ;Save 1*A.
ADD A ; *2
ADD A ; *4
MOV C,A ;Save 4*A.
ADD A *8
ADD c *12
ADD B *13

Because of the possibility of a carry out
of the MSB, your one byte result (in A)
will not be correct if the result would
have been greater than 255. Thus, the

25

---~------ ---------------

routines above should be taken as MODULO
256. If you want to be able to obtain
larger results, you'll have to use a two
byte (three byte, four byte, etc.)
routine. Also, the method I've presented
can be used only when you already know
the value of one of the numbers. But
suppose you don't know either of them.
There is some number in A and some number
in B. How do you multiply them? Perhaps
the easiest way is to use the ROM routine
MULHD (at 3562H for V6.78 and 1998H for
V8.97). This routine allows you to
multiply a one or two byte number by
another one or two byte number. Simply
load DE with one number, HL with the
other, and CALL MULHD. If a number has
only one byte, then load it into the low
byte of the register pair and set the
high byte of the pair to zero. The result
comes back as four bytes (two 11 words 11

),

the high word (most significant two
bytes) in DE and the low word in HL. If

Keyboard Expansion

(Continued from page 23)

circuit board, making sure the solder
joint is well made. Connect the keyboard
to the computer (without its case) and

try it out to make sure the keys are
properly installed. (The circuit board
must be on a non-conductive surface.)

Stick on the keytops, and measure the

both numbers are only one byte, then the
result is necessarily no more than two
bytes. Thus, to multiply the contents of
A by the contents of B, you could:

MOV E,A
MVI D,O
MOV L,B
MVI H,O
CALL MULHD

Since the low word is returned in HL,
that will contain the answer.

Next time:
numbers.C

Numerical I/0 and random

cover to determine what must be cut. Mark
it on the cover in pencil, take a break,
and measure it again. Once cut, that's
it. Cut the cover with your keyhole saw,
or a jigsaw, if you (or a friend) have
one, smooth the edges with sandpaper, and
reassemble. Figure out where to spend the
money you just saved. C

F~ SALE a£AP! !

2&

CCII, V6.78, 32K RAM, 2 disk Drives, 117 Keyboard, UPPER/lower case,
Internal Soundware, Joy stick port, Programming, Service & Source Listing
Manuals. FORUM vol 1.1 thru 2.6 1 COL.ORCUE vol 1.1 thru 5.1. BASE 2
Pr·inhr Mode 1 MST. 1el0 Diskettes: COMP-IJ-WRITER W/MAILMERGE,
COMP-U-POSER, SUPER FREDI, GENERAL LEDGER, DATA BASE II W/ ALL OPTIONS,
FULL SCREEN EDITOR, DISK EDITOR, FORTRAN W/ MANUALS, CHOMP 1 WISE II,
M.L.D.B., INVADERS, CHECKBOOK, UTILITIES, INVENTORY, TIMECARD,SUPER MENU,
BASIC & ASSEMBLY LANGUAGE TIJTIALS 1 GAMES, 4000-5FFF PROGRAMS, etc.
Software worth OVER ·•2200.00 alc•ne. Everything goes, ALL this for· the
best offer >S2700.00, & I pay shipping.

Melvin F. Pezok, 1381 Ignacio Blvd., Novato, Ca. 94947, U.S.A.
Phone # <415) 883-2118 after 5PM PST.

Back Issues Sale

Back issues of Colorcue are an excellent source of information about
Compucolor computers, ISC computers, and programming in general. Inter
views, interesting articles, and programs are all there with a touch of
history.

The list below includes every Colorcue ever published. If it's not on the
list, then there wasn't one.

MULTI-ISSUES at $3.50 each
__ Oct, Nov, Dec 1978 __ Apr, May/June 1979
__ Jan, Feb, Mar 1979 __ Aug, Sept/Oct, Nov 1979

IIDIVIDUAL ISSUES at $1.50 each
Dec 1979/Jan 1980 Feb 1980 Mar 1980

__ Apr 1980 __ May 1980 __ Jun/ Jul 1980

IIDIVIDUAL ISSUES at $2.50 each
__ Dec 1980/Jan 1981 __ Aug/Sep 1981 __ Oct/Nov 1981

__ Dec 1981/Jan 1982 __ Feb/Mar 1982 __ April/May 1982
__ June/July 1982 _ Aug/Sep 1982

POSTAGE
US and Canada -- First Class postage included.
Europe, S. America-- add $1.00 per item for air, or

$.40 per item for surface.
Asia, Africa, Middle East-- add $1.40 per item for air, or

$.60 per item for surface.

DISCOUNT
For orders of 10 or more items, subtract 25% from
total after postage.

ORDER FROII: Color cue
Editorial Offices
161 Brookside Dr.
Rochester, NY 14623

Color cue
Editorial Offices
161 Brookside Dr.
Rochester, NY 14618

BULK RATE
U.S. POSTAGE

PAID

Ac<:hester_ N_ Y.
Permit No.4 1 5

rcue
___,

$10,151~
$9.587 $U11

!ID16 - \U.YZS rmzs
miJ41~

\JHitoO (DIJ550 ·-- • • tU!;__ - 1Z0.1il.
tQ.2ill.

tt.4CII~ 17.tca.lt. zou ca.tt
Ul~

S.OlfiYI

115~ no•=
t$0 ~=:1400 140ft =--
17001100

11.1' ~ 37 .f' ZI-t'~ - 31.1'~47.1"
L 41.1" ~ zs.r 4t.O"• %1.1'

41.r~47.r

1 I I _I

• 324

800 47aoo
sso

6:oo
s

79 ~·

22015

642 ,,
40

200 79
Dec/Jan I98S $2.

Colorcue
A bi-monthly publication by and for
Intecolor and Compucolor Users

Editors:
Ben Barlow
Da v i d B . S u i t s DOC/ JAN 198 3

Volume 5, N.lrnber 3 Compuserve: 70045,1062

3 Editors' Notes

3 Tech Tip, by Alexander Pinter
Changing disk drives

5 Assembly Language Programming, by David B. Suits
Part IX: Numerical I / O and Random Numbers

10 First Aid for Compucolor Disk Drives, by Thomas J. Herold
Get the speed right

11 Some Thoughts on BASIC Speed and Style, by Joseph Norris
Ruminations and suggestions

15 What's New for the CCII?, by Rick Taubold
Here comes the software

17 Controlling Keyboard Input in BASIC, by Dan Murray
When, what and how

21 A FORTRAN Plot Library, by Joseph J. Charles
Library routines and a demo program

Advertisers: A good way to get in touch with potential customers i s through
the pages of COLORCUK. You will find our advertising policies attractive.
Write for details.

Authors: Thi s is a us er-oriented and user-supported publication . Your
articles , tips, hints, programs, etc. are required to make it go. Write
or scribble your ideas down ; we'll edit them and provide all artwork. Send
your articles or write for :lnformation.

COLORCUK is published bi-monthly. Subscriptions are US$12/year m the
U.S., Canada and Mexico , and US$24 (includes air mail postage) e l sewhere.
Some back issues are avai l able. Al l editorial and subscription correspon
dence should bf' addrPsserl to COLORCUE, 1 61 Brookside Dr., Rochester, NY
14618, USA. All articles in COLORCUE are checked for accuracy to the be s t
of our ability, but they are NOT guaranteed to be error free.

1£bifors' N otrs:

We goofed last issue with the date on
the Contents page. Instead of "October
/November" we had "August/September". The
Volume and Issue number were correct,
though. And so was the date on the front
cover.

Say, are you going to send us an art
icle on your latest hardware or software
project, or are you going to let it lan
guish forever? Articles (long, short,
medium) are always in demand. How about
it?

Have you been having troubles with
ISC's Macro Assembler? Some users--even
users very experienced in such things-
have been miserably unsuccessful with it.
The problem might well be not in the
assembler itself but rather 1n the
linking loader. Perhaps early versions
were bugful? Let us know your experiences
with the Macro Assembler, and we'll pass
them on in these pages.

Speaking of compilers (we were
speaking of BASIC compilers in the last
issue), there's no word yet about the
Australian BASIC compiler. We're holding
our collective breaths. In the meantime,
if you're interested in learning about
compilers but haven't found a book which
is readable by non-mathematicians, there
is a very good book which you should have
a look at. It is ~£!!?Piler Qesign Theory
by Lewis, Rosenkrantz and Stearn
(Addison-Wesley, 1978). Don't let the
title fool you; the authors don't inun
date you with chapters and chapters of
the formal theory of compilers. The book
has a more practical feel to it. In fact,
the object of the book is to develop a
Mini-BASIC compiler. Perhaps with a bit
of work (er ..• a lot of work) the compiler
could be enhanced so as to be able to
compile something akin to Microsoft
BASIC for your C o mpucolor/Intecolor.
We ll, it's a thought, anyway.

A question from a reader: Does anyone
know of a spelling correction and/or a
}Jroofr e d.Jing progr a m that will run on a
Compuco l•Jr 0 (For ISC CP/M owners, th e
Wor d Plus prngra <ns fr om Oasis systems are
exrd lent. - ed.)

Another question. A reader having
difficulties getting anything to run on a
cold Compucolor uses a hair drier to warm
the disk drive. After about a minute, all
is fine. Can anyone suggest a solution
that would eliminate the problem?

Readers with an interest in edu
cational software will be interested in a
set of programs written for ISC machines
by Dr. Marjorie A. Fitting to teach
trigonometry. Using a circular functions
approach, the programs provide experience
with radian measure, the development of
the sine function, graphing the sums of
functions, and drills with identities and
polar graphs. We have not personally seen
the programs, but they received an ex
cellent review in a recent issue of
Mathematics Teacher which rated accom-
panying documentation as above average.
The individual price is just $29.95;
school and dealer prices are somewhat
higher. Contact METIER, PO Box 51204, San
Jose, CA 95151. C

Tech Tip

by Alexander Pinter
PO Box 230
Columbus, GA 31902

A few weeks ago I bought a used disk
drive for my 6.78 CCII and figured out
how to change it from CDO: to CD1:.
Here's how:

In the right rear of the disk controller
board, to the left of the DIP socket used
by internal drives, are five holes num
bered one through five. CDO: drives have
hole one connected to hole five, and CD 1:
drives have a small loop of wire con
necting hole five to hole two. Just
solder in th e loJp of wire to holes five
and two, anct cut the circuit board trace
between holes five and one. C

3

INTELLIGENT
COMPUTER

SYSTEMS INC.

UNDERSTANDABLE SOFT WARE ••••••RELIABLE HARDWARE
GOOD SUPPORT ._,._,. _,..,._,._,. AND ALWAYS DISCOUNT PRICES

NASHUA DISKETTE
* single sided * double density * 40 tracks * soft sector * hub ring *
* * AND free exchange on all defective diskettes within 30 days * *

10 blank diskettes
20 blank diskettes

US$ 26
US$ SO

10 formatted diskettes US$ 31
20 formatted diskettes US$ 60

SPEC~Al
FORMATTER WITH SPEED CONTROL program
Formats your CCII diskette, and dis
plays the speed of the diskdrive
graphically on the screen ORDER# SP845 US$ 24

EXTERNAL HOUSING FOR DISKDRIVE
complete with cable and detailed
instructions (only 6 left) ORDER# IM790 US$ 79

COMPUCALC
The Superversion of the Visicalc
for the CCII ORDER# BG115 US$ 120

SOFTWARE CATALOG WITH OVER 150 PROGRAMS AVAILABLE ON REOUEST
** SEND USSl FOR COMPLETE SOFTWARE AND HARDWARE CATALOG **
*** MASTER CHARGE, VISA AND AMERICAN EXPRESS ACCEPTED ***

INTELLIGENT COMPUTER SYSTEM, 12117 COMANCHE TRAIL
HUNTSVILLE, AL 35803 USA, PHONE 205-R81-3ROO

.A.ssembly Language Programming

by David B. Suits

Part IX: Numerical I/0 and
Randan Nmnbers

The computer handles numbers in
binary. The computer user handles numbers
in decimal (usually). How do we make the
conversion? For a single decimal digit
the conversion is simple. The ASCII codes
for the digits '0'--'9' are 30H--39H.
Thus, translating from ASCII to binary is
simply a matter of subtracting 30H. And
to translate from binary to ASCII, just
add 30H. This latter conversion won't
work if the binary number is greater than
00001001. Suppose, for example, the acc
umulator contains 00010001 (=llH). Adding
30H would yield 41H and sending that
code to the screen would produce the
letter 'A'. So, to deal with numbers
having more than one decimal digit, a
more complex routine is required. That
is, we want a routine which will accept
decimal characters from the keyboard and
convert them to appropriate binary equiv
alents for internal manipulation.

As usual, many assembly language
routines can be invented by trying first
to write a BASIC routine. How would you
convert a string of digits into a number
if you didn't have BASIC's VAL() func
tion? Figure 1 shows a flowchart for such
a method, and Listing 1 gives a BASIC
subroutine. This is not too difficult to
do in assembly language, as long as we
limit the number to two bytes maximum
(65535 decimal). Let's assume that the
string of digits has been read into a
buffer. The BC register pair points to
the start of the buffer, and the end of
buffer is signalled by a carriage return
{ODH). Listing 2 shows the routine.

Next is the problem of translating a
number from binary to a string of ASCII
digits for printing. More or less the
reverse of the preceding routine will do
the job: keep dividing SUM by 10 and
converting the remainders into ASCII
digits until SUM=O. Listing 3 is one

Figure l. ~ version of such a method. It is based on
s= a routine by Graeme Smith in the March,

i

I

I
I
I

I

L __

; SLM = 0 · 1980 (V3, No.3) issue of Colorcue. The
~---~ ~:~ 1:- -~ - ---:-----, number 1s translated into a string of

; get next]~haracter I
~--convert character Listing l.
: to the number it

~~ ---~r~_p_:e~ent~----=:: I 997 RDt Subroutine to convert string of
1 SUM = 10 * SLM + \ 998 REM digits to a number.

1 converted digit
1
;, 999 RD1 Input string is D$ •

......__ _ ____ _J 1000 SLM=0
1010 FOR J=1 TO LEN(D$)

-- rii:r-;;- -.... y I 1020 .'I$=*1ID$(D$,J,1)
< dig its to ··-:,______.) ~~ Hl30 A=ASC (A$) -48

· 1040 SLM=10*SUM+A ·•_ go? /-'

I
1050 NEXT

-. v / 1060 RETURN

(~o-l i I

····-·----=~-~~-- ----·-------J L_ ________________ ____
s

ASCII digits which are moved into a buf
fer, one at a time, from right to left.
This is a very handy routine because you
can first clear the buffer with space
characters (20H) so that by printing the
contents of the entire buffer, the number
will be right justified and with no
leading zeros. The second method, in
Listing 4, is a slight modification which
stores the string of digits on the stack
and then prints them by POPping them off
the stack one at a time. This is a sim
ple, all-in-one routine for printing out
a binary number in decimal.

also often complex to implement in ass
embly language. For some time I searched
around for a quick and dirty routine, but
I was never satisfied with what I found,
mainly because the series of numbers
generated by such routines would begin to
repeat much too quickly, and so a pattern
would be apparent. It finally occurred to
me that my computer's ROM consisted of
about 16K bytes of mixed up numbers.
Couldn't we use them as a large table of
pseudo-random numbers and just pick them
out, one by one? Well, almost. The
trouble is that some numbers in the range
0-255 are for some reason not very well
represented in ROM, and other numbers
appear much too often. So my pseudo
random number generator takes the con
tents of ROM and applies a very simple
function to them to generate a more even
ly distributed series of numbers (all in
the range 0-255). This has the virtue of
speed. In addition, I don't think I've
seen the series of genera ted numbers

Rand(UJ Numbers

In BASIC we have that nifty RND ()
function. There's no such beast available
in assembly language, and so we'll have
to create our own. Really good pseudo
random number generators produce a series
of numbers evenly distributed over a
certain range. Unfortunately, they are

Listing 2 ;**

A2BIN -- Translate string of ASCII cha racters
to a two byte (maximum) binary number.

ENTRY: <BC> -> start of string.
String must end with carriage return (0DH).

EXIT: HL = converted number (two bytes).
<BC> -> end of string.
All else lost.

CALLS: MULHD, ADHLA

' ;**

CR EQU
MULHD EQU

ADHLA EQU

A2BIN: LXI

"'.2BINl: LI:iV:
CPI
RZ
SUI
PUSH
LXI
CALL
RJP
CALL
INX
JMP

0DH ;Carriage return character.
3562H ;V6. 78 ROM routine to multiply HL by · DE.

High word of result ends up in DE,
; low word in HL. BC is unchanged.
;N.B.: For V8.79 and V9.80 use
; MULLH EQU l998H

3518H ;V6. 78 ROM routine to add A to HL.
;N.B.: For V8. 79 and V9.80 use
; ADHLA EQU l94EH

H,0 ;SLM=0.

B ;Get next digit.
CR ;End of string?

;Yes.
30H ;ASCII to binary.
PSW ;Save new digit.
0,10
MULHD ;SLM=l0*SLM.
PS-< ;Retrieve new digit.
ADHLA ;SLM=SLM+newd ig it.
B ;Bump string pointer.
A2BINl ;Back for more.

•

than some upper bound, U?
(1) Calculate D=U-L

repeat, even though I've gener a ted
several hundr e d thousand of them in a
row! Listing 5 is my pseudo-random number
generator. If you wish to generate num
bers greater than 255, just call RANDM
for each byte desired.

(Z) Generate a random number, R', such
that O<.= R'<=D

(3) Then let R=L+R'.

Try generating two byte pseudo-random
numbers and printing the results in dec
imal using the B2ASB or B2ASP routine.
Have fun.

Now that we are able to generate ran
dom numbers in the range 0-255, how can
we arrange things to get a random number
in any given subrange within 0-255? That
is, how do we get a random number, R,
such that it is equal to or greater than
some lower bound, L, and equal to or less

This makes things a bit easier, since the
random number generator will always give
a number =>0. But how do we make sure it
is <=D? A quick and dirty method is to
subtract D from the R' until R' is equal
to or less than D. Figure 2 is a flow
chart of the process, and Listing 6 is a
BASIC routine to further help you vis
ualize the method. Listing 7 is the final
version. C

I

I
Listing 3.

I
i
I

L~
Listing 4.

;**

B2ASB -- Convert two byte binary number and put s tring of
ASCII digits in a buffer for later printing.

ENTRY: <BC> -> right-most spot in print buffer.
<HL> = binary number to convert.

EXIT: <BC> - > left of left-most char in print buffer.
<HL> = 0.
All else lost .

CALIS: DIVHD

' ;**

DIVHD EQU 3581H ;V6. 78 ROM routine to divide DE by HL.

B2ASB: LXI
XCHG
CALL
MOV
ADI
STAX
CCX
MOV
ORA
JNZ
RET

D,l0

DIVHD
A,E
30H
B
B
A,L
H
B2ASB

Quotient is returned in HL, remainder
in DE. BC is unchanged.

;N.B.: For V8.79 and V9.80 use
DIVHD EQU 19B7H

;Required by ROM routine .

;Get l ow byte of remainder.
;Binary to ASCII.
;Put character into buffer.
;Move buffer pointer left.
;Continue

. until quotient
is zero .

; **

B2ASP -- Convert two byte binary number to string of ASCII
characters and print the resulting string.

ENTRY: <HL> binary numbe r to convert and print.

EXIT: <BC> unchanged.
<HL> = 0.
All else lost .

CALLS: DIVHD , LO

'
;**

358 ~~ ;'.'6. !8 ~CM routine to d i·.,.·ide ~E !:)y HL.
Quotient is returned in HL, remainder
in DE. BC is unchanged.

;N.B.: For V8 . 79 and V9 . 80 use
DIVHD EQU l9B7H.

7

Listing 5.

8

LO EGU 3392H ;V6. 78 ROM rout ine to send character in
A to screen.

;N.B.: For VB. 79 amd V9.80 use
LO EQU l7C8H.

B2ASP: LXI
PUSH

B2ASPl: LXI
XCHG

D,0
D
D,.i.0

;Zero on stack to indicate end of string.
;Divide by 10.
;Required by ROM routine.

CALL DIVHD
MOV
ADI
PUSH
MOV
ORA
JNZ

A,E
30H
PSW
A,L
H
B2ASPl

;Get low byte of rema i nder.
;Binary to ASCII.
;Add to string.
;Continue

until quotient
is zero.

;Now print out the ASCII string thus created.

B2ASP2: POP
ORA
JZ
CALL
JMP

PS-J
A
XB2ASP
LO
B2ASP2

;Get character.
;End of string?
;Yes.
;No. Print the character.
;Back for more.

XB2ASP: RET

;**

RANDM-- Generate a pseudo-random number (0-255). Given a
one byte seed, multiply it by 17 (or any prime). Add
to that the byte at location RCMPI'R, which is a pointer
to somewhere or other in ROM. (It could point into
program memory just as well, since this routine does
not alter the contents of the location at ROMPTR.)
Each time RANDM i s called, the pointer is incremented
(and the one byte pseudo-random number is added to the
low byte of ROMPI'R). If the pointer passes the end of
ROM, it is reset to the beginning .

ENTRY: No register values expected.

EXIT: <A> = pseudo-random number.
All else preserved.

CALLS: None.

' ;**

PTRMIN EQU
P1'RMAX EQU

RANI:M: PU,SH
PUSH
LI:li\
MOV
ADD
ADD
ADD
ADD
ADD
LHLD
ADD
STA

MOV
INX
ADD
MOV
MOV
CPI
JC
LXI

RANDMl : SHLD
MOV
POP
POP
RET

0000H
40H

B
H
SEED
B,A

;Start of ROM.
;High byte of end of ROM (4000H).

;Save working registers.

A ;SEED=SEED*l7 (ignoring any overflow).
A

A
A
B
ROMPTR
M ;Add some byte or other.
SEED ;Result is pseudo-random number and

seed for next time.
B,A ;Temporary.
H ;Bump pointer.
L ;Mix it up a bit.
L,A
A,H
P'I'R-1AX
RANI:Ml

;If pointer goes too far
then
reset it

H,PTRMIN ; to beginning.
ROMPI'R
A,B
H
B

;Un-temporary.
;Restore register.

;Return with <A> = pseudo-random number.
i

l
···-----------l

•

I

I
I

i
I

Figure 2.

Listing 6

Listing 7

(START)

!9~f~
is y

R' >D?

N

(END)

Hl PRINT
20 INPUT "Upper bound: ";UP
30 INPUT "Lower bound: "; LO
40 DELTA = UP - LO

I
l R' =R' -D I

i

50 IF DELTA > 256 THEN PRINT "Range too big!": GOTO 10
60 RAN= INT(256 * RND(l))
70 IF RAN > DELTA THEN RAN = RAN - DELTA: GOTO 70
80 RAN = LO + RAN
90 PRINT "RANIXl'l ="RAN
100 GOTO 10

;***

; BOUND -- This routine creates a pseudo-random number between
; two bounds, each of which is 0--255.

; ENTRY: = upper bound.
; <C> = lower bound.

EXIT : Required number in <A>.
B, C, E, H and L unchanged.
D lost.

; CALLS : RANI:M

;***

BOUND: MOV A,B :Get upper bound.
SUB c ;Subtract lower bound.
MOV D,A ;Difference in D.
CALL RANI:M ;<A>= 0 ••• 255.

BOUNDl: INR D
0\P D ;Is (difference + 1) > random #?
JC BOUND2 ;Yes. Just what we want.
OCR D
SUB D ;Random = random - difference.
JMP BOUNDl

BOUND2: ADD c ;Add lower bound.
RET ;Return with result in <A> .

L _________ --- --------------- -- --- ------ ---------- --
9

First Aid for Compucolor Disk Drives

by Thomas J. Herold

Is your disk drive g1vmg you error
messages, particularly when you are
loading a new disk for the first time?
Does it fail to read or write as you
think it should?

In almost all cases, these problems
are caused by a mis-match between the
current disk drive speed and the original
speed used to record the disk. Both the
internal and external disk drives for the
CCI are notorious for changing speed
without prior notice. For this reason,
the speed of all CCII disk drives should
be checked and adjusted as necessary, at
least once a month. !he allo~able £E.:_

erating range is only 299 ~ 300 RPM. If
your disk drive's speed is out ofthis
range, you will have problems loading
programs, exchanging disks with other
CCII owners and possibly even reading
your own disks.

Both the internal and external drives
can be adjusted visually, by turning the
potentiometer on the disk drive's inter
nal printed circuit board while watching
the stroboscopic indicator lines on the
bottom of the disk drive rotor (under
flourescent light, not sunlight) in much
the same way a stereophonic turntable is
adjusted to rotate at exactly 33-1/3
r.p.m. This method provides reasonable
accuracy if performed carefully.

For the internal disk drive, it is
necessary to remove the back housing from
the computer. The potentiometer can then
be adjusted by using a small screwdriver,
and the indicator lines can be watched by
using a small mechanic's mirror; or the
disk drive can be dismounted from the
computer frame and allowed to sit beside
the computer during the adjustment. Be

10

extre!!?~ careful ~hen working with ~
screwdriver on ~ .E,£Wered-up computer.
!2on't touch anything else.

There is a more reliable way of
keeping your disk drive speed properly
adjusted. This is with the FORMATTER
program. which allows you to check the
speed of your drive at any time, graph
ically, right on the screen, without
removing or dismounting anything. Of
course the drive will still have to be
dismounted and adjusted with a screw
driver if the speed control program in-
dicates that the drive speed is outside
the allowable operating range. This same
FORMATTER program also allows you to
format and initialize your disks.

There is also a much easier way to
gain access to and adjust your internal
drive. Since an external drive is con
siderably easier to adjust than an in
ternally mounted drive, many CCII owners
have purchased an external disk drive
housing, dismounted their internal drive
from the computer, and installed it in
the external housing where it is very
easy to adjust. These factory-provided
metal and plastic housings provide pro
tection from physical damage, electronic
radiation, spilled liquids and dust, and
come complete with LED and factory ribbon
cable to plug into the computer. You can
order a complete housing from Intelligent
Computer Systems in Huntsville, Alabama.
The housing comes with good documentation
on how to take the drive out of the unit
and install it into the housing. ThP
price is $79 US, and the FORMATTER with
Speed Control is available for $24 US.
Good luck, and be careful! C

Some Thoughts on BASIC Speed and Style

by Joseph Norris
Apa.rtment 58
42 Conshohocken Sta.te Roa.d
Ba.la. Cynvyd, PA 19004

One may speak about two distinct ele
ments of "speed" in the performance of a
program . The first is the finite,
measurable time required to complete an
operation. The second is an "apparent
speed" , which coincides with the opera
tor's subjective response to the timing
of console events, especially time during
which the operator is inactive. Helpful
material is available concerning the
first element and I recommend two refer
ences in particular which cover generali
ties in Microsoft BASIC [1] •

As for the second element, consider
what it means to format a program for
minimum "apparent" speed. If a screen
display is changing or the operator is
required to make keyboard entries, time
passes rather smoothly. And while it
seems no great tr i al to wait for an oc
casional disk read/write, to the operator
process ing scores of files a day even a
small wait can be most frustrating. You
will be made aware of your profound reac
tion to this waiting period if you have
experienced the difference between access
times on a 5" and 8" disk system. The 8"
disk will access twice as fast, but it
can seem many times faster on first ex
perience.

The "operator wait state" can be min
imized simply by placing screen and key
board activity as close as possible to
the disk read/write period. This way the
operator will be idle (visually and
manually) for the least amount of time.
Even "busy work" operations are helpful,
such as screen printouts announcing the
begi .~n. i r:g .J.r:d end of a disk access, or an
in-pr oc ess report , if the disk period is
very long. Go o d sense predicates that
such acti v 1t 1es not si g ni ficantly in
creasr~ t he waiting perio d ; a s imple mes-

sage will do.
There are times when lengthy calcula

tions must be performed. These calcula
tions probably need not all be done in
one great lump. There can be ample oppor
tunity to intersperse calculations with
screen messages and keyboard inputs, even
if these are not concerned with the
specific calculations taking place. Such
activity might be concerned with some
thing to be handled later, whose inputted
data can be temporarily s t ored until
needed. When my programs involve lengthy
calculations I at least give the operator
some idea of what is happening;
"CALCULATING WEEKLY TOTALS", or "FORMAT
TING DATA FOR DISK WRITE" are typical
screen messages. These are infinitely
better than holding a stagnant screen
with a blinking cursor (which office
personnel tell me is simply annoying),
because they allow the operator some
measure of time remaining for the pro
cedure to finish. If the idle period is
longer than five seconds, I display a
blinking "WAIT" or a similar message to
remind the operator that the computer
isn't broken! These things are effective
in reducing mild anxiety when "nothing is
happening" and are, after all, a courtesy
on the operator's behalf.

The graphics capabilities at our dis
posal with ISC hardware make it difficult
not to splurge occasionally with pyro
techniques that are spectacularly un
necessary and distracting (to everyone
but the programmer). Such displays use
time and, unless they are truly helpful,
can appear more as self-indulgence than
skill. We can strive for the level of
sophistication that leads us, with wis
dom, past these temptations and into a
de eper sense of what creative programming

11

means. Examination even of simple pro
grams, with creative imagination and
awareness of the psychological element,
will show opportunities for program re
finement at any level of programming
ski 11.

A time-consuming operation in pro
tracted programs is the pressing of the
RETURN key. I make it a rule that all
single key responses will not require a
subsequent RETURN. COLORCUE has had
several articles describing ways to avoid
RETURN. Listing 1 shows some lines of
code that function as OPTION LINE direc
tives demonstrating one such procedure
and I invite you to examine it on your
computer. (The '<' marking in my programs
indicates to the operator a single key
response. Multiple-key responses followed
by RETURN are indicated by '>'.) Line 50
sets the position and color scheme of the
Option line. The routine at 56 moves the
cursor off the screen and gets the
single-key response. Line 504 screens the
response for validity, and line 506 vec
tors the option selection. Line 58 isn't
necessary really; it converts the ASCII
value returned from KB to the number

Listing l.

printed on the line generated on 502.
The next thing we will consider m

example demonstrates three techni~es for
speed; PLOTing and PRINTing, GETting and
PUTting disk file strings, and the
minimum use of variables. Figure 1 shows
two lines from a screen display. The
first is generated by the BASIC program
and consists of field labels. The second
is an intact data string, J$(1), of 64
bytes from a file record, printed exactly
as it exists in the file. (A third line
marker for byte counting is provided for
your convenience.) Notice that each field
length is separated from the next by two
blank spaces, which are 'wasted', re
served spaces both on the screen and in
the disk file. The GET statement for the
string in File #1 is: GET
1,1,1;J$(1) [64]. This string, with all
its data, PLOTs and PRINTs in a single
line. To enter, delete or edit data I
need but one variable pair which I will
call S$ and S. To extract the Stock Num
ber I GET 1,1,8;S$ [5]: S=VAL(S$) and
replace changed data with an equivalent
PUT statement. If I have 'declared' S$
and S early in my program, they will be

[Subroutines, located on early program lines]

Figure l.

1%

50 PLOT 6,35,3,0,5,11,3,0,5: RETURN
55 POKE KB,0
56 PLOT 6,0,3,65,5: B = PEEK(KB): IF B = 0 THEN 56
58 B = B - 48: RETURN

[Main program reference to subroutines]

500 GC6UB 50
502 PRINT "l DIRECTORY 2 ADD 3 DELETE 4 EDIT 5 PRINT <"
504 GC6UB 55: IF B < l OR B > 5 THEN 500
506 ON B GOTO 900,100,200,300,400

[GOTO references contain sub-programs]

100 REM 'ADD' ROUTINE: ENDS WITH GOTO 500
200 REM 'DELETE' ROUTINE: ENC6 WITH GOTO 500
300 REM etc.

900 LOAD "DIRECT": RUN

PROD# STOCK BKORD VENOOR 01\.TE/DUE CCNI'ACT TELEPHONE
12345 10005 25000 APEX CORP 12/10/83 A. MAHNS 123-456-7890

Field Specifications, Strinq J$(1)

Label: PROD# STOCK BKORD VENOOR 01\.TE/DUE CCNI'ACT TELEPHONE
Length: 5 5 5 9 8 8 12

Start byte: l 8 15 22 33 43 53

near the start of variable space and will
be found quickly. I will use S$ (and S if
required) to access any of the variables
in this string.

Compare this procedure with GETting,
PLOTting and PRINTing seven isola ted
variables, both in time of execution and
memory space required. The PUT statement
performs a string length adjustment as
well. The VENDOR field is nine bytes
long, but if my entry is only four bytes
(i.e., APEX) I can still PUT 1, 1,22;S$ [9]
which will write my four byte string plus
enough space to make up the indicated
byte count. This eliminates the pre
formatting of the string, and the neces
sity for clearing out old field data in
the disk file.

When I change data in this way, I
follow it with a FILE "D",1 statement and
GET, PLOT and PRINT the string again, so
my screen shows the updated content. A
'dummy' variable, N$ [2], may be used to
extract all of the variables in J$ (1):

G E T l, l, l;S T $ [5] , N $ [2] , 8 K $ [5] ,
N$[2],VE$[9],N$[2], etc.

There is a consequence of this simple
demonstration whi(:h is not at all
trivial. I am really using GET and PUT
for string manipulation in the manner one
might use LEFT$, MID$ and RIGHT$, only
the procedure is much more rapid. In
fact, nearly all my longer industrial
programs open a dummy file,
DUM.RND[l,l28,l] which serves no other
purpose than to provide me with free file
buffer space which is used to format
strings, using PUT and GET. This tech-

nique has been especially valuable when
the string being edited has had complex
color coding, with various background and
foreground combinations. These codes need
not be considered while I plug in new
data at the appropriate byte locations,
and the economy in code is significant. A
completed string is retrieved from
DUM.RND and PUT into the proper file
before closing it. In this manner I have
been able, with color, to fill the entire
screen with data, all needed at once to
be meaningful. You might say I have, m
effect, an 80 column display.

Another extension of this technique is
the realization that there is no benefit
from GETting all my 64-byte data strings
which I only want to work with a few at a
time. This allows multiple use of the
nee essary v ari abl es involved. Sorting
procedures and the like may require
access to all the data, but more often
this is not the case.

We have looked at a few psychological
implications in programming and at the
advantages of using file buffer space for
string manipulation. Though the presented
examples are over-simplified, they may
serve as suggestions for a more compli
cated implementation. I confess that
BASIC remains my favorite high-level
code, speed limitations notwithstanding,
and if the proposed increase to 15 mega
hertz and 15 gigahertz speeds are
realized in the next fifteen years, these
limitations may become largely academic.
In the meantime, creative programming
will help realize the full potential of
this splendid computer language. IIC

[1] T e s1 e r , G 1 e n n • B Y T E , M a y 1 9 8 2 , p p •
318, 328, 330, and APPLES 0 FT PR 0 GRAMM IN G
MANUAL, 1978, pp. 118-120. Most material
covered here is applicable to CCII and
3651 equipment.

FLASH - STOP THE PRESSES --- FLASH - STOP THE PRESSES

A BASIC compiler has just been released by Peter Hiner in England. It is
called FASBAS and generates what appears to be a pseudo-compiled BASIC
which runs faster than interpreted code. We've had trouble getting it to
access disk (e.g., PLOT 27,4), and there are certain restrictions on the
kinds of BASIC programs it can translate, but it does work. What's more,
the price for the disk and documentation is $25 outside the U.K. (Discount
for bulk orders from user groups.) Contact Peter Hiner, 11 Penny Croft,
Harpenden, Herts, ALS 2PD England. We'll try to say more about FASBAS in
the next COLORCUE.

13

' C ompucolor Hardware Options ;

*

~LOWER CASE Character set. (Switchable) MSC12

~MULTI-CHARACTER sets. (Lowercase, Electronic, Music etc.)

~REMOTE DEVICE CONTROLLER. Switch ON/OFF 8 devices. PSCl

~ 16K R.\H Upgrade. (Increase from 16K to 32K.)

~ ROMPACKS. Easy exchange of 8K EPROM MODULES. The interface
board can hold an additional 8 or 16K EPROM.

$29 u.s.
$39

$4 5

$99

• Interface board, cable and ROMPACK socket: $48
• Each blank RONPACK (Including EPROMS): $25

(Please write for full details of ROMPACK
system and available software.)

PROGRAM PACKAGE INSTALLERS,

P 0 Box 37,

DARLINGTON,

WESTERl~ AUSTRALIA 607 0

All prices
incl. airmail.

* EPPS Word Processor V5.2

for the COMPUCOLOR II (V6. 78, 8 . 79), 3621 and INTECOLOR 3651. (32K RM1)

*

only $55 (u.s.) Incl. airmail

·" Full screen, fas t operation with 20K byte buffer. (Assembler ,,-ritten)
>'< Can be used with any level keyboard. (101 key is recommended.)
* Automatic word wrap on screen and printer with justification. (30-1 99 col)
* Block and characte r Move, Copy, Delete, Save and Print.
* String search with optional replace. (Both up and do\m file.)
* Operates with or without lowercase charac t er set. (Selectable).
*HELP facility. Full command summary on sc r een. (Two pages.)
* Au toma ti c repea t on all keys.
* Imbedded contro l codes allows operation of a ny printer function.
* Screen preview of printout at any time.
* Compact file storage in FCS format. Can process exis t ing .SRC files.

pp~ PROGRAM PACKAGE I NSTALLERS,

P 0 Box 37,

UARLlNGTON,

Please include
-~-- - -- - -~.._,
t"._...) H1"-Ll 1- VV _.l,_ 1-. ll

·- 1 •
'--' !.. u c: i .

WESTERN AUSTRALIA 6070 (Ph.092996153)

*

wrhaes New for the CCII?

by Rick: Taubold
197 Hollybrook Road
Rochester, NY 14623

There's been a lot of 'doom and gloom'
about the CCII lately, about how it has
passed the way of many other obsolete
items. Personally, I can't understand all
the fuss. The CCII still lives on as the
Intecolor line. All of us realize what a
bargain the CCII was at the time. Gran
ted, the Intecolors are a bit more expen
sive, but then you get more. I suppose
what I'm saying is that, if the CCII is
really dead, why has there been so much
recent growth in software and hardware
for this 'dead' machine? Or maybe you
haven't noticed.

I know of at least three good sources
of software plus several smaller ones.
The most complete is Intelligent Computer
Systems, 12117 Comanche Trail, Hunts
ville, Alabama 35803. They carry nearly
every decent piece of software ever writ
ten for the CCII/Intecolor computers.
Service is good, prices are low, and
there are only occasional goof ups with
orders. A second source is COM-TRONICS
CO., 144 Cloverside CT., Buffalo, New
York 14224. Again the service is good,
the quality is very high. However, and I
am not alone in this feeling, the prices
are also rather high. COM-TRONICS' own
words are that "if you want quality, you
gotta pay for it." Perhaps this is true,
but, despite the quality, I can't really
say that what I've seen of their software
is a bargain. In my opinion there is
other software, just as good, for less
money in many cases. By the way, unlike
the other sources listed here, COM
TRONICS markets only their own software.
Their products are also available from
the other sources, but the prices are the
saw e . T

.L

TRONICS on this one, but I know several
other people who a gree with me.

P e rhaps th e m ost e xciting new sourc e
of CCif and Tntecolor add-ons is FREPOST

Computers, 431 East 20th Street, New
York, NY 10010. It is to this source that
I will devote most of the remainder of
this article. Have you ever wished that
someone would make a particular i tern and
then later find it available even better
than you had dreamed of? I must confess
that I came up with the idea of doing
some thing useful with that blank 8 K ROM
space in the CCII some time ago. Un
fortunately, I was still a novice and
lacked the resources to carry out my
idea. I thought it would be nice to be
able to put several swi tchable programs
permanently into my CCII memory in the
4000H-5FFFH ROM space. Programs like the
Screen Editor, Assembler, FREDI (this was
before 'The' BASIC Editor came along),
etc. I envisioned a set of boards mounted
inside or outside the computer with a
switch to select the desired board. I was
told by those more knowledgeable than
myself that this was not feasible, some
thing about the length of the data lines.
Then, lo and behold, some months later I
saw a demo of the new FREPOST Bank Select
ROM board. I was awed. This was exactly
what I had wanted. Further, it was under
software control, no clumsy switches, and
it plugged neatly inside the CCII. Well,
I didn't buy one on the spot, but I did
not wait long. I am pleased to say that
there is no piece of hardware, in my
opinion, currently available for the CCII
that is more worthwhile having. The price
of $250 assembled is a bargain. The unit
is quality constructed and easy to
install.

There's more. Not only will this
beauty hold seven sets of 8K programs
(EPROiv1 chips), but the recent Tom :Uevi.in
RAM board will plug into the 8th
position. That's a total of 64K of user
defined program s pace that is in addition
to the 3 2 K RAM _tLready in yo ur machine .

.15

The possibilities are endless. Consider
how awkward it would be to have to load
BASIC from tape or disk every time you
wanted to use it. That's what one had to
do with the earlier home microcomputers
(and still a few current ones, I think).
All we have to do is ESC E and there it
is. How would you like your favorite
utilities that handy, always there at
power-up time? The FREPOST system is the
answer. All it takes is a couple of key
strokes and away you go. Already there
are many programs available in EPROM
ready to plug in. FREPOST will even cus
tom program EPROMs for you at modest
cost.

It is also worth saying that FREPOST
makes a single ROM board should you not
need all that fancy stuff. For some
people a simple BASIC editor is enough. I
cannot praise the company highly enough
for their friendly manner. After I pur
chased the Bank Select Board they called
me on more than one occasion to be sure
that (1) I had received it, (2) I had no
trouble installing it, and (3) that it
functioned properly and to my satisfac
tion. We had a minor problem at first
with the Devlin RAM board due to a minor
error in the FREPOST instructions. This
has since been corrected.

Neither was this my last contact with
them. Bill Freiberger has personally
called me at least twice since to keep me
informed of new products and developments
in which he felt I might be interested.
Now THAT is service. Do yourself a favor.
Write to FREPOST Computers for a catalog
of all their stuff. They carry things
like add-on lower case, add-on 16K RAM
(for those who still have 16K machines),
and lots more. As I said before, their
prices are very reasonable. I'm looking
forward to their next coup.

I suggested earlier that other sources
of software did exist. There are dis
tributors in Canada and Australia as
well. In the U.S., Jim Helms, 1121
Warbler, Kerrville, TX, 78028, writes and
sells software. I have several of his
programs, and all of them are excellent.
All of his programs should be available
from FREPOST (in EPROM if desired) or
from Intelligent Computer Systems.

I wish to comment on one more source.
This is COLORWARE in Canada (not to be
confused with Quality Software
Associates). Some time ago I ordered
three programs from them. One was a Pac
man program called GOBBLER. I found the
company to be slow (7 weeks instead of

1&

the stated 4-6 weeks) in delivery time
for one thing. Two of the three programs
gave disk errors, which COLORWARE claimed
was a fault of my disk drives. In all
fairness I should state that I was able
to load the programs on another machine
even though my own disk drives rarely act
up on other outside programs. But the
most annoying thing was that GOBBLER
would simply not run on a V8. 79 system
even though both versions were on the
disk. This was a ridiculous situation for
it was obvious that COLORWARE had not
tested the V8. 79 version before mar
keting. Indeed, the problem was faulty
conversion of V6.78 to V8.79 addresses.
Even more frustrating was the fact that
after I received the supposed 'corrected'
version from them it still would not run.
I went in myself with the MLDP program,
patiently disassembled all system ROM
calls, and compared each with what it
should have been for V8.79. Incredible!
Four of the addresses had not even been
changed! Again, COLORWARE failed to test
the program even after the customer com
plained! After I made these corrections
to my own copy, all was fine. I sent the
corrections to the company with a to-the
point letter. They did not do me the
courtesy of responding. The GOBBLER pro
gram itself was a disappointment. For a
purported Pac-man, it is way below stan
dards. Its only mark of distinction is
its excellent sound routines. I you crave
Pac-man, buy the CHOMP program (from
Intelligent Computer Systems). In my
opinion it is the best arcade game cur
rently available for the CCII.

In all fairness I should say that the
other two programs worked well and that
one of them, a utility called AGILIS is a
real boon. AGILIS allows the user to
create a screen display, after which the
program will itself write a BASIC program
to re-create that display. It's a mar
velous program. It is a shame that the
company selling it has chosen to run
their business in so poor a way. This is
the only supplier of CCII software which
I have encountered that has not met my
standards. I feel that other CCII users
should know this. I trust that this will
be an isolated case. The CCII is too good
a machine to settle for anything less
than the best in support.

The CCII may be 'dead', but its sup
porters are alive and active. I suspect
there are more surprises yet in store for
us. II:

Controlling Keyboard Input In BASIC

by Dan Murray
7064 35th NE
Sea.ttle, W A 98115

The Dec/Jan 1982 issue of Co1orcue has
an article by Bernie Raffee that presents
a method for controlling user input by
using a machine language subprogram. The
assembler language program makes interes
ting reading, and I learned some tech
niques for interfacing machine code with
BASIC. However, it seems like a lot of
work for a simple objective - preventing
the user from making mistakes. To avoid
mistakes, you must control the user's
actions, i.e., when he types, and what he
types. Bernie Raffee has certainly done
this, and very effectively, but if the
same result can be achieved from BASIC it
would be easier and more convenient.
Buried amongst some past issues of
Colorcue are the two tools need to con
trol the user from BASIC.

When
A prior issue of Colorcue says to use

the command "OUT 8 ,241" to lockout the
keyboard (except for the CPU reset key).
whenever you want the keyboard re
activated, just use "OUT 8,255", and the
keyboard will work as usual until the
next "OUT 8,241" command. This function
is important, because ISC's BASIC im
mediately echoes any keyboard input at
the current cursor location. This can be
disastrous if you are building a screen
format and the user starts to hit keys at
random. So, by using this function, you
have control over when the computer will
receive input from the keyboard.

What
Another past issue of Colorcue gives a

shor-t B.~~SIC i-vutiue that FOI<::Es a tiny
machine code routine into high memory and
sets up linkage for CALLing the routine
from BASIC. The beauty of this machine
code is that it performs a very simple,

primitive function - interrogate the key
board and return the ASCII value of any
key pressed, returning a -1 if no key was
pressed. Also, nothing is echoed to the
screen. As an extra frill, you can tell
the routine how many seconds to wait for
input, up to 255. By keeping the routine
simple, you can integrate it into many
different applications, tr eating it much
like any other BASIC function. When using
this function in a larger BASIC sub
routine, you can perform any number of
input and editing tasks, controlling
input entirely from BASIC.

Listing 1 is a sample program to
demonstrate the use of these functions,
including numeric verification with
signed fractional values. Since learning
these techniques, I have developed the
habit of keeping the BASIC "POKE" routine
on disk and LOADing it into memory before
starting a new program so that the
routine forms the beginning of every
program I write. If it later turns out
that a particular program won't need this
routine, it's a simple matter to delete
those few lines of code. NOTE: it is
important to remember t "CLEAR xxx" after
executing the BASIC "POKE" routine so
that the BASIC system will reset the
string space pointer, otherwise BASIC
will clobber your machine code with any
strings used later in the program.

Before I leave you with the impression
that this method is perfect, let me
assure you that it's not. The most
obvious problem is BASIC's speed, or lack
of it. The second problem is related to
the keyboard. It seems that ISC designed
their keyboards wun what is cai.i.ed
"three key rollover". This means that you
can hit a second and even a third key
before releasing the first one. As long
as each key is released before the next

17

one is pressed (even at high speed), the
program will work just fine.

design, code, and understand. Also, if
someone can find any "holes " in my error
traps, please let me know. C I hope these techniques will encourage

programmers to write thorough programs
that are user-friendly but still easy to

18

1
2
3
4
9

20
50

100
120
140

160
180
200
210
230
480

REM **********************************
REM * SAMPLE lYI.TA ENI'RY ROlJI'INES *
REM * BY lYI.N MURRAY *
REM * ll/04/82 *
REM **********************************
GCSUB 63000
CLEAR 1000

:REM LOAD INPUT ROlJI'INE INTO HIGH MEMORY

REM * CON'ffiOL ROlJI'INE *
GOSUB 1000 :REM - INITIALIZE
GOSUB 2000 :REM - SF:!' UP SCREEN

GOSUB 3000 :REM - INPJT SCME DA.TA

REM***************
REM - FURTHER PROCESSING GOES HERE
REM FILE UPDA.TING/DISPLAY, ETC.

REM***************
Garo 160

500 REM * FIELD INPUT ROlJI'INE *
5HJ A$=

:A= 0
: PLai' 3, 0, 0
: HUNT CHR$ (l3)
: IF NN= 0THEN NN= 1

520 PLai' 3, XX, YY
:HUNT LEFT$ (FILL$,NN);
: PLai' 3, XX, YY

530 Ol!I' 8,255
:AA= CALL (0)
:Ol!I' 8,241

540

550

560
570

1000
1020

i030
1050
1060
1070

1100
1120

1130

1150
1160
1980

2000
2020

:!~30

2040

2050

:IF M> 31AND M< 97AND A< NNTHEN A= A+ 1
:PRINT CHR$ (M);
:A$= A$+ CHR$ (M)
:Garo 530
IF M= 26AND A> 0THEN A= A- 1
:PRINT BU$;
:A$= MID$ (A$,1,A)
:Garo 530
IF M= l3THEN PRINT SPC (NN- A+ 1) ;
:RF:I'URN
IF M= 11THEN 500
Garo 530

REM * INITIALIZE *
PLai' 15,6,2,12
:REM SET CCI AND CLEAR SCREEN
PRINT SPC (15); "DA.TA EN'mY DEMONSTRATION"
Ol!I' 8, 255 :REM GET READY TO SHlJI' OFF KEYBOI\RD
Ol!I' 8, 241 :REM KEYBOI\RD IS NOW OFF
POKE 33289,255 :REM MAXIMUM CHARS/LINE

REM - DEFINE GLCSAL VARIABLES -
REM 'FILL' CHARACTERS SHOW THE FIELD'S SIZE

FILL$= "---
--"
REM BACKUP VARIABLE USED TO EAASE 1 CHARACTER
BU$= CHR$ (26)+ LEFT$ (FILL$,1)+ CHR$ (26)
RETURN

REM * SF:!' UP SCREEN DISPLAY *
PLOI' 3,0,5
:PRINT "NAME:"
nr,....., ..., ., ~ n J,_....~,o

:PRINT "- ADDRESS -"
PLOI' 3,0,10
: PRINT "STREF:I': "
PLai' 3,0,12
:PRINT "STATE:"

.I

2060 PLOT 3,0,14
:PRINT "ZIP CODE:"

2070 PLOT 3,0,17
:PRINT "TELEPHONE - WORK:"

2080 PLOT 3,32,17
:PRINT "HCME:"

2090 PLOT 3,0,19
:PRINT "YEARLY INCCME: $"

2980 RETURN

3000 REM * Ili'>.TA INPUT *
3020 REM - INPUT NAME -
3030 XX= 6

:YY= 5
:NN= 30
:GCEU8 500

3040 IF A$= ""THEN 3030
3060 REM - INPUT STREET -
3070 XX= 8

:YY= 10
:NN= 50
:GCEU8 500

3080 IF A$= ""THEN 3070
3100 REM - INPUT STATE -
3110 XX= 7

:YY= 12
:NN= 10
:GCEUB 500

3120 IF A$= ""THEN 3110
3150 REM - INPUT ZIP CODE -
3160 XX= 10

:YY= 14
:NN= 5
:GCEU8 500
:GCEU8 9500

3170 IF LEN (A$)< STHEN 3160
3200 REM - INPUT WCRK PHONE -
3210 XX= 18

:YY= 17
:NN= 8
:GCEU8 500
:IF A$ = '"' THEN 3210

3250 REM - INPUT HCME PHONE -
3260 XX= 38

:YY= 17
:NN= 8
:GCGU8 500

3270 IF A$= ""THEN 3260
3300 REM - INPUT INCCME -
3310 XX= 16

:YY= 19
:NN= 9
:GCEU8 500
:GOSUB 9000

3320 IF A$= ""THEN 3310
3980 RETURN

9000 REM * NUMERIC VERIFICATION *
9020 N= 0

: IF A$= ""THEN RETURN
9030 FOR X= 1TO LEN (A$)

: Y= ASC {MID$ (A$,X,1))
: IF Y> 47AND Y< 58THEN NEXT X
:RETURN

9040 IF (Y= 430R Y= 45)AND X= 1THEN NEXT X
9050 IF Y= 46AND N= 0THEN N= 1

:NEXT X
9060 AS= ""

: RETURN

9500 REM * INTEGER VERIFICATION *
9520 N= 0

9530 FOR X= 1TO LEN (A$)
:Y= ASC (MID$ (A$,X,l))
:IF Y> 47AND Y< 58THEN NEXT X
:RETURN

9540 AS= ""
:RETURN

63000
6301 0
63020
63030
63040
63050
63060
63070

63080

63090
63100
63110

63120

63130
63140

%0

REM *** INKEY ROlJI'INE *** 63150 Z= TM+ 7
:AD= TM+ 17
:GCSUB 63180
Z= TM+ 4
:AD= TM+ 21
:GCSUB 63180
Z= TM+ 32
:AD= TM+ 27
:GCSUB 63180
:GOTO 63190

CATA 245, 229, 197, 1,206,40,205, 36,0, 202,-1,-1 , 11
DATA 121, 176, 194,-1,-1, 29,194,-1,-1,17, 255, 255,195
DATA -1,-1,95, 175, 87,175,50,255,129, 193,225, 241,201
TM= 256* PEEK (3 2941)+ PEEK (32940)

63160

IF TM> 65503THEN 63110
RESTORE 63010 63170
FOR I= 1TO 39
:READ A
IF A> = 0AND A< > PEEK (TM+ I)THEN I= 39
:A= 999 63180 ZZ= INI' (Z/ 256)

:POKE AD,Z- 256* ZZ
:POKE AD+ 1,22
:RETURN

NEXT I
IF A< 256THEN 63200
TM= TM- 39
:RESTORE 63010
FOR I= 1TO 39
:READ A
:POKE TM+ I,A- (A< 0)
NEXT I
Z= TM+ 29
:AD= TM+ 11
:GOSUB 63180

63190

63200

63210
63220

Z= TM
:AD= 32940
:GCSUB 63180
Z= TM+ 1
:AD= 33283
:GCSUB 63180
POKE 33282, 195
RETURN

MORE DISK STORAGE FOR $24.95!

Two programs to pack 50% more
ASCII information on disks.

PACK.PRG compresses files to
2/3 original size and saves on
disk, UNPACK.PRG expands com
pressed files and saves in
original form.

Works on V6.78 and V8.79.

ALL ASCII codes (0-127) accom
modated, E.G., ASM SRC, TEXT
EDITOR and CTE files.

Delay for personal checks,
Send Postal Money Order for
same day shipment of program
disk and user instructions to:

VANCE PINTER
P . O. BOX 20
COLUMBUS, GEORGIA 3 1 902

A F<)RTRAN Plot Library

by Joseph J. Charles
P 0 Box 750
Hilton, NY 14468

Here is a library of FORTRAN plot
subroutines and a time-delay subroutine
which you can add to your FORTRAN pro
grams. Listing 7 is the FORDEM program
which simply demonstrates the use of the
plot subroutines.

The plot subroutines should be com
piled into a relocatable file named
PLTLIB.REL. To use them, all you need to
do is CALL them as desired in a FORTRAN
mainline or other subroutine. Then, after
compiling the FORTRAN source files, link
the files using L80. However, before
linking in the FORLIB.REL library, link
in the PLTLIB.REL library by specifying
the /S switch:

L80>PL1LIB/S

This will cause L80 to search PLTLIB.REL
for the plot, timer and scaler calls.
When the next L80> prompt appears, re
spond with FORLIB/S as usual.

The subroutine calls and arguments are
described below.

SUBIU.TfiNE SCALE (ARRAY1 , ARRAY2, N ,:MIN ,MAX)
ARRAY1 is the input array to be scaled
and converted to logical. ARRA Y2 is
the converted, scaled array. It is
scaled to screen coordinates. N is the
dimension of ARRAY!. I think it's fine
to l et N= dl+d2+ •.. dn if ARRAYl is
multidimensional. MIN is the minimum
value for the scaled array. You supply
this in th e CALL. MAX is the maximum
value for the scaled array. MIN anct
MAX should be in screen coordinates
anct integer variables or iateger
r:ons tan ts.

SUBROUTINE LINE(X,Y,N,FOOUJR,
:OCOLCR, IBL, IFL)

X, Y are the arrays of X and Y coord
inate pairs of dimension N . They must
be logical arrays and scaled to screen
coordinates. This is accomplished by
two CALLS to SCALE prior to the CALL
to LINE. LINE plots a line or curve of
connected points. It is essentially a
routine for doing vector graphics.
FCOLOR and BCOLOR are the foreground
and background colors desired. They
must be logical variables whose value
corresponds to 16-23 for the various
colors. IBL is a blink determiner. If
IBL= 1 the plotted line will blink; no
blink otherwise. IFL is a flag deter
miner. If IFL= 1 the flag is turned on
and the plot is exclusive ORed with
each pixel just as for PLOT 30 in
BASIC.

SUBROUTINE PPWT (••••)
A point plot subroutine essentially
identical to LINE.

SUBROUTINE XBAR (XO, Y, XMt\X, FOOUJR, PaX.CR,
IBL, IFL)

Each CALL plots one x- bar graph with
X, Y and XMAX as in BASIC. The other
arguments are as for LINE. As before,
X, Y and XMAX must be scaled and
logical.

SUBIU.TfiNE YBAR (YO, X, YM\X, •••)
Same as for XBAR.

SUBRXJI'INE TIMER (SED))
Provides a time delay of 11 SECS 11

seconds. SECS must be an integer
variable or integer constant. C

2I

I
I

22

c
c

====================== =========================:~=-=--:-:~-~--~--,

c
c
c
c
c
c
c
c
c
c
c

c

c

1
c

c

2
c

c

SUBROUTINE SCALE <A RRAYlrARRAY2rNrMIN r MAX)

THIS SUBROUTINE WILL SCALE ARRAYl rA REAL ARRAYr TO
THE LOGICAL ARRAYr ARRA Y2. ARRAY2 MAY BE SENT TO THE
SCREEN VIA THE PLOT ROUTINES, LOGICAL AND PROPERLY SCALED.

WRITTEN BY! JOSEPH J, CHARLESr 130 SHERWOOD DRIVEr
HILTONr NY 14468 TEL!(716 l 392-8152

VERSION! JULY 18r1982r 6!17 PM

DIMENSION ARRAYl< 1 l
LOGICAL ARRAY2< 1)

ALOW=1.E30
AHIGH=-1.E30

DO 1 I=1rN
IF<ARRAYl<Il .LT. ALOWl ALOW=ARF\AYl<Il
IF< ARRAY1< I) .GT. AHIGH l AHIGH=ARRAY1< I l

DELA=AHIGH-ALOW
DELTA=MAX-MIN
SCALER=DELTA/DELA

DO 2 I=1rN
ARRAY2< I l=< ARRAYl < I l-ALOW ltSCALER+MIN

RETURN
END

c ===
c

SUBROUTINE LINE <XrYrNrFCOLORrBCOLORriBL,IFL)
c
C THIS SUBROUTINE WILL PLOT CURVES WITH OPTIONS
C FOR COLOR,BLINKINGr AND "EXCLUSIVE OR"-ING.
c
C WRITTEN BY! JOSEPH J, CHARLES, 130 SHERWOOD DRIVE,
C HILTON, NY 14468 TEL!<716l 392-8152
c
C VERSION! JULY 18,1982, 6!17 PM
c

c

c

c

c

c

c

c

DIMENSION X(1lrY<1l

LOGICAL x,Y,FCOLOR,BCOLOR,BLINKrBLA70F,GPM,VECTOR
LOGICAL FGOFLO,BGOFLO•PLEND,GREEN,BLACK

DATA GPM,VECTOR,PLEND,FGOFLO,BGOFL0 / 2r242•255, 29,30 /
DATA BLA70F,BLINK,GREEN,BLACK/15 r31,18,16 /

WRITE(3) BGOFLO,BCOLOR,FGOFLOrFCOLOR

WRITE < 3 l BLA70F
IF< IBL ,EQ. 1 l WRITE< 3 l BLINK

IF< IFL .EQ .1 l WRITE< 3 l BGOFLO

WRITE <3l GPM,X<1 J,Y<1J.V ECTOR

DO 1 I=2•N
l WRITE< 3) X< I),y(I l
c

c

c

WRITE<3lPLEND,BGOFLO,BLACKrFGOFLO,GREEN,BLA70F

RETURN
END

Listing 1

Listing 2

I
I

~---------'

I

==================================~====================

SUBROUTINE PPLOT <x,y,N,FCOLOR,BCOLOR,IBL,IFLl

THIS SUBROUTINE WILL PRODUCE POINT PLOTS WITH OPTIONS
FOR COLOR,BLINKING, AND "EXCLUSit..'E OR"-ING.

WRITTEN BY! JOSEPH J. CHARLES, 130 SHERWOOD DRIVE,
HILTON, NY 1+468 TEL!(716l 392-8152

VERSION! JULY 18•1982, 6!17 PM

DIMENSION X<1J,Y(1l

LOGICAL X,Y,FGOFLO,BGOFLO,BLINK,GPM,POINTrBLA70F
LOGICAL FCOLOR,BCOLOR,PLEND,GREEN,BLACK

DATA GPM,POINT,PLEND,FGOFLO,BGOFL0/2,253,255,29,30/
DATA BLA70F,BLINK,GREEN,BLACK/15r31,1S,16/

WRITE< 3 l BGOFLO, BCOLOR, FGOFLO, FCOLOR

WRITE< 3 l BLA70F
IF< IBL .EQ, 1 l WRITE< 3 l BLINK

IF< IFL .EQ, 1 l WRITE< 3 l BGOFLO

WRITE<3l GPM,X<lJ,Y(1J,pOINT

DO 1 I=2•N
WRITE< 3 l X< I J,Y(I l

WRITE< 3J PLEND,BGOFLO,BLACK,FGOFLO,GREEN,BLA70F
RETURN
END

c ===
c

SUBROUTINE XBAR<Xo,Y,XMAX,FCOLOR,BCOLOR,IBL,IFLl
c
C THIS SUBROUTINE PRODUCES X-BAR-GRAPHS WITH OPTIONS
C FOR COLOR,BLINKING,AND "EXCLUSIVE OR"-ING.
c
C WRITTEN BY! JOSEPH J, CHARLES, 130 SHERWOOD DRIVE,
C HILTON, NY 14468 TEL!<716l 392-8152
c
c
C VERSION! JULY 18,1982, 6!17 PM
c

c

c

c

c

c

c

c

LOGICAL GPM,XBARG,FCOLOR,BCDLOR,BLINK,XO,Y,XMAX,PLEND
LOGICAL GREEN,BLACK,FGOFLO,BGDFLO,BLA70F

DATA GPM,XBARG,PLEND,BLINK/2,250,255,31/
DATA FGOFLO,GREEN,BGOFLO,BLACK,BLA70F/29,18,30,16,15/

WRITE<3J BGOFLO,BCOLOR,FGOFLO,FCDLOR

WRITE< 3 J BLA70F
IF < IBL .EQ. 1 J WRITE< 3 J BLINK

IF (IFL .Eel. 1 J WRITE< 3 J BGOFLO

WRITE<3l GPM,XBARG,XO,YrXMAX,PLEND

WRITE< 3) BGOFLO,BLACKrFGOFLO,GREEN,BLA70F

I l<t: I UKN

l __ ______ c _____ '~"--

Listing 3

Listing 4

23

I c
c

=================== ======-===·=-== ==-~-= ======-==== ===-===== --1
c

c
c
c
c
c
c
c
c
c
c

SUBROUTINE YBARIYQ,X,YMAX,FCOLOR,BCOLOR,IBL,IFLl

THIS SUBROUTINE PRODUCES Y-BAR-GRAPHS WITH OPTIONS
FOR COLOR,BLINKING,AND "EXCLUSIVE OR"-ING.

~RITTEN BY! JOSEPH J, CHARLES, 130 SHERWOOD DRIVE,
HILTON, NY 14468 TEL!I716l 392-8152

VERSION! JULY 18,1982, 6:17 PM

LOGICAL GPM,YBARG,FCOLOR,BCOLOR,BLINK,YQ,X,YMAX,PLEND
LOGICAL GREEN,BLACKtFGOFLO,BGOFLO,BLA70F

c
DATA GPMtYBARG,PLENDtBLINK/2,246,255,31/
DATA FGOFLO,GREEN,BGOFLO,BLACK,BLA70F/29,18•30,16,15/

c

c

c

c

c

c

~RITE! 3) BGOFLO,BCOLOR,FGOFLO,FCOLOR

WR ITEI 3) BLA70F
IF I IBL ,EQ. 1) WRITE! 3) BLINK

IF I IFL .EQ. 1) WRITE! 3) BGOFLO

WRITE< 3) GF'M,YBARG,YQ,X,YMAX,PLEND

WRITE< 3) BGOFLO,BLACK,FGOFLO,GREEN,BLA70F

RETURN
END Listing 5

c ==
c

SUBROUTINE TIMER< SECSl
c
C THIS SUBROUTINE PROVIDES A DELAY OF "SECS" SECONDS
c
C WRITTEN BY: JOSEPH J, CHARLES, 130 SHERWOOD DRIVE,
C HILTON, NY 14468 TEL!I716l 392-8152
c
c
C VERSION: JULY 18,1982• 6:17 PM
c

c

c

c

INTEGER DELTA,SECS

LOGICAL HR,MIN,SEC

HR=PEEKI X' 81BB' l
MIN=PEEKI X' 81BA')
SEC=PEEKI X' 81B9')

C STARTING TIME
STIME=3600.*HRt60.*MINtSEC

c
1 HR=PEEKI X' 81BB')

MIN=PEEKI X' 81BA')
SEC=PEEKI X' 81B9')

c
C PRESENT TIME

c

c

c

PRESTM=3600.*HRt60.*MIN+SEC

DELTA=PRESTM-STIME
IFIItELTA .LT. SECSl GOTO 1

RETURN
END

I

L_ ____ _ Listing 6 I
l

24

..

r ----·~·---··------

. LiSting 7 PROGRAM FORDEM

DIMENSI ON X< 51),Y(51),X:'< 51),Y:' < 51),Y3< 51 l
LOGICAL BLACK, RED,GREEN ,YELLOW,BLUE,MAGNTA,CYAN,WHITE
LOGICAL FGOFLO,BGOFLO,BLA70F,BLINK,ERASE,SETBR,ESC
LOGICAL A70N,BRC,PAGE,SCROLL,CURSOR,LX,LY,COLOR,HOME
LOGICAL X2,Y2,Y3,HR,MIN,SEC
DATA BLACK,RED,GREEN,YELLOW,BLUE,MAGNTA/16,17,18•19,20,21/
DATA CYAN,WHITE,ERASE,BLA70F,BLINK,HOME/22,23,12,15,31,8/
DATA ESC,SETBR,A70N,PAGE,SCROLL,CURSOR/27,18,14•24,11•3/
DATA BGOFLO,FGOFL0/30,29/
WRITE< 3 lBGOF LO, BLACK, FGOFLO, YELLOW, BLA70F

IORITE< 3,105 l
105 FORMAT<' INPUT DATA MUST BE II< FORM INDICATEII, FOR EXAMPLE' I

' II II U MEANS 3 TWO UIGIT NUMBERS ,RIGHl .J USTIFIED, WITH f;·,
2 Sf'ACE BETWEUj THI:.M. E.G. 09 17 30')

WRITE< 3,106 l
106 FORMAT< ' ENTER THE TIM E <HOURS MINUTES SECONIIS) H U U')

READ< 3d07 l IHR.IMIN.ISEC
107 FORMAT <3<I2,1Xll

C CONVERT TO ONE BYTE EACH
HR=IHR
MINooiMIN
SEC= I SEC

C POKE TO 33211,33210,33209
C <X'81BB'•X'Bll'A'•X'81P9' Ii< HEX)

CALL F'OKE(X' 81 BB' • HR J
CALL F'OKE< X' 81BA' ,MIN)
CALL F'OKE<X'81B9' ,sECl

WRITE<], 111)
111 FORMAT<' ENTER BAUD RATE CODE FOR YOUR PRINTER IF'/,

'YOU WANT TO USE IT. (1-7) ENTER 0 OTHERWISE, I')

READ < 3.112) IBRC
112 FORMAT< I 1)

IF< IBRC ,EQ, 0 l GO TO 2

BRC=IBRC
3 WRITE(]) ESC,SETBR,BRC

WRITE<], 113)
113 FORMAT<' ENTER NUMBER OF STOP BITS FOR YOUR PRINTER,'/,

' < 1 OR 2 l I ')
READ< 3, 112) NSB

IF< NSB .EQ, 1 l WRITE< 3) A70N
IF< NSB .EQ. 2 l WRITE< 3 l I~LA70F

WRITE< 3.130)
130 FORMAT<' FOR HOW MANY SECONDS WOULD YOU LIKE TO OBSERVE 'I

' EACH DEMONSTRATION PLOT'i H ')
READ < 3,107) NSEC

WR1TE(3d01)
101 FOf(MAT<' ENTER x,y FOf\ LOWER LEFT CORNEr;;: H~ IH' /•

' ENTE R X GREATER THAN 127 TO END PfWGRArl.')

REA[I (3,102li XMIN,IY MIN
102 c·OR MAT< I3.1Xd3 l

IF< IX MIN .GT . 12 /) GOTO 8

WRl TE\ 3.103)
!03 FDf<MAT< . ENTER ;:,y f'CJR UF'F'ER RIGHT CORNER: U,. HI' l

READ (3.102) IXMtlX.IYMAX

C DEFINE GAUSSIAN FUNCTION:
C N< 0 d) < NCJ 1 NOR MALI ZED TO UN IT AREA)

104

1'(26) =1.
x< ::6 J~ o.
[10 1 l = 1 , 25
;.< I) =(I - ~6)/8.
Y< I l~EXF'(-0. 5 :tl >:< I lU2) l
X(l t- 26)=1/8,
Y< 1+26 J=EXF·< -(1, ~*\ ~ I t- 2~, >**=-'))
Wld1F f1~T~ Tl! F· S:[Nlf': IF c'Rli'JTEI': IS I HC!,i:.

l F \ I Bf.; C • E C1 •)) 1; 8 1 II 4

WR i lE· :!_ , 10 4 i

FOF(MA I (' I' , ::. ,:, ~ ' .:-. (l) I 1 ,:. ;; ; . ' - 1, I) I , <f X 1 I I t- 1) Y<It-ll')

25

2&

Wf\ 1 T E (.2, 1 0 0) < I , X< 1) , Y •: I) , X.; I+ 1) , Y < .it 1 J , I = 1 , 4 9, 2)
100 FOf(MAT (' ' ,r:; ,:: •:flO . -l,FlO .S, 5>:))
c

WRITE<2.11 0)
c
4 CAL L SCA LE<X ,X2 , 51,lXM lN,IXMAX I
c

CALL SCALE< Y, Y2, 51, IYMIN, IYMAX)
c

WRITE SCALED VALUES TO PRINTER
IF< IBRC .EQ.O) GOTO 5

c
WRITE (2,108)

108 FORMAT(////' SCALED BYTE VALUES '/)
c

ioJRITE<2d09l <I,X2<I>,Y2<IJ,X2<Itll,Y2(It 1 J. !=1,49,2)
109 FOf(MAT (' ' .I5,5X.I3,7Xd3d2X,J3,7Xd3>
c

WRITE (2, 110)
110 FO f(MAT (///l
c

WRITE\ 3) ESC, F'AGE, ERASE
c

WRITE(3.140)
HO FOR MAT< ' F'LA IN OLD BELL -SHAPED CURVE FOR STARTERS, , • ')

CALL TIMER<2l

c

CALL LINE <X2,Y2•5 l,RED,BLACK,O,Q)
CALL TIMER< NSEC)
WRITE(3) ERASE

WR ITE \ 3>141)
141 FOI\MAT(' SAME, E!Ul IN POINT F'LOT MODE WITH BLINKING,')

CALL TIMER < 3)

c

WRITE< 3) ERASE
CALL PPLOT<X2,Y2,51,GREEN,BLACKo1•0)
CALL TIMER< NSEC J

OIRITE (3,142)
142 FORMAT(' F'UT TWO CLJRI,'ES UP, •• ')

CA LL TIMER\ 2 l
WRITE\ 3 l ERASE
CALL LINE (X2 , Y2o5!,YE LLOW,BLACK,o,o)
DO 14 I=l •41

14)'3(I)= '(2(It10 I

c

CALL LINE <X2 ,r3o4l,DLUEoBLACK,o,o l
CALL TIM ER < NS EC ;

WRITEi3) HOME
WRITE< 3 >1 43)

143 FOF< MAT<' EF:A ~> E ONE. Ell' REF'LCTTING WITH ~< DR - ING ')
CAl_L TIMER\ 2)

c

CALL LINE (>:2, !':',51· I ELLOW, I'LAO, , 0,1)
CALL TIMER< NS EC)
WRITE < 3 l ERASE

IJRITE < 3.144 l
144 FOf(MAT< ' Y BAG:- Gr;:,o,r=·H MOitC::,, .DUE SUD CAU_ FO r(EACH LINE ' l

CALL ; IMER< 4!
DO 13 !=1,51

13 CALL 'r'BAF: < Y:>: 1 ~ , X:() , · ~ ·~.; l) , F<ED., r~Lr;Ct:., 0 , () ~
CALL TIMEr,; < NSEC:
WF:ITE< 3) ERAS E

c
WRITE<3,145l

H5 FORMAT< ' X BARS, •• '
CALL TIMER< 2 l
WRITE< 3 l ERASE
DO 9 I =1 • 51

9 CALL XBAR< Y2(1 >, X2(I l , Y2(I), YELLOW, r' Lf;C I< • 0 , 0)
CALL TIMER (NSEC)

c
loiR ITE< 3) HOME
WRITE<3d46J

H6 FORMAT< ' ERASE BY XOR- ING H'Er(Y OTHER otlE •• ,.)
CALL TIMER< 4 l
[10 10 I=2.50.2

10 CALL XBAR(1'2(1),X2(I) , Y2 (I),YELLOW,BLACt .• o, 1)

!I
I
I
II
I

I
I

II
!I

;I
ll
I!
' I
1:
,j
i\
II
' I
\I
·I !I
II
li

" q
I' d
I!
l1

11
.I

. ..- . #·'"

CA.LL TIMER< NSEC l
c

WRITE< 3 l HOME
WRITE< 3rl47 l

147 FORMAT<' REF'LOT REMAINit~G ONES BLII~KIIJG YE LLOW.' l
CALL TIMER< 4 l
DO 11 I=1,51,:2

11 CALL XBAR< Y::'< 1 l, X::'(I l, Y::'(I l, YELLOW, BLACt\' 1, 0 l
CALL TIMER< NSEC l

c
WRITE< 3 l ERASE

DO 12 K=1 ,5
DO 12 I=17,23
COLOR = I

12 WRITE< 3 lBGOFLO , CO LOR, ERi)SE
c

LX=O
LY=16
WRITE<3lBGOFLO,BLACK,FGOFLO,RED,ERASE,BLINK,A70N,CURSOR,LX,LY
WRITE(3.131 l

131 FORMAT(17X,'TH .. TH .. THAT"S ALL• FOLKSIII ')
c

CALL TIMER< 15 l

WRITE< 3l ESC,SCROL L ,FGOFLO,GREEN,BLA70F
c

GOTO 2
c
8 END

Back Issues Sale

MULTI-ISSUES at $3.50 each
__ Oct, Nov, Dec 1978 Apr, May/June 1979
__ Jan, Feb , Mar 1979 __ Aug, Sept/Oct, Nov 1979

TIIDIVIDUAL ISSUES at $1.50 each
Dec 1 9 7 9 I Jan 1 9 80 Feb 1980 Mar 1980

__ Apr 1980 __ May 1980 _ Jun/ Jul 1980

IIIDIVIDUAL ISSUES at $2.50 each
__ Dec 1980/Jan 1981 __ Aug/Sep 1981 __ Oct/Nov 1981

Dec 1981/Jan 1982 _ Feb/Mar 1982 _April/May 1982
__ June/ July 1982 __ Aug/Sep 1982 _Oct/Nov 1982

POSTAGE
US and Canada -- Firs t Class postage included.
Europe, S. America -- add

Asia, Africa, Middle East

DISC'JUNT

$1 .00 per it em for air, or
$.40 per item for surface.
--add $1.40 per item for air, or

$.60 per item for surface.

For or ders of 10 or more items, subtract 25% from
to ta l after postage.

Color cue
Editorial Offices
:16:1 Brookside Dr.
Rochester, NY :146:18

BUlK RATE
U.S. POSTAGE

PAID

RA:hester; N. Y.
Permit No. 4 1 5

·zs S.86I .tewjqaJI

$$
$$ $$$
$$$ $$$
$$$ $$$
$$ $$
$$$ $$$
$$ $$$$$$$$$ $$$
$$$ $$$ $$$$$$$$$$$ $$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$ $$$$$$$$$$$$ $$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$ $$$$$$$$$$$$$ $$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$ $$$$$$$$$$$$$ $$
$1t1$$$1$lll:i!i:$$$$1$lll$$$ll$1111 IIIII$$$$ 111$$$$11111$$ llllllllll$$$$$$$$$$$$$$$$11111111111$$$$$1$$$$$$$
$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$ $$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$!$$$$$$$$$$$$
$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$ $$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$ $$$ $$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$ $$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$ $$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$ $$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$ $$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$ $$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$ $$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$~$$$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$~$$$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$ $$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$ $$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$ $$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$ $$$~$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$ $$\at$$$$$$$$$$$$$$$$$$
$$ ·$$ $$~$$$$$$$$$$$$$$$$$

$$ $$
$$$ $$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$!$$$$$$$$$$$$$$$$$$$$$$ $$$$$ $$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$ $$$$$$$ $$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$ $$$
$$ $$$$$$$$$ $$
$$ $$$$$$$$$ $$
$$ $$$$$$$$$ $$$$$$$$$ $$$$$$$$$$$$$$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$1$$$$$$$1$$1$$$$1$$1$$1$$$$$$$$$$$$$$$$$$ 1$$$$$$$ $$$$$$$$$ $$$$$$$$$$$$$$filt1llllll$$ll$!1!:$$$lll$111111111
$$ $$$$$$$ $$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$
$$$ $$$$$$$ $$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$
$$$ $$$$$$ $$$$$ $$
$$ $$$$ $$$$ $$$
$$$ $$ $$ $$
$$ $$
$$ $$
$$ $$
$$

an3
..

Coloreue
A bi-monthly publication by and for
Intecolor and Compucolor Users

February/March, 1983
Volume 5, Number 4

3 Editors• Notes

4 Robot Wars, reviewed by Bill Barlow
Arcade graphics and sound

Editors:
Ben Barlow
David B. Suits

Compuserve: 70045,1062

5 A Portfolio Record-Keeping Program, by J ohn R. Thirtle
Keep track of your fortune

11 Multi-Digit Accuracy, by Neil Brandie
Dealing with large dollar amounts

12 Dollar Formatting Subroutine, by Keith Ochiltree
Make it clean and neat

13 Assembly Language Programming, by Joseph Norris
Part X: Disk Operations

21 Compucolor Disk Drive Improvements, by John Newman
Write protect, motor run-on and dual speed

23 Cueties

24 The Okidata Microline 84A Printer, by James L. Helms
Looking for a printer? Look at this one.

26 FASBAS--a BASIC Compiler, reviewed by David B. Suits
Faster than a speeding BASIC!

27 (Un)Classified Ads

27 User Group Notes

COLORCUK is published bi-monthly. Subscriptions are US$12/year in the
U.S., Canada and Mexico, and US$24 (includes air mail postage) elsewhere.
Some back issues are available. All editorial and subscription correspon
dence should be addressed to COLORCUK, 161 Brookside Dr., Rochester, NY
14618, USA. All articles in COLORCUE are checked for accuracy to the best
of our ability, but they are NOT guaranteed to be error free.

-.

Editors) Notes

R.I.P.
The latest edition of Forum Inter

national recently arrived. Sadly, its
date indicates that it is the "Final
Edition". Lack of funds has forced its
discontinuation.

This marks an unfortunate turn of
events for Cornpucolor/Intecolor owners.
FORUM was a publication which helped
keep us going with worthwhile, inform
ative and timely articles. (This latest
issue is no exception.) The rights to
its name and content pass to CUVIC. If
we're lucky, CUVIC will manage to resur
rect Forum in some shape. We all owe Doug
Peel, Forum's indefatigable editor, a
large "Thank you" and a "Well done" for
his creation of Forum in the first place,
and for his time and energy (and, we
suspect, money) in keeping the pub
lication alive for so long.

What .Alxnt COLORCUE?
Which brings up a related topic. Will

Colorcue be able to keep going? The
answer at this point is a qualified
"Maybe." Frankly, we're not in the best
of shape, although we're by no means done
for. We've had letters recently sug
gesting that, if necessary, we ought to
increase the subscription price rather
than discontinue publication. We haven't
liked the idea of increasing subscription
prices, of course. But we are even less
happy about the prospect of quitting.

Currently, all US subscriptions are
mailed 3rd class. Our experience with
this manner of trying to get Colorcues
out is that 3rd class US mail is
unreliable. (You can say that again.)
Moreover, it is slow. Moreover, it is
extra work for us. (The Post Office char
ges us less bec ause we do some of the
work for them.) We would like very much
to send out all Colorcues 1st class, even
though this will be a bit more expensive.
The savings in terms of time and energy
would be a boon to us. The increased
subscription rates would not be a boon to
you. Well, subscription rates have to go
up a bit anyway, since we've been

carrying increased printing costs (and,
incidentally, increased 3rd class rates)
for over a year. So here is our proposal.
Starting with the August/September issue
(which, by the way, will mark the start
of our third year of editorship! You're

invited to the birthday party), sub
scription rates will be US$18 in North
America, and US$30 elsewhere. Each issue
will be sent 1st class (air mail where
appropriate), and we might even be able
to get back on schedule. (Promises,
promises) If this places a horrific
burden on you and/ or your wallet, please
let us know. We hope, though, that you'll
be able to stay with us and to continue
to support Colorcue with your dollars and
your articles. You've kept Compucolor's
publication going so far; especially now
in the absence of Forum, we need Colorcue
more than ever.

Many Cornpucolor owners have been hit
with the "blown transistor on the analog
board" problem when they don't hit the
CPU reset key quickly enough after power
on (or sometimes when they do). The
analog board relies on an oscillator on
the digital board to provide a pulse
train for the switching power supply. If
that oscillator doesn't begin oscillating
when the power comes on, the power supply
puts out full power and after a few
seconds, poof! $. Infrequently, even CPU
reset doesn't kick off the oscillator,
and still poof! Tom Devlin, Cornpucolor
maven of the midwest (would you believe
he's got two?) has devised a new board
with a phase locked loop chip on it that
plugs easily onto the digital board and
alw~ generates the pulse train. Instal
lation is super simple, and worries of
blown out power transistors (whether
caused by experience or hearsay) are
banished. $35 US money, from Torn Devlin,
3809 Airport Road, Waterford, MI 48095.

We have recently received a copy of
the manual for Bill Greene's machine
language debugger (or, as he calls it,
the IDA--Interpreter, Disassembler, Ass
embler). We have not seen the actual
program in operation, but from its des
cription, it's a powerful tool. In add
ition to the usual debug features, his
IDA allows you to set the baud rate,

3

print to the printer, compare memory con
tents, search memory, search and replace,
and execute FCS commands. Bill also has
what appears to be a fairly powerful
FORTH interpreter. Contact Bill Greene at
3601 Noble Creek Drive, N.W., Atlanta, GA
30327.

Speaking of FORTH, the Rochester
users group (CHIP) has a FORTH interpre
ter in their library (costs you $10 to
join the group), implemented by J i m
Minor. Jim has also recently added to the
CHIP library (are you ready for this?) a
PASCAL compiler written in FORTH! Can' t
be bad. If you really must work with
Pascal (anyone who knows me know s how
much I- DBS- dislike Pascal), then you
might as well look into this unexpected
way of implementing it.

M. F. Pezok asks, 11 Are there any
Technical Wizards out there that can/WILL
design a cheap serial line buffer with
handshaking? 8K of buffer would be great;
16K of buffer would be OUTSTANDING! 11 A
buffering device is a good and useful
idea. As if having read your mind, M.F.,
it just so happens that Lou Milich and
Dave Suits have been working on just such

a project. Why, though, stop with 16K?
We're building a Z80A controller with 48K
of RAM. The prototype is almost built,
and we hope to be able to publish the
design sometime soon. The cost, if you
build it yourself, won't be exactly
cheap, but it will beat the price of
comparable units on the market.

ISC has introduced its 8001R/M and
9001R/M terminals configured for use with
Sperry Univac's MAPPER system in order to
emulate and be plug compatible with
Univac U-200. Both terminals offer 80
characters by 24 or 48 lines, 8 colors
and dot addressable graphics--480H by
384V. Prices start at $3995.

ISC's 3rd Quarter Report (December
31, 1982) says that Peter J. Curnin re
signed as president of the company.
Charles A. Muench is now president (and
Chairman of the Board). One wonders what
permanent changes this will generate. ISC
has been prowling about for small com
panies (such as Quadram) to buy. Whether
they will make some concerted effort to
push the Intecolor line in new directions
is not clear. C

Review - Robot Wars

a game by Steve Reddoeh
review by Bill Barlow

Whew! That was a close call! Watch
out for that Squirmer! Oh, no here comes
a Blaster, you have be careful not to get
in line with his diagonal shots! I'd
better get out of here! They're closing
in on me. There, made it. Oh, I forgot
that I can get points by running over the
yellow guy (Wanderer). I've got to shoot
everything in sight to advance another
level. Aiiii! I got shot! - - GAME OVER--

This is ROBOT WARS, an exciting new
game by Steve Reddoch. Shoot down alien
robots, run over the Wanderer to gain
points, but don't get in any aliens' way
or they will blast you away. ROBOT WARS
has excellent graphics, color, and sound.
This game can use the keyboard or an

4

ATARI Joystick, but your man c a n't move
diagonally. I prefer the keyboard myself.
You receive an extra man at 30,000
points. Sometimes there can be up to 12-
16 robots on the screen shooting,
beeping, and moving. The robots can pass
over each other. You can start the game
off with High, Medium, or Low levPls. The
computer stores the high scores on the
disk if you wish. On a scale from 1 to 10
I would rate this game an 8.5. Thank you,
Steve, for all this excitement and fun to
people with Compucolors. You can get this
game for $24.00 from Intelligent Computer
Systems, 12117 Comanche Trail, Hunts
ville, AL 3 5803. C

•

A Portfolio Record-Keeping Program

by John R. Thirtle
105 Conifer Lane

Rochester, NY 14622

It took me about a year and a half to
acquire sufficient programming ability to
accomplish what was one of my purposes in
buying my Compucolor II: to write a pro
gram that would produce a record of a
common stock portfolio. It was a
frustrating time! I looked at many books
and magazines for a suitable program to
adapt to my needs. Finding none, I began
to teach myself via the manual and any
other documentation that I could find. I
had had no experience with computers
until I got my CCII. Most programs that
had some elements of what I needed were a
foreign language to me. They were not
internally documented and had no hard
copy documentation to describe them to
the neophyte. One example which will
illustrate some of my frustration is a
technique for getting a hard copy listing
of a program so that I could edit it.
Neither the manual for my CCII nor that
for my printer gave the simple one line
command to do so:

no great harm was done. Since then, I
have come to recognize its defects and am
describing here a revision of PORTXX that
includes DIMensioning of the variables,
more REMark statements, INTegers,
TABbing, subroutines for setting up the
printer, adding trailing zeros in the
cents column, right justifying columnar
data, etc. Some of this will be elemen
tary to many readers, but I am sure there
are enough learners who will profit from
it. I want to give credit to Joseph
Charles for his book, !!~SIC Training for
Compucolor Computers, and to "THE BASIC
Editor" program from Quality Software
Associates. Both were very helpful to me.

Program Notes

LINES 1000-1Z60. These lines are pri
marily bibliographic and self
e xplanatory. Line 1080 clears about
300 bytes more than the program needs
for the demo provided.

PLOT 27 , 18,4,27,13:LIST:POKE 33265,0 (RET) LINES 1Z90-1380. Variables are defined

How simple it would have been to place
that one line in the manual or any other
document, with a little explanation of
its n eaning, and to suggest possible
v ariants to suit different printers.
Well, so much for griping. It wasn't
until the summer of 1980 that I was able
to handle simple one-dimensional arrays,
tabular prin t outs, listings, etc. Yet the
first program that partly met my needs
suffe red the same deficiency that I men
tioned above: lack of documentation.
However, the first version of PORTXX ,
which was placed in the CHIP User Group
Library (Disk #39) was so unrefined that

to closely match their meanings. One
of my frustrations in looking at pub
lished programs has been to relate
variables to their meanings.

LINES 1400-1480. The variable, TN, is
defined here where it can be easily
seen. The number will have to be ad
justed to the size of the individual's
portfolio. The variables are all
dimensioned to the value of TN. The
string variables are required for
subroutines mentioned above.

LINES 1590-17ZO. In a personal portfolio
this section can be left as is for

demonstration and a table of personal
data assembled. The program can be
modified slightly to preserve confi
dentiality of the personal portfolio.
DATA statements give the fixed data on
the stocks in the demo portfolio.
Company names are not limited to six
characters. But the table produced by
the program will have to be retabbed
if longer names are used. If a stock
is split, it is a simple matter to
correct the number of shares in the
appropriate statement. Base costs in
clude the commissions. Also, these
data are completely fictitious; they
bear no relationship to my personal
holding.

LINE 1550.
required
Let's say

This is the only data input
to run the demo program.
you need some action.

LINES 1740-1790. More action . If you
choose the demo you will use data on
prices in lines 2070-2090. If you
choose 2 you can input any prices you
care to for the 'dummy' companies in
1600-1720, or for your own portfolio.

LINES 1810-2010. This is where you input
prices. The queries about corrections
are there because I have made errors
and wanted to fix them immediately. I
often use Q$ in such instances. It
fits my aim to relate variable symbols
to the words.

LINES 2040-2060. These tell you what you
have done and to be patient.

LINES 2150-2170. Likewise. The time
required to calculate and integrate
the products is about 18 seconds.

LINES 2190-2250. These lines integrate
fixed and input values, make the
necessary calculations, and integrat e
the results.

LINES 2280-2760. Adding the trailing
zeros to dollar and cents input is a
nice touch. It makes the output much
easier. It even makes the input
easier; prices in whole dollar aqwunts
can just be entered that way. I used
to fake such input; for example, in
putting $22 as 22.01 or 21.50 as
21.51. Sloppy! The subroutine is from
the book by William Barden, Jr., Pro-

6

gramming Techniques for Level II
BASIC, Radio Shack, 1981. The sub
routine for right-adjusting the colum
nar output is that described by Rick
Tau bold at a users group meeting. Nate
that the string length specified by L
is one unit longer than the longest
string expected in a given column
because numerical string length inc
ludes a real or implied sign (+ or -).

LINE 2780. This line finally sends you
to a decision on where you want to
have your output (line 3090). It skips
you over lines 2800-3050 (next).

LINES 2800-3050. After the table 1s
output, errors are sometimes obvious
or you might want to see what change
in a price would do to the value of
your portfolio. By inserting correc
tions here, only the new data are
manipulated--in a fraction of a
second. The REM statements describe
what goes on here.

LINE 3090. If you selected the demo
option, it took about 18 seconds to
get here. In this case I used 0$ (for
Output) as the query ID. If you choose
to use the printer, you fall through
to line 3120, which takes you to the
subroutine (lines 3510-3540) which
does what the REMs say. I generally
don't select the printer until I have
seen the output on the screen and made
sure everything is OK.

LINES 3140-3270. Formatting a table with
so many variables is tedious unless
one uses an editor program which can
easily set and clear tabs. Nate that
the output is in strings, resulting
from the operations described above
(trailing zeros, right justifi ed).

LINES 3290-3420. Even though strings
have resulted from these operations,
the 'unstrung' data remain in m emory.
It is these on which the cal c:1lations
are done to produce the to tals . Nate
that the variables BT, VT, and GT have
to be initialized; PCT does not
because it is calculated from
initialized values.

LINE 3440. This line sends the operation
to line 3560, whether you have been to
the printer or not, and puts the query

about price corrections (line 3460)
that we discussed above (lines 2800-
3050). En route, you get a message
about the string space remaining.
Ultimately, you come back to that
query in line 3090 and you hit "E",
exiting the program, and reading
"READY". C

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
17"0
123o
1240
1250
1260
1270
1280
1290
1300
1310
1320
l330
1340
1350
1360
1370
1380
l390
1 ~00
HlO
H20
·~ 430
c440
H50
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
l580
1590
.l60.0
l610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
[-:"'J()
:t73o
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850

** PORTXX ** FOR PORTFOLIO STATUS **
** WRITTEN 1981 BY J, R. THIRTLE

REM

REM
REM
REM
REM
REM

** 105 CONIFER LANE, ROCHESTER, NY, 14622
ii TEL. 716-467-9676

.
CLEAR
PRINT
PRINT

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

PRINT
PR INT
PRINT .
INPUT

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM .

** FIRST VERSION ON ' CHIP ' LIBRARY DISK t39,
** REVISED 3,5,33

1000!PLOT 14!REM ** LG CHAR **
, , , "PORTXX"

'"PORTXX ('XX' IS FOR PERSONAL ID) PRODUCES
•"A TABLE ON THE SCREEN OR PRINTER SHOWING
,"THE STATUS OF A STOCK PORTFOLIO AT ANY TIME,
,"NO DATA FILES ARE REQUIRED, SAMPLE 'READ DATA'
,"ARE SUPPLIED TO ILLUSTRATE OUTPUT.

,"FOR AN INDIVIDUAL PORTFOLIO THE USER WILL
,"CONVERT THE 'DUMMY' DATA TABLE TO REAL DATA,
,"CHANGE 'TN' TO THE REAL NUMBER OF COMPANIES,
•"AND WILL INPUT THE REAL PRICES.

,"REVISED BY JOHN R, THIRTLE, MARCH 5, 1983"

"TO CONTINUE HIT RETURN ";RET

** DEFINITION OF VARIABLES **
** CS=COMPANY NAME 1=<6 CHAR> **
** N=NUMBER OF SHARES **
** B=BASE COST OF THE SHARES I ROUNDEn OFF>**
** CS=COST PER SHARE **
** P=CURRENT PRICE PER SHARE **
** V=CURRENT VALUE OF THE HOLDING **
U G=GAIN U
** PC=PERCENT GAIN **
** M,D,Y=DATE OF PURCHASE **

** DIMENSIONING VARIABLES **
** TN=TDTAL NUMBER OF COMPANIES IN PORTFOLIO ii

TN= 13

DIM C$1 TN), Nl TN), Bl TN>. CSC TN>. PI TN), VI TN), Gl TN)
DIM PCC TN >.MC TN),DC TN >•YI TN)
DIM l$1 TN), N$1 TN), B$(TN), CS$1 TN), P$1 TN), V$1 TN), G$1 TN)
DIM PCSI TN), M$1 TN), D$1 TN), Y$(TN)

REM ** INPUT **
PLOT 12!REM ** ERASE SCREEN **

A$= "PORTFOLIO RECORD! PORTXX"

INF'UT "DATE! MONTH, DAY, YEAR! ";M,D,Y
~RINT

REM ** READ DATA ** co, SHRS, BASE COST, PURCH DATE **
FOR 1= lTD TN!READ C$(I >•NI I),Be I >.MC I >.DC I),YI I)!NEXT I
DATA "AAAAA",150,4612,5,8,81
DATA "BBBBB",l00,2008,5,8,81
DATA ·ccccc·,tso.2S26.6.11,80
DATA "DDDDDD" ,200,5025,11•29,82
DATA "EEEEE",150,4558,10o3,80
DATA "FFFFFF", 100.3272,5,8,81
DATA "GGGGG",400,3344•7•3•80
DATA "HHHHHH",l00,2346,1,24•83
DATA "IIII",l00,1774,12•31,81
DATA "JJJJJJ",125,1545,12,31,81
DATA "KKKKK",l00,1698,3,19,81
DATA "I I I ' LL" .so, 1011,10.3.80
qATA 1", 50,1349,3,26,82 .
PRINT ••"1-DEMO USING DATA PRICES PROVIDED
PRINT ,,"2-INPUT YOUR OWN PRICES
PR INT
INPUT "ENTER YOUR CHOICE! ";Q
PRINT
ON QGOTO 2040,1810 .
PLOT 12!PRINT ,,•you ELECTED TO INPUT PRICES"
PRINT
PRINT '"PROGRAM WILL ROUND 3 DECIMALS TO 2 I EG, .125=,13)"
PRINT •"FOLLOWING ZEROS WILL BE PROVIDED WHERE NEEDED"
PRINT

7

8

1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
l980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2 150
2160
,, 17)

s1so
2190
2 ~00
2210
~220
2230
2240
2250
2260
-:~70
2280
2290
2300
2310
2320
2330
2340
::'350
2360
2370
2380
2 390
2400
2410
2420
2430
2440
2450
2~60
2~70
2480
2~90
2500
2510
2520
:2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
'"""00 27to
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910

~RINT "IDt";TAB< 4)"COMP.";TAB< 11)"PRICE"

FOR I= lTD TN!PRINT I ;TAB< 4)C$(I);TAB(11);
!NPUT "" ;p(I >!NEXT I .
PRINT
INPUT "ANY PRICE CORRECTIONS <YIN)? •;as
IF QS= "N"THEN 2140
PRINT
INPUT "ENTER CO IDt " ; I ! PRINT
PRINT I;TAB< 4)CS<IHTAB< 15);
INPUT "";P< I >
PRJ NT
INPUT "ANY MORE PRICE CORRECTIONS? • ;as
IF QS= "N"THEN 2140
~RINT !GOTO 1950!PRINT

REM ** PRESET STOCK PRICES **
PLOT 12!PRINT ,,•you HAVE SELECTED PRESET PRICES"
PRINT
PRINT ,,,"PLEASE WAIT"
FOR I= lTD TN!READ P< I)!NEXT I!GOTO 2190
DATA 101.00,22,43.375,44.50•55.625,60.75,16.875
DATA 28.25,29.125•21.50,41,00•52 . 75,103.50

REM ** INTEGRATE VARIABLES **
REM ** COST/SHR<CS>,PRICE<P>,VAL(V)
REM U GAIN< G >.:r.GAIN< PC) U
PLOT 12
PRINT ,,•you HAVE INPUT PRICES"
PRINT
PRINT ,,,"PLEASE WAIT"
PRINT
FOR I= lTD TN
CS\ I>= TNT < B< I)/ N< I >i lO t 2+ .Sl/ lOt 2
PI I >= INT < 100* P< I H .5)/ 100
1..'(!)= INT <P<Il i NIIH .5)
G< I l= V< I)- B< I }
PC< I>= INT < 100* G< I)/ B< I>+ .5>
NEXT I

REM ** CONVERT PRICES TO STRINGS, ADD TRAILING ZEROS **
~OR I= 1TO TN!GOSUB 2310!P$(I>= ZZ$!NEXT I!GOTO 2440

REM ** SUBROUTINE: ADD TRAILING ZEROS IN CENTS COLUMN **
ZZS= STRS < PI I > >
FOR J= 1 TO LEN < ZZ$)
IF MID$ <ZZ$,J,1 >= "."THEN 2360
NEXT J
ZZS= ZZ$+ ".OO"!RETURN
IF J= LEN <ZZ$ >- 2THEN RETURN
IF J< >LEN <ZZS>- 1THEN 2390
ZZ$= ZZ$+ "O"!RETURN
~Z$= LEFT$ IZZS,J+ 2l!RETURN

REM ** CONVERT VARIABLES TO STRINGS AND RIGHT JUSTIFY **
REM ** L=EXPECTED NUMBER OF $ CHARACTERS + 1
FOR I= 1 TO TN .
REM ** lilt it
~= 3!Z$= STR$ I Il!GOSUB 3620! !$(I>= H

REM ** t OF SHRS **
L= 4: Z$= STR$ < N< I > >: GOSUB 3620: N$(I >= Zs .
REM ** BASE COST OF SHARES **
~= 5: Z$= STR$ (B< I > >: GOSUB 3620: B$(I >= Z$

REM ** BASE COST/SHR **
~= 6!Z$= STR$ ICSI I >>!GOSUB 3620!CSS< I>= Z$

REM ** PRICE U
L= 7!Z$= P$1 I >!GOSUB 3620!P$(I>= Z$.
REM ** VALUE **
L= 6!Z$= STR$ <V< I))!GOSUB 3620!VS< I>= Z$.
REM ** GAIN **
L= 6!Z$= STR$ (G< I> >!GOSUB 3620!GS< I>= ZS .
REM ** %GAIN <PC> **
~= 4!Z$= STR$ <PC< Ill!GOSUB 3620!PC$(Il= ZS

REM ** DATE ** L= 3
ZS= STR$ <M< I))!GOSUB 3620!HS< I>= ZS
Z$= STRS (D< I)) : GOSUB 3620: DS(I >= l$
ZS= STR$ I Y< I> >!GOSUB 3620!YS< I>= ZS .
NEXT I

GOTO 3080 .
REH ** HERE CORRECT PRICES AFTER VIEWING OUTPUT ** .
PRINT
INPUT "ENTER CO. IDt ";I
PRINT
PRINT I;TAB< 4>CS<IHTAB< 15);
INPUT "CORRECTED PRICE=";P< I>
P< I >= INT < 100* P< I>+ .5)/ 100
VI I >= I NT (P< I >* N< I >+ • 5 >
G< I >= VI I >- B< I >
PC< I>= INT (100* G< I >I B< I>+ ,5)
GOSUB 2310

2920
2930
29~0
2950
2960
2970
2980
2990
3000
3010
3020
3030
30~0
3050
3060
3070
3080
3090
3100
3110
3120
3130
3HO
3150
3160
3170
3180
3190
3200
3210
3220
3230
32~0
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3 600
3610
3620
3630
3640
3650
3660

~$(I l= ZH: RE11 ** TRAILING ZEROS ADDED U

REM ** RIGHT JUSTIFYING CORRECTIONS AND CALCULATIONS **
L= 7
Zt= P$(I l: GOSUB 3620: P$(I l= Z$
L= 6
H= STR$ (V< I l) :GO SUB 3620: V$1 I >= H
H= STR$ (G< I >) :GO SUB 3620: G$1 I l:' H
L= 4
Z$= STR$ (PC< I) >: GOSUB 3620: PC$(I >= Zt

PRINT
INPUT "ANY OTHER PRICE CORRECTIONS IY/N)? ";Q$
1F Q$= "Y"THEN 2820!GOTO 3080

REM ** DIRECT OUTPUT **
PRINT
INPUT "OUTPUT TO PRINTER, SCREEN, END IP/S/E)? •;os
IF 0$= "S"THEN 3150
IF IH= "E"THEN 3660
~OSUB 3510!GOTO 3160

REM ** FORMAT OUTPUT **
PLOT 12•15!REM ** ERASE, SMALL CHAR
PRINT A$;TABI 33H"DATE! ";M;D;Y
PRINT
PRINT "IDt" HABI 4 >"COMP." HAB< 11)"SHRS" ;TAB< 16)"COSP;
PRINT TAB(22 >"C/SHR" ;TAB(29)"PRICE" ;TAB< 36)"VALUE";
PRINT TAB(43)"GAIN" ;TAB< 50)"i.G" ;TAB< 53 >"PURCHDATE"
PRINT
FOR I= 1 TO TN
PRINT U< I HTAB< 4 >CS< I)HAB< 10 lN$(I);TAB< 15 >BS< I);
PRINT TAB< 21)CS$(I JiTAB< 28JP$(I liTAB< 35)V$(I);
PRINT TAB< 41 lG$< I);TAB< 48 >PC$(I HTAB< 53 >MS(I);
PRINT D$1 I);Y$(I>
~EXT I

REM ** CALCULATE TOTALS **
REM ** BT=TOTAL COST, VT=TOTAL VALUE, GT=TOTAL GAIN **
REM ** PCT=TOTAL PERCENT GAIN **
BT= 0
FOR I= lTD TN: BT= BT+ B< I) :NEXT I
VT= 0
FOR I= lTD TN!VT= VTT VI I >!NEXT I
GT= 0
FOR I= lTD TN!GT= GT+ G< I >!NEXT I
PCT= INTI 100* GT/ BTt ,5)
PRINT
PRINT "TOTALS" ;TAB< 1-4 >BTiTAB< 35 >VHTAB< 41 >GH
PRINT TAB< 48 >PCT
PRINT
GOSUB 3560!REM ** BACK TO CRT ** .
iNPUT "ANY PRICE CORRECTIONS IN TABLE IY/N)? ";Q$y
lF Q$= "N"THEN 3080
PRINT : GOTO 2830

REM ** SET UP PRINTER **
TMP= PEEK (33265): REM U SAVE BASIC OUTPUT FLAG U
PLOT 15,27,18,4!REM ** 2 STOP BITS, 1200 BAUD **
PLOT 27•13!REM ** DIRECT OUTPUT TO RS-232C PORT **
RETURN .
POKE 33265,TMP!REM ** RESET OUTPUT TO CRT **
PRINT "FREE STRING SPACE= ";FRE IB$)
PRINT
RETURN .
REM ** RIGHT JUSTIFYING COLUMNS **
Y$= " "!REM ** 7 SPACES **
X= L- LEN (Z$)
IF X< = OTHEN X$= ""!ZS= XS+ ZS!RETURN
X$= LEFT$ IY$,Xl!Z$= X$+ ZS!RETURN
END

M>ving?

If you're changing your address, please
let both the Post Office and us know of
your new address. (Tell us your old
address and your ne~ one.) We don't want
you to miss a single tssue of Colorcue.IIC

9

--- --------
ADVERTISEMENT from HOWA RD ROSEN, Inc

F'. 0. Bo::-:: 4::::4
Hunt i n•:;Jdon 1·.).::.. i 1 e'/, F'.::... 1·:;;·~jf1.::.

There are some new and interest1ng products available for CCII
cMners these days. Software Includes Ledger, Database, and word
processor. Hardware enhancements cover many areas. We have come
across an 8k buffer for the Epson printer which seems to get rid of
some of those bugs that may be plaguing you. Here's a quote from a
c u s. t om e r· ·· s. i e t t e r· . :

THE THANK YOU IS FOR THE MBS-8K RS232 SERIAL INTERFACE
BOARD WHICH IOU SOLD ME. AS YOU CAN TELL BY THIS LETTER
THE INTERFACE DIFFICULTIES BETWEEN~~ COMF'UCOLOR II AND
THE EPSON MX-80, WHICH HAVE PLAGUED ME FOR NEARLY THE
LAST tEAR, ARE NOW SOLVED. I CAN RECOMMEND THE MBS-8K
TO FOLKS HAVING Crn1PUCOLOR II AND EPSON MX-80 INTERFACE
DIFFICULTIES.

For more information and price on that gem of an interface board
please feel free to contact us.

We have found another pr·obl em in the CCII version V6.78 that
seems to affect some printer interfaces. The problem occurs when
using the CCII disK drive and the printer. The printer output
becomes undependable. The correction requires cutting lands and
t h e r· e f or· e , 1,.,1 e 1"'1 i l l n o t p r· I n t t he r· e q u i r· e d c or· r· e c t i on . T h e
information IS available upon request by CCII owners who are able
to maKe such a repair. For a fee we will maKe the necessary
corrections for all others.

We have added to our list of computers the NEC PC-8000 Computer
system. This is a very fine machine. It offers many features that
brought you to the CCII In the f1rst place, but it offers those
features that you wish your CCII could have. The display is user
selectable as 36, 40, 72, or 80 columns. The BASIC language is
the complete Micro-soft set, including the USING command,
·::.equentico.l files., s.ir11:;Jle, double pr·ecis.ion, .:..nd Tlt''1E .:o.nd DATE
commands. The selection of monitors ranges from green without
audio amplifiers to color complete with audio amplifiers. The
d i s.K dr· i \-'e<.:. .:o.r· e du -21.1 , dou b l e den ·::.I t ::.-' 1,.· • .1 i t h c <:<.p.:o.c i t :/ of 160 +I< per·
drive. The BASIC ROM residing in lower 32K is s~itched out when
the CP/M operating system disK is booted, and 32K RAM then
p r· O\..' i de ·=· c.. f u l l 6 4 ~::: memo r· y • T h e e ::< p a. n <.:. i on <,:. l o t ·:. c an i n c r· e c.. s. e
memo r· v t o 1 .~. 01< , ban K a. d d r· e s. s. a. b 1 e . A l l i n t e r· f c.. c e s. a r· e t"J I I t i n t o
the computer: RS232-C, parallel for printer, cassette, and disK
through the I/0 Unit. The screen display, and printer
capabilities include upper, lower case letters, GreeK alphabet,
graphic symbols. The NEC PC-8023A printer completely complements
this computer to provide a very professional machine at PC
prices. Please write for complete PC-8000 guide and prices.

Multi-Digit Accuracy

by Neil Brandie
(Reprinted by permission
from CUVIC, Dec. 1982)

Recently whilst writing a program that
involved the addition of large dollar
values, the answer of course resulted in
scientific notation. This was very un
satisfactory, but I was pulled out of my
predicament by an article from a very
early COLORCUE by D. Woods. (eds note:
See also COLORCUE, Vol. II, No. 7, P· 18;
Vol. II, No. 8, p. 6; and Vol. III, No.
4, p. 8.] I found that it cleared my
problem, and I include it here for others
in the hope that it may help them. The
routine was designed to give accuracy to
9 digits. The algorithm adds digits from
right to left and handles positive
numbers only.

Include a line in your program (after a
CLEAR statement and before any calls to
the subroutine) to define the zeros. Set
the number of zeros equal to the number
of digits accuracy you want. For example,
Z$ = 11 000000000 11 gives 9 digit accuracy.
Send numbers to the subroutine held in
the variables N 1$ and N2$ as shown in
listing 1. The answer is returned in AN$.

How The Subroutine Works

Lines 1000 to 1040 remove the decimal
point in the input dollar amounts and
represent the number as if it had been
multiplied by 100. The number 123.45, for
example, would be converted to 12345. The
numbers are then pad ded out to the left
with zeros until the whole number oc
cupies 9 digits. This is done so that the
algorithm can handle numbers of different
lengths. If you will be inputting numbers
with more than two or fewer than two
digits after the decimal paint, you will
have to write a routine to loop through

the input number in order to remove its
decimal point and associated 11 + 11 sign
(which will be assumed if the number is
input as a numeric and later converted to

a string).
Line 1050 sets the carry and the total of
the two numbers equal to zero to start
with. (The carry is the spillover from
the addition of two digits. It is either
a 11 0 11 or 11 1 11

.) The index J in line
1060 moves through the digits of the
numbers being added from right to left.
D1 and D2 are the digits to be added at
the current J position. These are both
numeric variables.

Line 1090 adds these two digits plus the
carry from the previous addition, while C
in line 1120 is set equal to the left
hand digit. C then becomes the carry for
the next addition of digits. Because the
value for the variable in A is numeric,
it is converted into a string in line
111 O. T$ is a temporary holder of this
number and has as its first character the
sign of the addition. In the second half
of line 1110 this sign is removed and the
digit alone is stored as the left-most
character of the string AN$. When the
loop is completed, AN$ will contain the
answer to the addition but not including
the decimal point. The decimal point is
reinserted into the string in line
1140, and the final answer is printed in
line 50. C

5 CLEAR 1000
10 Z$ = "000000000"
20 INPUT "FIRST NUMBER";N1$
30 INPUT "SECOND NUMBER";N2$
40 GOSUB 1000
50 PRINT AN$

60 GOTO 20
1000 L1 = LEN(N1$): L2 = LEN(L2$)
1010 L1 $ = LEFT$(N1$, L1-3): R1$ = RIGHT$(N 1$,2)
1020 N1$ = L1$+R1$: L1 = LEN (N1$)
1025 N1$ = LEFT$ (Z$,9-L1) + N1 $
1030 L2$ = LEFT$(N2$,L2-3) : R2$ = RIGHT$(N2$,2)
1040 N2$ = L2$+R2$: L2 = LEN(N2 $)
1045 N2$ = LEFT$(Z$,9-L2)+N2$
1050 C = 0: AN$ = ""
1060 FO R J = 9 TO 1 STEP - 1
1070 D1 = VAL(MID$(N1 $, J, 1))
1080 D2 = VAL(M I D$(N2$,J,1))
1090 A = (D1 +D2+C)
1100 8 = A-10*INT(A/10)
1110 T$ = STR$(8): AN$= RIGHT$(T$, 1)+AN$
1120 C = INT((D1+D2+C)/10)
1130 NEXT J
1140 AN$= LEFT$(AN$,7)+"."+RIGHT$(AN$,2)
1150 RETURN

Dollar Formatting Subroutine

by Keith Ochiltree
(Reprinted by permission
from CUVIC, Sept., 1982)

This is a handy subroutine to emulate the
PRINT USING function of the TRS80 when
dealing with money. The routine keeps the
cash amount right justified and places
the dollar sign in front. The routine is
naturally limited to the six digit ac
curacy of the Compucolor computer and
will give you rounding off errors if you
use it to calculate values above $9999.00

7000 REM •• CONVERT VARIABLE TO MONEY ••
70 10 REM TT GIVES STRING DOLLARS (TT$)
7020 REM RIGHT JUSTIFIED,
7030 REM FLOATING '$' SIGN
7040 TL = INT(TT/100000)
7050 TR = INT (TT-TL•100000)
7060 TR$ = STR$(TR)
7070 TL$ = STR$(TL)

or $999999.

The program splits the input value TT
into TL and TR and makes them into
strings. It then checks if the TL is
greater than 0 (or a six digit number);
if so, it jumps to line 7120; if not, it
continues on to read the length of the
string and establish the value RX, which
is used to print the output right
justified. II:

12

7080 IF TL<>O GOTO 7120
7090 RX = LEN(TR$)
7100 TT$ = RIGHT$(TR$,RX-1)
7110 GOTO 7170
7120 RX = LEN(TL$)
7130 TL$ = RIGHT$(TL$,RX-1)
7140 RX = LEN(TR$)
7150 TR$ = RIGHT$("0000"+RIGHT$(TR$,RX-1),5)
7160 TT$ = TL$+TR$
7170 TT$ = " $"+TT$
7180 TT$+RIGHT$(TT$, 10)
7190 RETURN

Assembly Language Programming

by Joseph Norris
19 W esL Second SLreeL
Moorestown, NJ 08057

Part X: Disk Operations

This introduction to disk operations
m assembly language makes extensive use
of specific routines in ROM and specific
locations in RAM (below user space) which
are part of the computer operating sys
tem, "FCS". [1] The source code names
referring to these routines will be those
used in the Compucolor System Listing,
and the addresses will be given for both
V6.78 and V8.79/V9.80 versions.[2] You
should keep in mind that these routines
are written in 8080 code, just as the
programs which utilize them are, and that
the CALLs to these routines are no more
than shorthand ways of implementing the
various functions required; they could
each be written out "longhand" if we
desired.

FLAGS
RAM addresses that will command our

special attention are those that hold
"flags" which direct the way certain
routines perform. A flag is analogous to
the lights in Old North Church ("one if
by land and two if by sea • •• ") using
numbers instead of lights. A flag, then ,
is a hexadecimal number i n a ROM
specified location in RAM (that is, a
location reserved for this flag only)
that instructs a routine to behave in a
certain way. A set of default values for

each of these flags is determined by the
operating system at power-up. While flag
values are often determined for us in
BASIC or FCS >, we must assign them for
ourselves in assembly language program
ming. The magic of these RAM locations is
that the routines in ROM and the user
both may write to them, giving the user
some measure of control over the op
eration of the computer.

Consider one such flag at address
81F9H called LOFL (LO-FLAG). This flag
tells the operating system where to
direct the printable portion of the re
sponse to an FCS > command (such as DIR,
DEV, etc.), and directs the output rou
tine, LO, accordingly. Table 1 shows how
the flag determines the print destina
tion. If we put the value OOH in location
81F9H before issuing a directive to the
file control system, for example "DIR",
then the computer will print the direc
tory on the CRT.

FCS Command Interpreter
The actual routine that makes this

happen is called FCS L 3], the File Con
trol System Interpreter, located at ZSECH
for V6.78 and OA95H for V8.79/V9.80. The
specific instruction to be executed is
placed in a "command string", composed by
the programmer, whose address is passed

Table I Print Destination; LOFL 181F9HI

FCS
COMMAND
RESPONSE

OPTION

NO PRINT

SCREEN PRINT

SERIAL PORT

I FLAG VALUE

OCH

OOH

OEH

13

to the routine.
Try the program in Listing 1 on your

computer. It is operated, after assembly,
by typing RUN XFCS from FCS> and will
list the directory of the disk in the
drive at the moment. Since assumption and
ambiguity are the most vicious enemies of
learning, we will painfully annotate this
first listing and save the abbreviations
and jargon for later on. I have borrowed
a short program to return you to BASIC
after the directory printout--just to
keep things interesting. Macroassembler
users will have to modify for ORG and END
statements as usual. From now on in this
series of articles the V8.79/V9.80 ad
dresses will follow the V6.78 in paren
theses. You will use one or the other,
but not both.

If the program has worked, you can
hope that the miracle of assembly
controlled disk operation is at hand. If
you put an expendable .BAS program on the
disk containing XFCX.PRG, you can resort
to useless fun by changing the command
string to:

CMSTR: DB 'DEL O:XXXXXX.BAS;01' ,OOH

(Note that not all 6 characters in the
name are required.)

Since we can perform any FCS > command
with FCS and EMESS, we can load and ex
ecute a .PRG file (for example, the MLDP)
with the command string:

CMSTR: DB 'RUN MLDP' ,OOH

It should be apparent that we are con
triving an experiment in program chaining
(one program calling another) and that
the procedure suggests a method for
writing "MENU" programs in assembly lan
guage. (Homework?!)

Table II The File Parameter Block

BYTE NUMBER 1 2 3 9
NAME FPB FATR FNAM FTYP

LENGTH 1 1 6 3

BYTE NUMBER 23 24 25 27
NAME FDBK FDEN FAUX FHAN

LENGTH 1 1 2 2

+SPARE

14

The File Parameter Block
To make use of data files, which are

in the form of "sequential files" [4], we
must first understand the structure of a
byte string called the File Parameter
Block (FBP), a data string of 38 con
tiguous (connected) bytes which contain
the parameters necessary for system rou
tine file operations. The data in the FPB
are contributed in part by both the pro
grammer and ROM routines. Table II lists
the code name, size and location of FPB
data within the string. The values of
some of these data are usually supplied
by the programmer, as follows.

FPB: Value = 0 if program exists on
disk, Value = 1 if creating new
file. Note that this is the first
byte and therefore describes the
function FPB (old or new file) as
well as the starting address of
the entire string--a dual refer
ence and therefore a source of
confusion. The remaining para
meters in the string are usually
retrieved by measuring from this
first byte.

FDRV: Drive number containing or to
contain the file.

FNAH: Maximum of 6 ASCII characters
which are the file name.

FTYP: 3 ASCII characters designating
file type (.PRG, .SRC, etc.).

FVER: The file version number; one
byte (two hex digits).

FBUF: The starting address of the
programrer- assigned disk block
buffer for data files, i.e., the
place in memory wher e the data
will be loaded and acted upon.

FXBC: The size of the a hove block
buffer.

12 13 15 17 18 20 22
FVER FSBK FSIZ FLBC FLAD FSAD +
1 2 2 1 2 2 1

29 30 31 33 35 37
FFCN FDRV FBJ.K FBUF F_XB__C_ FPTR

1 1 2 2 2 2

The above parameters are usually
installed by "parsing" [c:;] a "command
string" with a special routine which
extracts the data and inserts it in the
correct location; they may also be in
stalled by "poking" each value individ
ually through routines you write your
self. After these parameters are instal
led, the file may be "opened" by another
routine, which will fill in many of the
remaining parameters, such as:

fi)BK: The disk directory block in
which the file is located.

FDEN: The entry number in that block
for this file.

FATR: The file attribute type (l=Free
Space, 2=Permanent File, 3=User
File).

FSBK: The starting block on disk of
the file.

FSIZ: The size of the file in bytes.
FLBC: The number of bytes used in the

last file block on disk.
FLAD: The loading address for an image

file.
FSAD: The

image
starting
file.

address for an

The address of one or more FPBs (one
for each file to be opened; equivalent to
FILE "R",1,2, etc. in BASIC) is desig
nated by the programmer in the form of a
code name. The FPB will be used to open,
edit and close the file, and if the file
is new, the routines will update the disk
directory automatically. With the FILE
Parameter Block data properly installed,
only elementary programming is required
for normal file functions.

In order to experiment with disk
files, we must be able to create a file,
enter data in it, write it to disk, open
it, read it from disk, display the data
(and perhaps print the data) --all steps
being required to "close the loop". We
must also understand what we are doing as
we go. We will begin by examining the
containing only printable ASCII charac
ters, including positioning characters
such as LF (linefeed), CR (carriage re
turn), etc. The progr am SOURCE.PRG will
use the input routine published in COLOR
CUE, June/July, 198 2 to input data. Once
stored on disk, your screen editor should
permit you to recall the file and view
and edit it. When the program is com
pleted you will have constructed an op
tion line which will permit you to (1)

create (2) call (3) edit (4) close (5)
print (6) end a .SRC file with a length
of 124 bytes. [7] (This program may
readily be modified for longer files.)

In the meantime you may examine the
input routine and think how it might be
modified for entry of text, file para
meters for opening and creating (will you
put file parameters in a different place
than text? How will you do that? Do you
want error detection for improper file
parameters?) and a means of storing the
various parameter inputs into the File
Parameter Block. Given a FPB address, how
will you access the various sections?
Where will you place your file buffer?
How will you display the contents of the
file buffer on the screen? Will you want
to save code other than the actual ASCII
contents of the file data to assist in
display functions? It will be helpful
self-instruction to consider these things
and experiment with them before the next
issue of COLORCUE. [8] Since the input
routine TEST.PRG will form the kernel of
our program, you can also prepare an
edited copy, renamed SOURCE.PRG on which
you can build as we proceed.

Notes
[1 J Other operating systems carry such

names as CP/M, UNIX, OASIS, etc.,
trademarks of Digit Research, Bell
Telephone and Phase One Software,
respectively. The operating system is
software, differentiated because of
its function of controlling overall
computer operations, as opposed to
specific utility programs. "FCS" is
in ROM because its length permitted
storage on currently available ROM
chips at the time it was written, and
because ROM is always there at power
up. CP/M is much longer and therefore
had to be delivered on disk. Since
ROM chips now have larger capacities,
even CP/M might soon become available
in ROM. [On the other hand, having
the operating system in ROM means
that you can't change it here and
there to suit your own needs. --Eds.]

[2] By "source code name" we mean desig
nations like "KBDFL" and "KBRDY",
which do not appear in ROM, of
course, but are used by the program
mer for legibility when composing
source files. The assembler tran
slates these names into addresses.

[3] Since a number of things are labelled
with the letters "FCS", these
articles will refer to the operating
system as "FCS", the FCS computer
mode as "FCS>'' and the routine in ROM
as FCS.

ends and a file name begins, and why
FCS> is so unmerciful if you enter it
incorrectly! You routinely "parse"
data in everyday life, such as this
name and address string: John B.
Adams, 223 Westover St., North Hills,
NJ 08058.

[4] The file type .RND is a reserved
extension of BASIC, and we will not
be using it here. In assembly lan
guage we can duplicate it, of course,
and make it even more flexible if we
desire. We have the power, in our
program, of reserving another exten
sion, say .RS V, to be handled in a
prescribed way by our program.

[6] 3651 owners will find a file called
BASLST.SRC on their Sampler Disk
which contains a clear example of
file routines in assembly. It is a
long file and will not fit all at
once on a screen editor. The best way
to examine this file is to assemble
it with a simultaneous printout.
(With the MacroAssembler, type
BASLST.SRC-L and watch with glee!) [5] "Parsing" is the procedure by which a

routine separates the parts of a file
specification by looking at the
spacing and punctuation in the
string. That is the only way the
routine can tell where a drive number

[7] If you are eager to proceed now, a
copy of the completed listing for
SOURCE.SRC may be obtained by sending
me your name, address and a check for

LISTING I; XFCS- Calling the DIRECTORY

;First list locations of flags and subroutines

Et1ESS
FCS
LOFL

XFCS

16

EQU 262DH<0AD6H)
EQU 25ECH<9A95h)
EQU 81F9H

ORG xxxx

LXI H,LOFL
1'1\.}l M,eeH

LXI H,CMSTR

CALL FCS

;a subroutine. Have faith.
;another subroutine
; a f 1 ag 1 oc at i on

;adjust to taste

;We put the address of the flag in the HL register
;and place 00H in that Ram slot.

;We give HL the address of the command string in
;our program, because the FCS routine is coded to
; 1 ook for i t i n HL •

;We actuate the FCS Command Interpreter wh i ch
;takes our command, 'DIR-' from the command string
;at progr·am address CHSTR and initializes the
;proper code steps to retrieve directory
;informat i on from the disk, placing it where the
;number in LOFL says to put it - in this case,
;on the screen. FCS, then, requires two input s :
;a flag in LOFLand a command string pointe r 1n
;HL. When FCS has completed its work, it wi l l
;present us with some parameters. If a disK error
;has occured, the 8 register will hold an error
;code reference number (0=no error). The data in
;the A, DE, and HL registers will be gone and the
;8080 flags will be: 2-set if no errors, Z-reset
;if an error has occured, C-set if a comma was
;found in the command string.

$3.00 to cover printing and mailing
costs. The listing will be printed in
COLORCUE as we examine it in the
coming installments.

[8] Recommended texts: For descriptions
of disk and utility routines: Dewey,
Dale, Advanced Programmer's Manual.
D2 Engineering, 7284 High View Trail,
Victor, NY 14564. $15, looseleaf.
This is not a tutorial, but an ele
gant outline of routines in ROM with
a guide to their use. For the inter
mediate and experienced programmer.

For 8080 utility routines: Findley,
Robert and Edwards, Raymond, Scelbi
"8080" Software Gourmet Guide and
Cook Book, 2nd ed., 197 8. Scelbi
Computer Consulting, Inc., Milford,
Connecticut 06460. $10.95. May be out
of print, but worth a try! Review of
instruction set and special routines
involving stack pointer, sorting,
conversion of data, tables, I/0

processing and floating point
operations.

For instruction set and assembler
operations: INTEL 8080A Assembly Lan
guage Programming manual. Literature
Dept., Intel Corporation, 3065 Bowers
Avenue, Santa Clara, CA 95051. About
$5.00. A very transparent and ordered
presentation.

For computer organization, utility
routines, I/0 hardware and software
procedures: Rony, Peter R., 8080A
Microcomputer Interfacing and Pro
gramming, 2nd ed., 198 2. Howard W.
Sams and Co., Inc., 4300 West 62nd
Street, Indianapolis, Indiana 46268.
$17.95. A revision of the "8080A
Bug book", this volume has one of the
best software annotations I've seen.
In spite of their use of octal code,
the beginning programmer will have
many critical questions answered in
these pages. C

CALL EMESS ;You might as well Know now about this error
;message generator, the priest who always speaks
;in red! This routine takes the number FCS left in
;the B register and generates and prints an error
;message if B<>e. If there was no error the
;routine just RETurns. EMESS will print according
; to LOFL.

;Now exit the program graciously tflith a jump to BASIC

BASJMP: LXI
XRA
t10V
II'JX
SHLD
MDV
IN:X:
t10V
INX
SHLD
LXI
JMP

CMSTR: DB

END

H,B299H
A
t1 ,A
H
88D4H
M,A
H
M,A
H
80D6H
H,81DFH
8046H<1F2CH)

'DIR·',88H

;This short and very useful routine
;is taken from an article by
;M.A.E. Linden of Toronto, Ontario
; and pub 1 i shed in FORUt1 INTERNATIONAL
;VOL I, 5-6, p74

;Our· command 1 ine may contain any valid FCS>
;command (just one per 1 ine') but the line must
; end in eeH as shown or an error w i 11 occur.
;UnliKe OSTR you may not place PLOT codes in the
;command string, such as those to change color or
;erase the page.

------~~~~~--~- --~

17

FREPOST COMPUTERS, INC. 431 East 20th Street 10-D
New York, New York 10010 PHONE 212-673-6476

Source TCI251 Micronet 70210,374
PRICES FOR COMPUCOLOR AND ISC COMPATIBLE EQUIPMENT & SOFTWARE

MARCH, 1983
ADD ON 16K RAM BOARD <INCREASE A 16K CCII OR 3621 TO 32K RAM>

ASSEMBLED AND TESTED WITH RAM CHIPS 109.00
UPGRADE 8K OR 24K TO 32K CALL OR WRITE

8K PROM BOARD <INTEL 2716 TYPE EPROMS FOR USE IN 4000H-FFFFH>
ASSEMBLED AND TESTED-NO PROMS INCL. 49.00

64K BANK SELECTABLE ROM BOARD
SELECTS VIA SOFTWARE CONTROL UP TO 56K <D> OF EPROM IN 8K SEGMENTS.
PLUGS INTO THE ADD-ON ROM SOCKETS INSIDE THE COMPUTER OR WITH THE
EXTERNALIZER BOARD IT WILL OPERATE OUTSIDE THE COMPUTER. IT UTILIZES
TI 2532 TYPE EPROMS. BUILT IN IS A SOCKET FOR ADDITION OF AN 8K BOARD
E.G.,8K SINGLE BANK BOARD OR DEVLIN RAM BOARD. THIS COMBINATION
GIVES YOU THE FULL 64 K OF PROM. 50 PIN BUS CONNECTOR ALLOWS FOR
INSTALLATION WITH NO SOLDERING TO LOGIC BOARD.

ASSEMBLED AND TESTED---WITHOUT PROMS 249.00
ABOVE IN KIT FORM 199.00
50 PIN BUS CONNECTOR 10.00

BUFFERED EXTERNALIZER BOARD FOR CCII, 3621 OR 3650
THIS BOARD AND CABLE COMBINATION ALLOWS USE OF YOUR PLUG IN BOARD ON
THE EXTERIOR OF THE MACHINE. IT IS MANDATORY FOR THE 3650 AND 3621.

ASSEMBLED AND TESTED ONLY 59.95

'THE' BASIC EDITOR <SEE FORUM VOL 2 NO 1 PP
PROM VERSION IN 2532 OR 2716 PROMS
PURCHASED WITH 8K PROM BOARD <A&T>
PURCHASED WITH 64K BANK BOARD <A&T>

11-12 FOR REVIEW>
89.00

109.00
269.00

LOWER CASE PROM WITH STANDARD CCII OR ISC GRAPHICS
<CAN USE CAPS LOCK SWITCH OR ADD ON TOGGLE SWITCH>
EPROM WITH LOWER CASE 35.00

ENHANCED OPERATING SYSTEM ROM FOR 6.78
ADDS 4 NEW JUMPS TO ACCESS EPROM AREA WITHOUT POKES TO USER

VECTOR. PERSONALIZED WITH THREE INITIALS AT NO EXTRA CHARGE
EPROM WITH NEW OPERATING SYSTEM 29.00

THE FOLLOWING PROGRAMS CONSIST OF ONE BANK OF 2532
COM-TRONICS <tm> SOFTWARE IN NEW EPROM VERSIONS

1>TERM II COMMUNICATIONS PACKAGE
2>CTE, FORMATTER, SPEED
3>NEWBUG, CTA
4>CRC,DFM
5>PRINT2, CLIST,LLIST,LDAFIL
6>TERMII, SRC/BAS, BAS/SRC, FILMRG
7>CTA
8>NEWBUG, SORT, RENUM

BILL GREENE SOFTWARE IN EPROM
1>SUPER MONITOR PLUS

JIM HELMS SOFTWARE IN EPROM VERSIONS
l>EDITOR/ASSEMBLER
2>WISEII 8080 EMULATOR
3>DISK EDITOR
4>GENERAL LEDGER SPREADSHEET
5)90URCE DISASSEMBLER

OR 2716

89.95
144.95
109.95

79.95
109.95
154.95
69.95

109.95

79.95

90.00
75.00
60.00

110.00
130.00

EPROMS

FREPOST COMPUTERS INC PRICE SHEET DECEMBER 1982

FREPOST COMPUTERS, INC <tm> EPROM VERSIONS
1>AT LAST! DIRECTORY PROGRAM BY BILL POWER
2>DISK BASED VERSION

RICK TAUBOLD & BILL GOSS' NEW REAL TIME STAR TREK
FEATURING GAME SAVE AND ALL NEW GRAPHICS

59.95
39.95

25.00

A FIRST FOR THE COMPUCOLOR/INTECOLOR! DOUBLE PRECISION MATH!
CAN BE USED TO GIVE UP TO 16 DIGIT PRECISION MATH OPERATIONS
SUBTRACT, MULTIPLY AND DIVIDE. TRANSCENDENTAL FUNCTIONS
AVAILABLE IN ROM FOR YOUR BANK SELECT OR 8K PROM BOARD. CAN

PAGE 2

ON ADD,
TO COME.

BE ADDED
TO MOST PROM PACKAGES. THIS FAST MACHINE LANGUAGE MODULE IS CALLABLE
FROM BASIC, DO AWAY WITH THE PENNY ERRORS FOREVER!

STANDALONE IN ROM PACK 59.95
INCLUDED IN ROM PACK WITH OTHER PGMS 39.95

THE QUADRAM LINE OF PRINTER SPOOLERS FREE YOUR COMPUTER FROM NEEDLESS
WASTE OF TIME WHILE EVEN FAST PRINTERS PRINT. DUMP YOUR DATA AT 9600
BAUD AND LET THE MICROFAZER HANDLE THE PRINTING CHORES WHILE YOU
CONTINUE CRUNCHING. STANDALONE UNITS POWERED FROM YOUR PRINTER'S
PARALLEL INPUT, ALLOW RESET AND RECOPY FROM FRONT PANEL.

64K SERIAL IN/PARALLEL OUT 269.95
8K SERIAL IN/PARALLEL OUT 189.95

ALL CONFIGURATIONS OF INPUT AND OUTPUT MODE ARE AVAILABLE. CALL!

THE ANGEL IS ANOTHER PRINT SPOOLER, AND IS LIKE THE MICROFAZER, BUT
HAS UNIVERSAL INPUT/OUTPUT, MORE FRONT PANEL CONTROLS ALLOWING PRINT
INTERRUPT, REPRINT FROM PAGE X, AND MUCH MUCH MORE

64K SERIAL OR PARALLE IN AND OUT 289.95

MULTI COMPUTER USERS NOTE :
ALL QUADRAM, STB, AST, PRINCETON GRAPHICS. AMDEK, TECMAR, AND RELATED
MANUFACTURERS PRODUCTS ARE AVAILABLE AT GREAT SAVINGS FROM FREPOST
FOR OTHER TYPE SYSTEMS.

WE SAVED THE BEST FOR LAST ...•.••.••.

NEW FOR 1983!! THE OKIDATA MICROLINE 92 9X9 LETTER QUALITY PRINTER
COMES WITH THESE STANDARD FEATURES ---->

2000 BYTE BUFFER, PARALLEL INTERFACE, 7 CHARACTER FONTS PLUS
CORRESPONDENCE FONT <NOT JUST A DOUBLE STRIKE DP FONT>. ALSO.
A SMART VERTICAL FORMAT UNIT, REAR OR BOTTOM PAPER FEED,
FRICTION OR 9 1/2" PIN FEED, 6 CHARACTER WIDTHS, ENHANCED
PRINT MODES AND

•••* DOT ADDRESSABLE GRAPHICS INCLUDED AT NO EXTRA CHARGE! •***
YOU CAN ALSO CREATE YOUR OWN FONT AND DOWNLOAD IT TO THE
MIL 92! 160CPS PRINT SPEED IN DP MODE, SHORT LINE SEEKING
BIDIRECTIONAL PRINTING.
MICROLINE 92 80 COL 9X9 MATRIX PARALLEL
MICROLINE 92 AS ABOVE, SERIAL INTERFACE
MICROLINE 93 132 COLUMN 9X9 MATRIX PAR'LL
MICROLINE 93 AS ABOVE, SERIAL INTERFACE
MICROLINE 80 80 COL 7X9 MATRIX 80CPS
FREPOST SCREEN DUMP PROGRAM
<CCII GRAPHICS CHAR SET>

540.00
620.00
900.00
980.00
350.00

39.95

FOR INFORMATION ON THESE AND OTHER PRODUCTS, PLEASE CALL OR WRITE
TODAY. DELIVERY ON MOST ITEMS IS FROM STOCK.

INSTALLATION ASSISTANCE AND SERVICE IS AVAILABLE AT MODEST COST FOR
YOUR COMPUCOLOR OR ISC COMPUTER.

Compucolor Disk Drive Improvements

by John Newman
PO Box 37
Darlington,

Western Australia 6070

While it is not practical to make
major improvements (such as capacity) to
the Compucolor disk drives, there are a
number of useful, low cost modifications.
Three of these are: (1) write protect
switch, (2) motor run-on, and (3) dual
speed switch. (Note: all of these re
quire complete removal of the disk con
troller board, cutting of circuit tracks
and soldering of new components.)

Write Protect Switch
This addition provides hardware pro

tection against accidental writing of any
data to the currently loaded diskette.
Deletion of files is also inhibited. With
the switch in the Write Protect OFF posi
tion, all normal reading and writing can
occur. With the switch in the Write
Protect ON position, only reading can
occur. If you, too, have hoards of chil
dren playing Space Invaders, this switch
should help prevent those mysterious disk
erasures. Attempts to write to the disk
with Write Protect ON will produce FCS
errors: EVFY, EFWR or EDEL.

Parts
1.
2.
3.

required:
Miniature SPDT toggle switch.
4700 ohm, .25 watt resistor.
Length of hookup wire.

The logic and component location
diagrams are given in Figures 1 and 2.
The switch should be fitted to a 1/4"
hole on the front panel of the disk
drive.

Motor Run-On (V8.79 only)
This modification is the most diffi

cult to install but probably has the most

%0

value. When the disk is selected for a
read or write, the drive motor starts up.
A delay of up to a second occurs before
the motor reaches correct speed and data
is transferred. As soon as the data tran
sfer is complete, the drive motor stops.
Subsequent reads or writes require the
same motor startup delay. An easily
demonstrated example of this is listing
of a long directory. There is a distinct
pause between reading of each directory
block.

With the motor run-on circuit added,
the drive motor will continue for three
seconds. If any read or write occurs
within this time there is no startup
delay. Listing of long directories and
loading of .LDA programs with the run-on
fitted take about half the normal time.
The reason that this modification curr
ently applies only to V8. 79 is because
V6.78 FCS has a built in delay of one
second. This is being looked into right
now. Hopefully a simple update to V6.78
FCS PROM will remove this problem.

Parts
1.
2.
3.

required:
lOOOuF 6.3 V electrolytic cap.
Signal diode 1 N4148 or similar.
4700 ohm .25 watt resistor.

Installation involves cutti n g the
track between pins 2 and 3 of UA3 , drill
ing three small holes and soldering the
components as shown in Figures 3 and 4.

Dual Speed Switch
Those Compucolor owners who regularly

buy or trade software are aware of com
patibility problems between drives. They
also know that reading a disk at a

slightly slower speed than the original
writing speed overcomes many of the
reading problems. This is usually
achieved by drilling a hole in the disk
cabinet, giving screwdriver access to the
speed control potentiometer. The trouble
with this is the difficulty of resetting
to correct speed.

disks can then be set to 295 RPM at the
flick of a switch. By reducing the value
of the resistor, the difference between
the two speeds increases. A 1000 ohm
resistor gives a difference of 8 RPM. The
switch should be fitted to a 1/4" hole on
the front panel of the disk drive.

Parts
1.
2.
3.

required:
Miniature SPDT switch.
2200 ohm .25 watt resistor.
Length of hookup wire.

This modification is simply a switch
to set the disk speed at one of two fixed
speeds. By connecting a 2200 ohm resistor
across half of the speed pot, the RPM
drops by five. Use the SPEEDO program or
the strobe indicator to set the normal
speed (300). Reading speed for "foreign"

Install the parts as shown in Figures
5 and 6. E

Figure 1

ON

WRITE PROTECT ~
OF

SPDT Switch.

13
I 3 Cfii·----···-·--- ···--·--·--- ·-{F---+_.._--l

17

WRITE -1--

Figure Z

(----+SV.
\ o
\
\ To pin 18
\ of UA2
I
I

I
I
I

f

\

\
\
\

Rear

4. 7K.Jl...

UAl

Cut track

DISK CONTROLLER

UNDERSIDE

track.

. ·-- ~ -----/

"---------, ~in 13 (

·-u-triT1 6 socket for
1

1 Interface \
\ ______ g_h cable. ,

\Add /j
iJ \ n ___ ~ L-- - ·-- -~ --· ____ n ________ ·"\

edge \.JRITE 1 (!) OFF

PROTECT ~~ ON SPDT Switch.

WRITE
PROTECT

PARTS
LAYOUT

2I

Figure 3

Figure 4

22

MOTOR

RUN-ON

LOGIC

SELECT

MOTOR
RUN-ON
PARTS

LAYOUT ·cut

track

1000
uF

Diode

1N4148

+SV.

~OOuF 6.3V

2

DISK

CONTROLLER

TOP SIDE

(Underside)

+SV.

FRONT EDGE

14

15

Figure 5
UNDERSIDE

Speed Potentiometer

RlO

SPEED: 299 295

Figure 6

0
L.E.D.

Cueties

by Steve Smith
498 Brown ~lreel
Napa, CA 94568

SPDT
Switch

DISK

DRIVE

WRITE PROT.
OFFQON

SPEED
300Q295

190 PLOT 12
200 FOR 1=0 TO 120
210 FOR T=-5 TO 5+!
215 C=INT<7*RND(1))+I
217 PLOT 6,C
220 X=INT(10+T*RND(1))+1
230 Y=INT<10+T*RND(1))+1
240 PLOT 2,X,Y,255
250 NEXT T:NEXT I

SWITCH
LOCATION

23

The Okidata Microline 84A Printer

by Ja.mes L. Helms
1121 Wa.rbler
Kermlle, TX 78028

I love the new Okidata Microline 84A.
The maximum baud rate is 4800 with a
serial interface, but when it is going at
200 characters per second you would never
know it. It has true logic seeking char
acter positioning, where the print head
does not have to return to its home pos
ition prior to printing the next line.
This really increases throughput.

The ribbons are typewriter styled and
travel in both directions like a type
writer ribbon does. You could even use an
ordinary ribbon except that it would void
the 90 day warranty. The ribbons which
Okidata supplies are impregnated with a
head lubricant, so I wouldn't advise
using plain ribbons.

The printer is capable of dot gra
phics, underlining, proportional spacing
and user defined character sets. Unfor
tunately, the instruction manual leaves a
lot to be desired. They do not, for exam
ple, explain how to download your own
character set. Nor do they fully explain
the printer's graphics capabilities. I
was only after much playing around that I
got the graphics to work. I still haven't
figured out how to use my own character
set. The manual also assumes that the
user understands a lot of esoteric terms,
especially those involved in the command
sequences. It takes a while to figure out
what's supposed to be going on. There is
a section on setting what they call
"channels". As far as I can make out,
channels are a kind of vertical tab, the
positions of which can be set by a com
mand sequence giving line numbers.
Vertical tabbing is then done by comman
ding vertical movements according to the
channel numbers instead of the line num
bers. Weird.

"N .L.Q." is another term which some
users might not be familiar with. It

24

•

stands for "Near Letter Quality". When in
this mode, each print line is printed
twice, once in the usual way, and the
second time shifted by one half dot. It
gives less of a dot matrix look to the
letters, but it slows throughput to about
100 characters per second. (Still pretty
fast.)

One of the big mysteries in their
manual is the reference to "Single CSF
Exhaust". If you can figure that one out,
let me know.

There are a few things I don't like
about the physical design of the printer.
The power switch is located in the rear.
I would have preferred the front console.
And I don't like having to unscrew the
top cover in order to change the dip
switch settings. Usually , though, this
can be overcome by downloading your own
command sequence.

All in all, I am very pleased with the
printer; I think it's worth every penny I
paid for it. (Anyone want to buy a used
Base 2 printer, cheap?) IIC

Dip Switch Settings

SWitch Setting Use

01 odd/even parity
02 ON no parity
03 OFF 8 bit W~Jrd
04 OFF 4800 cps
05 ON
06 ON
07 OFF line feed on LF
08 ON (always)
09 ON simplex
10 ON
11 ON
12 OFF (always)
13 OFF "mark" when busy
14 OFF (always)
15 OFF RS232
16 ON tW~J wire

-
r-· ---
1

I

L

Cable Connections for CCII and Microline 84A

CCII Micro1ine Signal
pin pin

3 3 RD (XMITD DA.TA)
14 7 SG (SIGNAL GROUND)
15 11 SSD (BUSY)

4 RTS (RECUEST TO SEND) JUMPER 1
5 CTS (CLEAR TO SEND) Jli'1PER 1
6 !13R (DATA SET READY) JUMPER 2

20 C1I'R (DA.TA TERMINAL READY) Jli'1PER 2

b L.PI TEST
LINE NUMBEF< 1 line nurnbet' 1
LINE NUMBER .-. line number-· 2 0::.

LINE NUMBER 3 line number·· 7
~~

LINE NUMBER 4 l i·r-,e numbe·r·· 4
LINE NUMBER c::- line nurnbet' r::-

•. J ~'

8 LPI TEST
LINE NUMBER 1 line nurnber' 1
LINE NUMBER 2 1 i r-.e nurnbet' 2
LINE NUMBER ":l line r-.um bet·· 7

o.J ~~

LINE NUMBER 4 1 i ne r-.urnber' 4
LINE NUMBER .:::-

.J line numbet' <::"
d

6 LPI UNDERLINE TEST
THIS_.JS UNDERL,ININC3 ... this is under'linJ.ng
I!::i I S _j_9_ __ .1.!b!_Q E R .. '=J NJ..,t!G -~-. ..!_~.- t h 1 s i s _u n d e r·· 1 i Xilil!l
J H .t§ ____ t§__!:)_b!.Q.I;_f!.l..:..I.f:l I N §__!._.!....!!. t h i s i s u n d €?. r' 1 i n i . .Qll
T._H I S__l_§ ____ \,J_r:!PsBL L~Jjj§ __ .. ~ .. ~ tl:l..l.2l-.? __ ,ol no et::J..J.T.!...! ... t:•..9.
T H I S I S \Jr:!QE R_b.,_.I.!'i.li-l_G_._._o:_ __ .tb .. t~i~ '-'· n d. .. ~.r .. :..Ur.•_i r._g_

EMPHASIZED TEXT
TESTING •.. testing
TESTING •.. testing
TESTING ..• testing
TESTING .•• testing

SUPERSCRIPT I SUBSCRIPT

SUPERSCRIPT SUPERSCRIPT
SUPERSCRIPT SUPERSCRIPT
SUPERSCRIPT SUPERSCRIPT
SUPERSCRIPT SUPERSCRIPT
SUPERSCRIPT SUPERSCRIPT

5, 10 . 6, 12,8,17 CPI TESTS

1 E:345E.7891Z•
123456789121
123456789121
12345678'312!
1234567890
1234567890

::;uBSCR I PT SUBSCRIPT
SUBSCF\ I PT SUBSCRIPT
SUBSCRIPT SUBSCRIPT
SUBSCRIPT SUBSCRIPT
SUBSCRIPT SUBSCRIPT

25

F ASBAS - A Basic Compiler
a mma-revaew

by D. B. Suits

Anyone with contacts in any other user
groups, through newsletters or friend
ships, or who subscribes to COLORCUE,
knows that there is a BASIC compiler
loose. (A compiler is a program which
takes another program (in BASIC, in this
instance) and converts it into one that
runs, or runs faster than an interpreted
version. An interpreter is a ...• this
is going nowhere .) Called F AS BAS and
written by Peter Hiner of Great Britain,
it produces code that runs from 2 to 5
times faster than the original BASIC
versions. The price is $20 (apparently
cheaper when user groups buy in bulk).

One evening we popped into ye olde
computer roome to take a look at FASBAS
and what it could do. The F AS BAS disk
comes with a demo BASIC program on it
which you can run and then compile using
FASBAS in order to appreciate the dif
ference in speed. We thought, though,
that we'd give it a "real life" test.
Suits's BOUNCE program seemed a good
choice. We read the FASBAS documentation
and made note of the various restric
tions. There are some things that FASBAS
doesn't like to see in BASIC programs
which it compiles (improperly exited FOR
NEXT loops, for example). Fortunately,
BOUNCE did not violate any of the re
strictions, so we loaded the F AS BAS disk,
ran FASBAS (it takes a few seconds to get
itself organized), and told it to please
compile BOUNCE. The first pass which
F AS BAS makes produces a quasi- assembly
language source file and stores it on
disk. The source file is very long
indeed--so large that for a lOK or 16K
BASIC program, the generated source code
will take up most of the disk space.
While the source code is being generated,
FASBAS tells you whether it has encoun
tered any illegitimate instructions in
your BASIC program. These might be synax
errors or else instructions (such as

2&

random file handling instructions) which
FASBAS can't accommodate.

In the case of BOUNCE, all went well.
Next we invoked the FASBAS assembler, a
non-standard assembler (because the
source code which FASBAS generates is
non-standard) which makes two passes over
the source code in a manner similar to
the Compu'color assembler. Part way
through this assembly, an error was re
ported in red. The error message, how
ever, was a bit cryptic, so we had to
look it up in the documentation manual.
Oops! No list of error messages! Oh,
well, it looked like a standard assembler
error message indicating an ambiguous
label reference. (If you don't know
Compucolor assembler errors, you'll be
out of luck here.) So. An ambiguous
label? How can that be? WE didn't write
the source code, F AS BAS did. Why was
F AS BAS generating ambiguous labels? Back
to the original BOUNCE program to see
what we could see. It took us a while,
but we finally discovered that FASBAS was
indeed generating some ambiguous labels.
Specifically, BOUNCE has an array called
SC(). FASBAS labels that with a prefix
"A" (for "array", I suppose). Unfor
tunately, the BASIC keyword "ASC" looks
just like the label for array SC, and
this was the source of the assembler's
confusion. We got out THE BASIC editor,
changed all references in BOUNCE from
SC () to CS (), submitted the new version
to F AS BAS, ran the F AS BAS assembler
again, and ..•• Oops! Still an error. This
one concerned the BASIC line "LOAD
MENU:RUN". The manual says that's OK, and
FASBAS didn't flag an error there, but
the assembler did. Strange. So we took
that line out of BOUNCE, re-compiled and
reassembled, and •••. Lo! It worked!

The assembler generated a .LDA file on
disk which we loaded (.LDA files take a
while) and then saved back out as a .PRG

(i.e., a true machine language) file.
Then we ran BOUNCE.PRG. Yep! There was
the program, up and running, and it was
considerably faster than the interpreted
BASIC version--so much faster, in fact,
the the little ball which bounces around
was now bouncing a bit too fast; it would
have been appropriate to go back to the
original program and put a few small
delay loops in and recompile. So F AS BAS
has a few restrictions and a few bugs.
Big deal. It's a working BASIC compiler
for only $20! That's nothing to sneeze
about. If you're interested in obtaining
a copy, write to Peter Hiner, 11 Penny
Croft, Harpenden, Herts AL5 2PD, England.

Classified Advertisements
For Sale Compucolor II, V 6.78, 32K, 117

key keyboard. Soundware, disks in
clude games, BASIC Editor, Assem
bler, Personal Data Base. Manuals
included. Excellent condition.
Asking $1300 or best offer.

Harry Trueheart
8 Old Farm Circle
Pittsford, NY 14534
(716) 586-7906

For Sale Compucolor II, V8. 79, 3 2K, pur
chased 11/81. Includes programming
and maintenance manuals, Text
Editor, Compucalc, Personal Data
BAse, Fredi, Assembler, Format,
games, and a file of Colorcue.
$1500.

Also - new 16K RAM module $75.
Steven Forshay
1321 Webster Street D114
Alameda, CA 94501
(415) 522-5935

User Group Notes
We are trying to build a Compucolor soft
ware library for exchange of programs on
a low cost reciprocity basis. We would
like to receive offet s regarding programs
you have created and wish to share. For
information, please write:

Bernard Lohman
Deurloostraat 103
1078 HW Amsterdam
The Nether lands

HORE DISK S'rORAGE FOR $24.95!

Store 50% more ASCII data.

Works on both V6.78 and V8.79.

Supplied for 8200H and 4000H.

Uses CDO: and/or CDl:

PACK.PRG packs with Huffman
Codes, UNPACK.PRG restores.

All ASCII codes accommodated,
use for ASM.SRC, Text Editor,
CTE files, etc.

Delay for personal checks,
Send Postal Money Order for
same day shipment of program
disk and user instructions to:

VANCE PINTER
P.O. BOX 20
COLUMBUS, GEORGIA 31902

COMING NEXT

Focus on your screen with:

Screen memory problems
4096 colors?!
Adjustment advice
A bar cursor

Turn to your disk drives with:

Handy disk utilities in BASIC
Assembly language routines

And more.

27

Color cue
Editorial Offices
161 Brookside Dr.
Rochester, NY 14618

BULK RATE
U.S. POSHGE

PAID

Aocheste~ N. Y.
Permit No. 4 1 5

Colorcue
1memb!y l.~rn&~e Prot;ramming - Prot;nm Desfs-n il!d Parsing Pije Names, Review of the Preepost 64-K B:ank Bo;rd; Screen MemorJ

pt., Tidbit.s for Compucoior; Christifte; Two Handy Disk Ut.ilii.ie.s; Bditors1 Notes; Assembly L:aqgu:age Programming - Program DeMg

vtew of the Prcepost 64K Bank Board, Screen Memory Problems and Cures; Blue Sky Dept..; 'f'idhit.s for Compucolor, Cbnst.me,
Assembly Laqgu:age Programmmg - Prognm Design :and Pers•ng Pile Nwmes; Revtew of l.ne Preepost. 64K Bank Board

Bar Cursor, Two Hand)' Disk Utdittes; Bditor .s' Not.es, Assembly uanguage Prograrr

c_,.,..,n Memory Problems 11«d Cures, Blue Sky Dept.., 'T'idbtts for Corr :::....------------==== estgn and Parmng Pile Nemes; Revtew of the PreeposL 641
'f'>wo Hattdy D1sk ULtlt~tes, Sdttors) Notes; Assembly Langu:

mpucolor,

eepo.st. 64-K Blink

,sembly· Language Prog

pl. , 1'idbtts for Compuco!or, Bar

'V!e'W of ~he Preepo.sl. 64K Bank Board,

·een Memory Problems Blue Sky Dept, 'T'1db!t

- Program Destgn end
Cursor, 'T'wo Handy

.. nnst.tne,

t3ank Bo•rd,

,,guage Progr•m

·r.dbtt.s for Comp

t.he Preepost 641'

tes, Assemhl_y· Laoguag

Blue Sky Dept, 'T'1dbtts

, 8dit.ors' Notes, Ass•

and Cures, Biue S~;r Depl

De.stgn 1111d Parstng P1le Names, Rev1e

, 1'1io Handy Dtsk Ut.dit.te s, 8dtt.or s' r
Board, Screen Memory Problems and Cures,

L~ngu~ge Programmmg Program Des1gn and Parsmg Pde

Sky Dept , 'T'tdbd,s for Compuwlor, Bar Cursor, 'T' ... o Haody D

Names, Re¥tew of the Preepost, 64K Bank Board, Screen Memory

Uttht!es, 8d1tors' Nole5, AssembiJ Language Progummmg - Program Des!

Memory Problems and Cures, Biue Sky Dept, 'T'idb1ts for Compucoior , Cltnst1ne,

~tors' Nol.es, Assembly L<~np;uage Progr3mmmg - Program Des•gn and Par smg Pile Names; Rev1ew of the Preepost 64K Bank Board,

r·es, Blue Sky Dept, 'T'idh1ts for Compucolor, Bar Cursor; 'T'wo Handy Disk Ut,t!i!.ie:>, Bt:!itors' Notes, Assembly Language Program

April/May I983 $2.

Colorcue
A bi-monthly publication by and for
Intecolor and Compucolor Users

Editors:
Ben Barlow
David B. Suits

April/May, 1983
Volume 5, Number 5

Compuserve: 70045,1062

3 Editors• Notes

4 Assembly Language Programming, by Joseph Norris
Part XI: Program Design and Parsing File Names

12 Two Bandy Disk Utilities, by Tom Napier
BASIC routines to examine and edit disk blocks

16 Cueties

17 Screen Memory: Problems and Cures, by Tom Devlin
Tracking down bad memory chips

18 Unclassified Ads

18 Tech Tip, by John Newman

18 Tech Tip, by Vance Pinter

19 Tid-Bits for Compucolor, by Boward Rosen
Color adjustments

20 Blue Sky Dept., by David B. suits
Can the Compucolor have 4096 colors?

22 Bar Cursor, by F. M. Good
CALLable from BASIC

26 Freepost 64K Bank Board, by Christopher J. zerr
Hardware review

COLORCUE is published bi-monthly. Subscriptions are US$12/year in the
U.S., Canada and Mexico, and US$24 (includes air mail postage) elsewhere.
Some back issues are available. All editorial and subscription correspon
dence should be addressed to COLORCUK, 161 Brookside Dr., Rochester, NY
14618, USA. All articles in COLORCUK are checked for accuracy to the best
of our ability, but they are NOT guaranteed to be error free.

./1

Editors' Notes

Several recent letters have inquired
about the meaning of the mysterious num
ber on the mailing label of their Color
cue. That number used to be the issue
number of the last issue valid on your
subscription. Unfortunately, that number
was never explained or used anywhere in
the magazine, so you have a right to be
puzzled. Having explained that number
now, you'll notice that it's changed.
Since its purpose is to tell you how many
issues you have to go, and a computer
knows what the current issue is and what
your last issue will be, it seems that
the com:ruter should subtract and tell
you, simply, how many issues are left on
your subscription. That's what the number
does now, and that's what "to go" means.

If your "to go" is zero, you'd best renew
to continue with Colorcue; you've re
ceived your last issue. When you renew,
rest assured that your investment is
secure. Colorcue maintains a bank balance
large enough to refund subscribers'
unused subscription dollars one for one,
should the magazine cease publication. In
simpler terms, you'll get your money's
worth, or you'll get it back.

Still on the topic of subscriptions, let
us issue a call for renewals. If you'll
remember last year, when we did this, we
waited until we had enough renewals in
hand to make sure we still had a viable
operation, and then began to work on the
Aug/Sept issue. Because many of you, like
at least one of our editors (guesses?)
were late with their renewals, that issue
was delayed (about 2 months). We've n ever
gotten caught up, even though our in ten
tions are superb. Please help us a • o' ~
that situation this year, and rene w
early. We promis e not to get any further
behind, and promise that you won't lose
any money in the de al.

REMIINIDER

Beg inning with Volume 6 (Aug/Sept) ,
the subscription rate for COLORCUE
will be US$18 in North America and
US$30 elsewhere.

F .ASBAS Update
Peter Hiner has improved his F ASBAS

BASIC compiler. It no longer has all the
previous limitations mentioned in last
issue's review. And apparently all the
bugs have been corrected. I have been
using it successfully for several months
now, and I can report that I am tho
roughly delighted.

The price of FASBAS was erroneously
given as $20 (US). Please note that the
true price is $25 (US). Peter has gra
ciously filled some orders even when the
purchaser sent only $20. Let's be fair to
him and his creation, though: if you
bought FASBAS for only $20, please send
him the remaining $5. After all, the more
we encourage Peter, the more likely we
are to see som ething else wonderous
emerge from his computer room. Besides,
you'll have to agree that $25 is CHEAP!

Speaking of F AS BAS, have you been
wondering how Peter came to write it in
the first place, and are you curious to
learn how it works? Then don't miss our
next issue, wherein Peter begins a
multi-issue article which answers these
questions.

ISCNews
Years ago many Compucolorists found a

friend in Gene Boughey, who both gave us
advice and produced programs for us on
his own or in association with ISC. NOW
Gene has been promoted to manager of
graphics systems sales at Intecolor.
Congratulations, Gene!

No doubt one of Gene 's duties will be
to promote Intecolor's new VHR19
graphics terminal. It has 1024H by 1024V
bit mapped color display (1024H by 768V
viewable). Eight of 4096 colors may be
displayed. The VHR 19 has graphics com
m ands such as point, line, polyline,
rect angle, circle, arc, polygon fill,
color, zoom and pan. Four sizes of Tek
tronix c h arac ter sets are included, plus
two g raphi cs character sets, one of
w hich i s user-definable. The detached
keyboard has 113 keys; 36 are program
mable function keys. Serial port, DMA
channel, auxiliary I/0 and printer ports
are also included. The introductory
price (until October 31) is $3995. IIC

3

Assembly Language Programming

by Joseph Norris
19 West Second Street
Moorestown, NJ 08057

Part XI: Program Design and
Parsing File Names

I n th e last issue we discussed the FCS
Inte r preter and introduced ourselves to
the File Parameter Block. We now begin a
three part series of articles that de
scribe the construction of a program to
create, open, edit, print and close a
source file (.SRC). We have chosen a .SRC
file because it contains only "printable"
data, that is, hex numbers which may be
displayed on the screen in the form of
alpha-numeric and associated "typewriter"
characters--all these commonly referred
to as "ASCII" characters. In addition to
this set is a subset, with hex numbers
below 20H, representing, by standard
agreement, such necessary printing pro
cedures as a carriage return, line feed,
form feed, etc. [1] All these characters
are simple to insert and remove from a
disk file, and are not likely to "run
amok" when handled improperly. They make
a good starting point for disk file
experience.

Program Design
Of importance equal to specifics on

the use of file routines in ROM, in this
series, 1s the procedure by which our
program is designed. Initial assembly
language programming, proceeding from a
background in BASIC, confronts a seduc
tive insecurity; how can I manage without
line numbers? Where on earth do I begin
and with what? The traditional answer to
this kind of questioning is "the flow
c h art", which, for many of us, i s some
wh a t like being advised t hat the best way
to extingui s h a fire i s to sw all o w it.

We can begin by acknowledging that the
primary dynamic b e tween computer and
operator is communication. The CPU places
most exacting requirements on the format

4

f o r giv ing it instructions and data; t h e
operator is entit l ed to the same speci
ficity, and this 1s d e t ermined by the
computer's messa g es to the opera tor,
primarily through a sequence of o p tion
lines. [2] When this sequence is com
plete, the programmer has a "flow chart"
of a very useful kin d, containing a syn
opsis of question s t o be asked and
answers to be given, and formatted screen
displays on which this e xchange will take
place. At this point the "outline" pro•
gram may be assemb le d and run, stepping
through each stage to evaluate order and
completeness. One may then proceed to
fill in the operations prescribed from
this outline. Equally important, the
programmer should now have a very clear
idea as to which details of communication
will be included with the program, and
which need explanation in an "operator's
manual". Your programming is not complete
without such a m a nual, and its prepara
tion is an esse n ti al p art of "profes
sional" program genera tion. Listing 2
·is an example of an o u tline "flow chart"
for our entire program . It will "run" as
shown, and you may s t ep through the
option lines as though you were operating
the final program. Note that portions of
the program, yet unwritten, have a place
reserved for them in the listing (marked
'--------'). You may u se these locations
as a guide for inserting the "program
modules" as we construct them throughout
these articles. The l i st ing includes the
modules we will need f rom David Suits's
inp u t r outin e (some what modified for our
us e) . I suggest you c onst r uct this
routine, as shown, and tes t it, be for e
entering the modules des c ri bed in the s e
articles.

;ERROR CORRECTION -

;Please make the following corrections to
your 1 isting:

I) Change 1 abe 1 EDSAI to EDSIA
2) Modify the I ast 1 i ne to DSP3 to make
two 1 ines as follows:

DSP3A:
DB
DB

TEXT/
6,7,3,0,12,239

3) In modu 1 e PARSE, change the first
1 i ne to read -

LXI B,DFLT ;set default type

NOTE: The default type may be any three
letters you wish, except for reserved
file types such as LDA, PRG, BAS, RND,
COM, etc, You may also create a /nul I/
file, with no type at all. Why not set

DFLT: DB and try it'

;Ll STING I I
;
;SOURCE.PRG;A program to Open, Enter
;text, Close and Print a .SRC file
;with parsing added

;=======================================
;INTERIM OPERATING INSTRUCTIONS:

;For this program as it is so far, select
;option to view corresponding display and
;see synopsis of program. Press RET to
;proceed. Exit with CPU/RESET. Many calls
;to GETCHA will be replaced by operating
;routines. For now they permit viewrng
;displays before moving on. At end of the
;PRINT function you will view the error
;message displays. Keep pressing RET until
; the master option I i ne reappears. Areas
; in the 1 i sting bordered by (; ------) are
;routine insertion areas for later use.

;======================================
;EQUATE AREA- put al 1 EQU/s below: v8.79

& V9.80 shown - v6.78 in parentheses

KBCHAR
LO
OSTR
STACK

EQU
EQU
EQU
EQU

81FEH
17C8H
182AH
8FFFH

; (ram)
; < 3392H)
; < 33F4Hl
;<choose)

;=======================================
;ENTRY POINT -

ORG 8200H ;or your own spot

;---------------------------------------
SOURCE: ; In it i a 1

LXI
DAD
SHLD
LXI

MVI
STA
LXI
SHLD
MVI
STA

steps explained later'

H, a ; c 1 ear HL
SP ;move in FCS
FCSSP ; stack and save
SP,STACK;our stack!

A, 0C3H
81C5H
H,CHRINT
81C6H
A, IFH
81DFH

; *input rout in e
jump to CHRINT

SETUP: LXI H,CLR ;clear page, page
CALL OSTR ; mode, sma I 1 char
MVI B,42 ;clear FS,MCHAR,
LXI H,FS ; and INBFPR

XXI: MVI M,0
DCR B ;deer counter
INX H ; i ncr pointer
JZ CLBF ;when finished
JMP XXI j back for next

CLBF: MVI B, 129 ; c 1 ear INBUF
LXI H, INBUF

XX2: MVI M, / / ;put /space/
DCR B ;down counter
JZ OPTION ;when done
INX H
JMP XX2 ;clear next

;=======================================
;MAIN PROGRAM - complete'

OPTION: CALL BLLN ;border blue
LXI H,DSPI ;point to text
CALL OSTR ;and print i t
CALL GTCHA ;wait for select.
CPI 49 <ASCII /1/)
JZ OPENA
CPI 50 and vector
JZ TEXT program to
CPI 51 selected
JZ CLOSEA routine
CPI 52
JZ PRINT
CPI 53 <ASCI I /5/)
JZ END IT
JMP OPTION ; if illegal entry

;===========================z===========
;BEGIN SUBROUTINES- insert below as we
;derive them <I use alphabetical ord•rl

BCKSP: MOV
ORA
JZ
MVI
CALL
DCX
DCR

XX3: RET

BLLN:

BOX:

CHRINT:

CLOSEA:

LXI
CALL
RET

LXI
C."~ L
RET

PUSH
XRA
STA
POP
RET

CALL
LXI
CALL

A,C
A
XX3
A, IAH
LO
H
c

;*input routine

;doesn/t erase
character -
nice for
editing text

H,DRLNB ;option border
OSTR ; blue

H,BXDSP ;draw text window
OSTR

PSW
A
81FFH
PSW

BLLN
H,DSP4
OSTR

;*input routine

; c I ose f i 1 e , one
;routine for new
;and one for old

;---------------------------------------
CALL GTCHA ;routine here

;---------------------------------------

END IT:

JMP SETUP ;restart

CALL
LXI
CALL

BLLN
H,DSP6
OSTR

;/END/ routines

5

CALL GTCHA ;wait for Ke>y
;---------------------------------------
;ve>ctor to appropriate> subroutine>, in
;this space>
;---------------------------------------

JMP OPT! ON

ERROR2: CALL
LXI
CALL
CALL

ERROR4: CALL
LXI
CALL
CALL

ERRORS: CALL
LXI
CALL
CALL

RDLN
H, EDS2 ; 'no f i 1 e>'
OSTR
GTCHA

RDLN
H,EDS4 ;'file> in buffe>r'
OSTR
GTCHA

RDLN
H,EDS5 ;'FCS proble>m'
OSTR
GTCHA

;---------------------------------------
;re>mainde>r of routine> in this space>
;---------------------------------------

ERROR6: CALL
LXI
CALL
CALL
JMP

RDLN
H, EDS6 ; 'bad f i 1 e> name>'
OSTR
GTCHA
OPTION ; - al 1 done>'

;---------------------------------------

GTCHA: XRA
STA

XX4: LDA
ORA
JZ
RET

INPUT: LXI
SHLD
MVI

INPUT I : CALL
CPI
JZ
CPI
JZ
CPI
JZ
CPI
JC
CPI
JNC
MDV
PUSH
MOV
LXI
CMP
POP
JNC
MOV
INX
INR

MOV
CALL
JMP

INPUT2: CALL
JMP

INPUT4: LDA
CPI
RZ
MVI
RET

INPUTS: MOV

6

A
KBCHAR
KBCHAR
A
XX4

;ge>t 1 Kbrd char
se>e> COLORCUE
v21*8 p9 and
Jun/Ju 1 82 p24

H,INBUF ;*input routine>
INBFPR
c,e
GTCHA
BDH ;<CR)
INPUT4
IAH ;le>ft arrow?
INPUT2
19H ;right arrow?
INPUTS

INPUT!
129
INPUT!
B,A
H
A,C
H ,MCHAR
M
H
INPUT!
M,B
H
c
A,B
LO
INPUT!

BCKSP
INPUT!

MCHAR
128

M,BDH

A,C

;space>?
;note> 'JC'
;maxke>y+l
; ignore>
;save> characte>r
;WHAT?' LooK at
; maximum chars
; all owe>d by the>
; calle>r -OK?
;ge>t po1nte>r
;no' ignore>
; YE' s, p r i n t i t 1

; 1 ooK for 1 28
if so-
re>turn, e>lse>
add CR for name>
and re>turn

;right arrow

CPI 128 ; end of 1 i ne>?
JZ INPUT! ;yes, •gnor~?'
MVI A, 19H
CALL LO ;do I t 1 adJust
INX H counts
INR c and
JMP INPUT! re>turn

OPENA: ;ope>n f i 1 E': wi 11
LXI H,CLR ;branch to one>
CALL OSTR ;routine> for ne>w
CALL BLLN j f i J E'S 1 and one>
LXI H,DSP2 ; for old f i IE'S
CALL OSTR

;---------------------------------------
;File> opi?n routine in this space.

CALL GTCHA

CALL BOX
;---------------------------------------

;display file> here

JMP OPT! ON ;and return

PRINT: ;print to RS232
CALL BLLN
LXI H,DSPSA
CALL OSTR

CALL GTCHA ;baud routine
;---------------------------------------

CALL
LXI

CALL

BLLN
H,DSPSB

OSTR
;---------------------------------------

CALL GTCHA ; 'prepare' routine
;If you want to se>nd setup string to the
;printer, do it here, with LXI H,SETPR
;and SlOUT.
;---------------------------------------

CALL
LXI
CALL

BLLN
H,DSPSC ;signal operator
OSTR

;---------------------------------------
CALL GTCHA ;printing routine>

replace>s this are>a: will normally JMP
OPTION when finished, but go on to view

JMP ERROR2 ;error messages
;---------------------------------------

RDLN: LXI H,DRLNR ;paint border red
CALL OSTR ;draw i t
RET

TEXT: ;enter text
CALL BLLN
LXI H,DSP3
CALL OSTR

;---------------------------------------
CALL GTCHA ;rout 1 ne here>

;---------------------------------------
JMP OPT! ON ; and return

;=======================================
;BEGIN STRING STORAGE -

BXDSP: DB 6,2,3,e, 12,11 ,3,e, 13,11
2,B,82,242,127,82,2SS
2,B,68,242,127,68,2S5,239

CLR:

DRLNB:

DB
DB

DB 6,2,12,27,24,15
DB 'SOURCE.PRG - SOURCE FILE'
DB PROGRAM' I 239

;see COLORCUE v21*7 pl6 & Manual
;for re>peat string with OSTR h~re:

DB
DB
DB
DB

DRLNR: DB

DSPI:

DSP2:

DSP3:

DSP4:

DB
DB
DB
DB
DB
DB

DB
DB
DB
DB
DB
DB
DB

DB
DB
DB
DB
DB
DB

DB
DB
DB
DB

DB
DB
DB
DB

6,4,3,a,2,3a,237,8
' -------- ' ,238,3,a,4,3a
237,8, ' eeeeeeee' ,238,29,6
2,3,a,3,11 ,3,a,3,239

6, 1 , 3, a , 2, 3a , 237, 8
'-------- ' ,238,3,a,4,3a
237,8, ' eeeeeeee' ,238,29,6
I , 3, a , 3 , 1 1 , 3, a , 3, 'ERROR
6' 8' / / '3' 52' 3' 6 '72
' RET ' ,6, 1,' ERROR'
6,7,239

2a , ' OPT I ON ' , 6, 72, ' > > > > >'
6,3, ' 1 ' ,22, ' 0PEN ' ,19
' 2' , 22, ' TEXT ' , 1 9, '3' , 22
'CLOSE ' ,19,'4' ,22,'PRINT '
19, ' 5',22, ' END ',6,72
' < < < < < ' , 6 , 4 , ' OPT I ON' , 3 , 64
3,239

2a , ' OPEN ' , 6, 8, '
6, 3, ' ENTER FILE NAME'

/ '31 ' ' > > / '6' 35' /
6,67, ' << / ,6,B,3,52,3
' RET ' , 6, 4 , ' OPEN ' , 6, 35
3 , 37,3,239

2a, ' TEXT ' , 6, 8, ' ' , 6 , 3
3 , 2 3 ,3,' EDI T F I LE BELOW- '
3 ,52 , 3 , 6, 72,' RET ' ,6 , 4
' TEXT ' , 6,7,3,a,l2, 239

2 a , ' CL OSE ' , 6 , 8, ' ' , 6, 3
3 ,25,3 ,' CLOSING FILE ' ,3,52,3
6,8, ' ',6,4, ' CLOSE '
3,64,3,239

DSP5C: DB

DSP6:

EDS1:

EDSAl:

EDSlB:

EDS2:

EDS4:

EDS5:

EDS6:

DB
DB
DB

DB
DB
DB
DB
DB
DB

DB

DB
DB
DB

DB

DB
DB

DB
DB

DB
DB
DB

DB
DB

EXSTR: DB

28 , ' PRINT ' , 6, 8, ' ' , 6, 3
3,27,3, ' PRINTING -' ,3,52
3,6' 8' / /
6,4,' PRINT ' ,3,64,3,239

1 7, 'END ' , 6, 72, ' > > > > >'
6,7,3,28,3,'EXIT TO ',17, ' 1 '
23,'FCS ' ,17, ' 2',23,'BASIC '
17, '3' ,23, 'CRT', 3,52,3,6, 72
' < < < < <' , 6, I , ' END' , 3, 64, 3
239

3,13,8,239

6,7,3,12,3, ' ERROR '
' MESSAGE BELOW
6,72, ' RET ' ,6,a,3,64,3,239

6,2,3,8,8,11 ,3,8,9,11 ,239

3,2e,3,'NO FILE IN BUFFER
' OPEN' ,3,64,3,239

3,18,3,'FILE IN BUFFER- CL '
'OSE FIRST ',3,64,3 , 239

3,15,3, ' DISK PROBLEM. WANT '
FSC ERROR? (Y/ N) ' ,6, 7 2

? ' ,3,64,3,239

3,25,3, ' BAD FILE NAME '
3,64,3 , 239

6 , 2,12,239

;=======================================
;BEGIN DATA STORAGE- order is important'

FCSSP:
DSP5A: DB

DB
DB
DB
DB
DB
DB
DB

I 9 , ' BAUD ' , 6, 72, ' > > ' , 6, 3 FS:
DW
DS
DS
DS
DS
DS

;FCS stack pointer
;File open/cl flg
;*max char allowed
;*input routine
;File para block'

' SELECT: ' , I 7, ' I ' , 22, ' II a ' MCHAR: 1
17, ' 2 ' ,22, ' 15a ' ,17, ' 3',22 INBFPR: 2

38
128

' 3aa ',17, ' 4 ' ,22, ' 12aa ' ,17 FPBI:
' 5 ' ,22, ' 24aa ' ,17,'6 ' ,22 INBUF: ; * i n put rout i n e

DSP5B: DB

Parsing

DB
DB
DB

' 48aa / ,17, ' 7' ,22, ' 96aa
6, 72, ' < < ' , 6, 3 , ' BAUD'
3,64,3,239

21l, ' PRINT ',6,8,' ' ,6,3
3,23,3, ' PREPARE PRINTER-'
3, 52, 3, 6, 72, ' RET ' , 6, 4
' PRINT' , 3, 64, 3, 239

Any use of a disk file involves a file
specification which must always contain,
at least, a file name of one to s ix
characters. The additional paramet e rs,
which you have already used many times,
are optional; these are the drive number
(CDO:, etc.) , the file extension (.BAS,
;OA, etc.). When t h e se additional para
meters are not supplied by the program
mer, the operating system supplies
"default" values. These parts of the file
specification are needed by many other
file handling routines, so they must then
be completed into a place easily identi
fied--the File Parameter Block.

END SOURCE

Entry of a file specification is the
first step to file access. The parts of
the file specification may be "poked"
into the FPB one part at a time, or you
may type in any or all parts of the file
specification string (such as
O:NEW.SRC;04 but always at least the file
name!) and let the operating system
"parse" it and place each parameter into
the FPB. The guide to accurate parsing is
the order and punctuation of the specifi
cation. In fact, if the order and punc
tuation are incorrect, the parsing will
fail, which is why FCS > is so ruthless if
you don't do it right.

There are several system routines that
will parse a file specification string,
supplying default values where they are

7

missing. These are PFSPC, which parses
any file type with a default type of your
choosing; PSFSP, which looks for a ".SRC"
file; PPFSP, which looks for ".PRG"; and
PNDSP, which looks for a 'null', or "
" in the file specification. PFSPC: is the
all-purpose routine.

Before calling PFSPC, you need to
prepare the following:

a) A file specification str ing, lo
cated at a specific address in
rrarr>ry.

b) A string containing the three
letter file default extension (no
period!) located at a specific
place in memory.

c) A File Parameter Block, located at
a specific place in memory.

d) The address of the file specifica
tion string in the HL registers.

e) The address of the default file
extension in the BC registers.

f) The address of the File Parameter
Block in the DE registers.

If NAMST is the address of our specifica
tion string ("NEW;02"), DFL T the address
of our default type string ("SRC"), and
FPB 1 the address of our File Parameter
Block, Listing 1 shows how it would work.
If the parsing has been successful, the
Carry and Zero flags will be reset (i.e.

0). Carry will be set if an error
occurred, and Zero flag will be set if no
version number was included in NAMST. A
missing version number need not produce
an error, however. The BC registers will
hold any FCS error code, DE will still
contain the FBP1 address, HL will be
unpredictable, and the accumulator will
hold the version number (the default
";01" if none was given in NAMST).

The File Parameter Block will now have
the following slots filled:
FDRV, the drive number; FNAM, file
name; FTYP, file extension or type; FVER,
version number, and FHAN, file handler
routine. This latter is the system
routine selected by the computer for the
appropriate kind of disk drive named. [3]

At this point the computer has done
nothing but verify a valid file specifi
cation and place the parameters in the
FPB. No access to the disk directory has
yet been made, and the computer does not
yet know if the file exists, or if there
is room for it on the disk currently in
the drive.

8

Entering the File Name
We must provide a means for entering

the file name, and we may use the input
routine and INBUF to hold it, with the
address of INBUF acting as NAMST in our
example above. If we want to limit the
entry to the file name only, we might
choose to limit the input to six charac
ters ("user-friendly"?) and let parsing
supply the rest of the file specifica
tion. This is an elegant proc edure but
not without its complications.

When the file specification is parsed
by one of the system routines, it will
examine for drive number, name, extension
and version, using the punctuation as a
guide and inserting default values as it
goes. If all the parameters are not given
in the specification string, the file
parameters that are given, however few,
must be marked at their end by a carriage
return, or by another character whose
value is less than 20H, which will signal
the parsing routines to end their search.
Otherwise they will continue forever. So
if our file specification IS to consist
of the file name only, some provision
must be made for adding a CR to the end
of the name, and so. our storage space
must have room for at least seven charac
ters. (Note, too, that upper case charac
ters must be used for the file name.)

In our program, INBUF is used for the
disk file buffer and the text buffer,
both. As a text buffer it serves to hold
the file name entry and the text file we
have created. In order to differentiate
between file name and text, we use the
data storage address, MCHAR (Maximum
CHARacters) to flag the difference: 6 for
a file name entry, and 128 for text
entry. No carriage return is entered in
the buffer if text is being stored. But
look at INPUT4 in the listing. If MCHAR
does not hold 128, the maximum text char
acters, this subroutine will add a CR to
the string, assuming it is a file name.
This way our parsing will be valid. You
will add some lines to subroutine OPENA
that put 6 into MCHAR before parsing.
(See Listing 3.)

Program Modules
When you have assembled and tested

Listing 2 and are certain it is running
properly, insert the modules of Listing 3
as directed. Unfortunately, they will not
access any disk files yet, but we will be
ready to do that when we continue. You

may run the program and enter a file
name, which will return you to OPTION.
ERROR6 is a file error trap of your own.
It may be displayed by entering a bad
name, such as "$TEST" or " ...••. ". (The
file name cannot begin with non-alpha
numeric characters. Can it be all num
bers? Try some different combinations and
see.) INPUT will not accept a seventh
character, but it doesn't abort; rather,
it waits to see if you have any further
editing to do. Only pressing RETURN will
terminate the name entry.

The modifications to the input routine
are for fun--not necessarily improve
ments. The cursor moveme::1t procedure here
is handy for correcting only one letter,
early in the text, while permitting you
to see the entire buffer contents. Some
of the material in Listing 2 is not yet
used, but will be accessed later. It will
do no harm to enter the entire listing
now.

As a final word, if you have had
difficulty getting started m writing
assembly language programs, either in
formatti ng them or learning to apply the
instructions, it is invaluable to set up
a routine such as Listing 2. After typing
all those LXIs and CALL OSTRs with a few
other instructions to round then out,
your proficiency will increase rapidly.
For many of us, it has been true that the
initial "terror" has given way in an
unexpected moment, and suddenly we were
programming with great ease.

In the next article, we will proceed
with file opening routines and learn how
to create a new .SRC file on disk.

1 If you examine the ASCII listing in
your programming manual you will find
only the carriage return listed, the
others being assigned to colors, plot
functions and so on. This assignment
is meaningful to your CRT display
only. A printer will interpret the se
numbers differently, as we shall see
later on.

2 Such non-computational material 1s
sometimes referred to as "ginger
bread", meant as a disparaging term.
It is, nevertheless, what makes com
puters u s eful. An option line lets the

operator select or escape fro~ a
function offered by the software. Its

design is very critical for operator
acceptance and efficiency, often de
termining--alone--whether a program
sells or not.

3 If you have a 3651 computer, this
might be a 5" or 8" floppy disk (MD,
DM, FD. or DF, single or double sided
disk types). C

LISTING Ill: PARSING MODULES

1) Add to EQU section:

PFSPC EQU 14ADH ;<3077H>

2> Add following to replace 'CALL GTCHA'
in module label led OPENA:

LXI
MVI
CALL
CALL

3) Add this

PARSE: LXI

H ,MCHAR ;set maximum char
M,6 ; to six for name
INPUT
PARSE

module:

H, DFLT ; set parameters
D,FPB!
H, INBUF
PFSPC ;parse file name

LXI
LXI
CALL
JC
RET

ERROR6 ;print error message

4) Add to STRING STORAGE space:

DFLT: DB 'SRC'

;LISTING IV: Add to SOURCE.SRC

;For EQUATE area - v9.80/V8.79 shown,
v6.78 in parentheses

CLSEQO EQU
EHESS EQU
GTBYT EQU
JNSEQO EQU
OPEN EQU
PTBYT EQU
RESET EQU
RWSEQI EQU

156CH
0AD6H
1662H
151DH
llElH
1680H
0848H
14FCH

;<3136H)
; < 262DH>
; < 322CH >
;<30E7H)
; < 2DABH>
; < 324AH>
; < 26A5H)
; < 30C6H>

;Add these modules after routine OPTION-

CLOSEA: CALL
CALL
LXI
CALL

FSO ;checK if file open
BLLN
H,DSP4
OSTR

;---------------------------------------
LXI H,FPBl ;initialize new
CALL INSEQO j f i I e
CALL WRITE ;write data
LXI H,FPB!
CALL CLSEQO ;close new f i I e
XRA A ; change flag=e
STA FS

;----------------- ----------------------
JHP SETUP ;restart

CREATE: CALL RESET ;reset drive
LXI H,FPBl ;put "new" f i I e
HVI M, 1 j code in FPBl
CALL OP EN

9

JC ERROR5 ;FCS·error
LXI H,FS ; set 'f i 1 e open'
MVI M, 1 ; flag
CALL NMDSP ;disp la y name
CALL BOX ;draw text window
JMP CLBF ; erase buffer

ERROR!: LXI H,EDSl ;position cu rsor
CALL OSTR ; to display
CALL EMESS ; FCS error
LXI H,EDS!A ;print new
CALL OSTR ; message
CALL GTCHA
LXI H,EDS!B ; erase error
CALL OSTR
JMP OPTION

; I n ERROR2 and ERROR4, add a 1 ast 1 i ne to
; read 'JMP OPTION'.

ERROR5: CALL RESET ;expanded routine
CALL RDLN
LXI H,EDS5 ; 'FCS problem'
CALL OSTR
CALL GTCHA ;wait for decision

;---------------------------------------
CPI 89 ; is i t /Y"?
JZ ERROR! ;yes 1 print i t
JMP OPTION ; no~ return

FSC: LDA FS ;check f i 1 e closed
CPI 13
JNZ ERROR4
RET

FSOc LDA FS ;check f i 1 e open
CPI 1
JNZ ERROR2
RET

NMDSP: LXI H,WRFL ;pr1nt f i 1 e name
CALL OSTR
LXI H, INBUF ; from buffer

XX5: MOV A,M
CPI 0DH ; cr?
RZ ;yes, return
CALL LO ;no, print i t
INX H
JMP XX5

OPENA: CALL FSC ;check f i 1 e closed
LXI H,CLR
CALL OSTR
CALL BLLN
LXI H,DSP2
CALL OSTR

;---------------------------------------
LXI H ,MCHAR ; set max chars
MVI M,6 ; to six
CALL INPUT ; get f i 1 e name
CALL PARSE ; and parse i t
LXI H,FPB! ; set 'existing'
MVI M,a ; f I 1 e mode and
CALL OPEN ; try to open
JC CREATE ; doe sn ' t exist
CALL NMDSP ;OK' display name
LXI H, INBUF ;put address of
SHLD FPB1+32 ; buffer In FBUF
LXI H,FPB1+34
MVI M, 128 ; 1 ength in FXBC
LXI H,FPB!
CALL RWSEQI ; set f i 1 e pointers

;---------------------------------------
CALL BOX ;paint text box

;---------------------------------------

IO

LXI
MVI
CALL

H,FS
M, 1
READ

;s;>t file status
; flag to 'open'
; f i 1 e.> into buff

;---------------------------------------
JMP OPTION ;for next command

; In routine PRINT, change the 1 ast 1 i ne
; from 'JMP ERROR2' to 'JMP OPT! ON'

READ: LXI H,DSP3A ;pos iti on cursor
CALL OSTR in text box
LXI H,FPB!
MVI B, 128 ;counter

XX9: CALL GTBYT ; process one byte
CALL LO ;print i t
DCR B
RZ ;when done
JMP XX9 ; for next one

TEXT: CALL FSO ;check f i 1 e status
CALL BLLN
LXI H,DSP3
CALL OSTR

;---------------------------------------
LXI
MVI
CALL

H,MCHAR
M, 128
INPUT

;set maximum chars
; to 128
; and get data

;---------------------------------------
JMP OPTION ;then return

WRITE: MVI B, 128 ; count bytes
LXI D, INBUF ; point to source
LXI H,FPB!

XXA: LDAX D ;put byte in Ace
CALL PTBYT ;wr i te i t
INX D ;adjust pointer
DCR B ; and counter
RZ ;all done'
JMP XXA ;go for next one

;---------------------------------------
;For data storage area, add -

WRFL: DB
DB

6,4,3,38,0,'FILE OPEN: '
6,7,239

;LISTING V: Add to SOURCE.SRC

;For EQUATE area - v9.80/v8.79 shown.
v6.78 in parentheses

ADHLA EQU 194EH ;<3518H)

CRT SET EQU 01EBH ;v9.80
; < 020FH) v8.79
; < 37C0H) v6.78

ESC! EQU 053AH ;<2420H)
S!OUT EQU 17F9H ; (33C3H)

;Add these modules after routi ne OPTION-

BASJMP: LXI H,EXSTR ;clear screen
CALL OSTR green color &
LXI H8299H ex i t BASIC, by
XRA A M.A.E. Linden,
MOV M,A FORUM INT'L
INX H VI ,115-6 p74
SHLD 80D4H
MOV M,A
INX H

MOV M,A
INX H
SHLD 80D6H
LXI H,81DFH
JMP 1F2CH

i
r

CRTJMP: LXI H,EXSTR j E? X i t
CALL OSTR
JMP CRT SET

ENDIT: CALL FSC ;chK
CALL BLLN ; for
LXI H,DSP6
CALL OSTR
CALL GTCHA ;wait

CRT mode

f i 1 E? closed
'end'

for key

LXI
CALL

H,DSP5B
OSTR

;---------------------------------------
CALL GTCHA ;prepare routine

;If you want to send setup string, do it
; herewith LXI H,SETPR & SIOUT. See text
;---------------------------------------

CALL
LXI
CALL

BLLN
H,DSP5C
OSTR

·---------------------------------------I ·---------------------------------------' CPI 49 ; 'I '=FCS
JZ FCSJMP
CPI 50 ; '2'=BASI C
JZ BASJMP
CPI 51 ;'3'=CRT
JZ CRTJMP

MVI C,64 ;set chr/1 i ne ctr
M\)J E ,BAH ;send cr & 1 f to
CALL SIOUT j set printer hd
MVI B I 128 ;set total chars
LXI HI INBUF ;point to text
MOiv' E,M ;move in char & XX6:

;--------------------------------------- CALL SIOUT j print i t
JMP OPT I ON DCR c ; 1 ess I per 1 1 ne

MOV A,C
CPI 13 ; 1 i ne fu 11?
cz xxs ;yes• index paper·
DCR B ;no, text finished?
JZ XX? ;yes~ finish up
INX H ; no, point to next
ciMP XX6 ; char and get i t

FCSJMP: LXI H, EXSTR ; ex i t FCS
CALL OSTR
LHLD FCSSP ;restore stack
SPHL
MVI H1 044H
JMP ESC!

MVI E, 0DH ; carriage return
CALL SIOUT

PRINT: CALL FSO ;checK f 1 1 e open
CALL BLLN

XX?:

MVI E,BAH ; 1 in e feed
CALL SIOUT

LXI H,DSP5A
CALL OSTR

;--------------------------------------- MVI C,64 ; for next 1 1ne
CALL
SUI
LXI
CALL
MOl)
OUT

GTCHA ;get baud number
030H ;convert to hex
H,BAUDTB;point to table
ADHLA ;index pointer
A ,M ;move code to A
5 ;put it in baud

; rate generator

RET ;go get i t !

;---------------------------------------
;Add to str1ng storage -

BAUDTB: DB
DB

00H,01H,02H,04H,08H
010H,020H ,040H

;---------------------------------------
CALL BLLN

Author! Author!
Keep them article submissions acomin',

folks. You can't imagine what it means
to us to have the postman bring us some
material for Colorcue. We encourage you
to put your work on disk, if you can,
and if you wish. We can handle Compucolor
disks and also CP/M 8" (single or double
sided, single or double density). Plain
ASCII text file s are just fine. Wordstar
files are OK, too. CompuWri ter files
might present l. little problem, but if
that's all you've got, send them in and
let us worry about it. We'll return your
disk, of c~urse. (Although sometimes
there 1s an embarrassing delay in doing
so.)

II

Two Handy Disk Utilities

by Tom Napier
12 Birch Street

Monsey, NY 10952

I have two utility programs that have
gotten me out of more tight spots than I
care to remember. Since both are quite
short, the printed page rather than the
disk seems to be the medium for sharing
thEm.

The first enables me to display the
contents of any block on the disk, edit
it, and rerecord the block on the disk. I
have found this to be invaluable whenever
a disk read error occurs, since, after
loading the program, one can keep on
reading the faulty block until an error
free version turns up. Rewriting the
block will cure the read .error in most
cases that aren't caused by physical
damage to the disk. (Most EDCS errors -
ed.)

I also use the
files when a file
and the directory
indicates the disk

program to locate
erasure has aborted,
no longer correctly
content. Its other

major use is for minor editing of text or
source code. If one has typed a colon in
place of a semicolon, it is much quicker
to edit a long source file by editing the
block directly than to reload the editor,
read the file, correct, and rewrite it.
It also saves disk space, since the en
tire file is not rewritten.

The program (Disk Block Examiner and
Editor, Listing 1) works as follows. It
asks if you want the display to be "ALL
HEX?". Type "Y" and it will display every
byte in the block in hexadecimal no
tation. Type "N" and the output format
will show all printable ASCII characters;
a period before a character indicates
that it is lower case, unprintable char
acters are displayed in hex form.

12

Next the program asks for the block
number. Enter this in hex form as it
appears in the directory. After you type
a valid block number, the program reads
and displays the block. You then have the
option of typing another block number,
rewriting the block displayed (type "W"),
or editing the block (type "E"). Beware!
No trapping is present to stop the user
from typing "W" before any block has been
displayed.

On entering the Edit mode, you have
the option of changing the character ·at
the current cursor position (two red
carets under a byte in the block). Typing
any printable character other than RETURN
will cause the editor to replace the
character over the cursor, and advance it
one position. Typing two characters and
then RETURN will cause the two characters
to be taken as a hex byte, and this will
replace the indicated original. You can
move the cursor by typing "MM", and an
swering questions for X and Y coordinates
of the new cursor location. X runs from 0
to 15, andY runs from 0 to 7. The
columns of the 16 by 8 byte array are
labelled in hex, but the question should
be answered in decimal form. Y counts
down from the top (0) row. After entering
coordinates, the cursor is placed under
the desired location, and the program
returns to Edit mode. Press RETURN to
return to the block number mode, and "W"
to rewrite the modified block to disk.

A practical note - this program uses
197 bytes of RAM, a 128 byte buffer, a 1
byte flag, and a 68 byte machine code
subroutine. In the program as printed,
these occupy locations in RAM between

SFOO and SFFF. If you don't have RAM
available at these addresses, you will
have to allocate part of BASIC's RAM area
as buffer space. This program uses the
BASIC CALL instruction to call a fast
decode and display routine.

Variable A points to the CALL rou
tine, B points to the CALL vector, C to a
one byte flag lac a tion, and D paints to
the block buffer. A, C, D, and E will
need to be changed if RAM between 4000H
and SFFFH is not available. (Or write Tom
Devlin for an 8K add-on RAM board - ed.)

How often have you had trouble
reading a disk and on checking the direc
tory found things like a start block of
FFEF and despaired of ever being able to
read the disk again? Have you copied a
disk and wanted to change its title? Have
you ever wanted to change the start
address of a program?

~n REM DI~¥ Rl .OCK EXAMINER AND EOITOR
E. 0 F.H1 COP\'R I CiHT 1 ·~::::3 T . t·1 , HAF' I F:P
70 REM UFRSIOH 6/l/83

The Directory Edit Program (Listing
Z) gives you a complete directory editing
facility. You can even hide a file by
changing the free space location. The
program is very easy to use. It asks for
a file number (files are numbered con
secutively from the top - it's up to you
to count them from a DIR command). A file
number of zero selects the disk title.
After selecting a file number, the screen
will display the existing directory entry
and request changes, parameter by
parameter. To change a value, type the
new value in hex form, or just RETURN if
there is to be no change. The corrected
entry will be written automatically and
you then have the option of selecting
another entry or returning to BASIC. C

100 A= 24064:8= 33282:C= 24570:D= 24320:CiOSUB 63000
110 POKE R,195:POKE 8+ l,O:POKF 8+ ?,94
120 POKE C.t:RF:M HEX FLAG
1 :?5 >=: 0= 0: 'y' 0= 0: i<= 0: \'= 0: Rtt·1 H:o J TO!<' C:UF.SOP:::
130 PLOT 6 .. 2, 12 .. 15. 1 0 .. 1 0 .. 10
135 PRINT "OISK RLOCK FXAMINFR":PRINT :PRIHT
14 0 I ~WUT II ALL HE><';:· II .: 1)$

150 IF 0$= "'r' 11 THH~ POKF C, 0
1 E. o c;o:::uE: ·~ o o: r t·lPUT II BLOet=:: tKI, , EDIT <I::) OP I·JF.: I TE < l•J :o II .: t·lt:: IF t·l$= "E II THnl ~. o o
1 E.5 IF t·J$=- 11 l.oJ 11 THFi·~ :?41)
167 IF tU= 11 8 11 THHl Et·l[:•
170 PLOT 1:? .• :'7.4:PRIHT "PEA 11 t-1$ 11 5F00-5F7F 11 :PLOT :??.:f'?.iO. 10
180 X= O:Y= O:MS= N$
190 GOSUB 800:PFM DISPLAY
230 GOTO 160
24 0 PLOT 27 , 4: F'P I t-H "loJF.: I 11 t•1$ 11 5F 0 0-5F7F" : PLOT :? .• 27
25 o c;o::;ut:: 9 o o: PP I HT II BLOCk REioJP I TTHl"
260 FOR I= OTO lOOO:HEXT
270 GOTO 160
300 REN f:LOCi< miT POUTIHF
310 GOSUE: 900
3:?0 HlFUT 11 NFI.o.l B\'TF OR t·10i..IE' CURSOR U·1t1> ... : !)$.
330 IF 0$= 11 0"THnl tt:.o
340 IF 1}$= "t-1r-1 11 THEr·~ 1::;0SUF: '300: HlPUT 11 t·lFio.l CUR:::op 0::==:,'/) ".:i<,'r':GOTO 550
350 L= I_Hi (0$)
360 IF l= lTHFN NR= ASC (I)$):GOTO 500
370 81= ASC <LEFT$ (Q$,1)):82= ASC <RIGHT$ (0$.1))
380 IF 81= 46THFN N8= 82+ 37:GOTO 500

I3

14

390 81= 81- 48:IF 81> 9THEN 81= 81- 7
400 F.:2= 82- 48: IF 82> 9THH~ 82= 82- 7
410 NB= 16* 81+ 82
500 J<:H1 UPDATE Bl.OCI<
510 AD= D+ X+ 16* Y
520 POKE AD. N8
530 X= X+ 1:IF X= 16THEN X= O:Y= Y+ 1
540 IF \'= 8THHl Y= 0
550 GOSU8 800
580 GOTO 300
8 0 0 RE~1 UPDATE DISPLAY
810 PLOT 3 .. 0 .. 3
820 PRINT II 0 1 2
830 PLOT 3. 0. 5: Q= CALL. (0)

4 5

840 PLOT 6.1.3.4* X0.2* YO+ 6.32.32,6.2
850 PLOT 6,1,3.4* X,2* Y+ 6.94,94,6,2
86 0 :>::0= r.:: 0= \'
890 RETUPt·~
900 PLOT 3,0,22.11:RETURN
1000 RH1 BLOCK DISPLA'l ROUTINE
101 0 OOTA 21.. 00 . 5F
1 070 DATA 3A .. FA. 5F
1030 DATA A7. ?t:. CA .. 3E .. 5E
1040 DATA FE , t:O,D2 .. 3E .. 5f
1050 DATA FE.20.DA.3E.5E
1060 DATA Ft.60.3E .. JO .. DA .. 1E..5E
1070 DATA 3E.2E.CD.92,33
l 080 DATA ?f.. DA, 27 .. SE
1090 DATA E6.DF,CD,92,33
11 0 I) OATA (:(!} E=:3, 34 I (:[) ·' 83 ·' 34
1110 DATA 2C.7D.E6.0F.CC.88.33
1120 DATA 7D.FE.80
1130 DATA C2 .. 03. 5E
1140 DATA C9
1150 (JATA CD. 98,33
1160 DATA C3 .. 2A.· 5E
1190 r'ATA XX
63000 I= 0
63 0 1 0 READ HX$: IF H:x:$= ">=:>=: 11 THHl RETURN

7 8

63020 Cl= ASC (HX$)- 48:IF C1> 9THEN Cl= C1- 7

9 A Eo _,

63030 C2= ASC <RIGHT$ <HX$,1))- 48:IF C2> 9THEN C2= C2- 7
63040 POKE A+ J.16* C1+ C7: I= I+ 1:GOTO 63010

1150 REM DIRECTOI<:Y EDIT PROGRAt·1 11/1 cv·e:·
155 REt~ COP\'R I GHT 1 983 T , t·1 , NAPIER
160 CLEAR 200
190 PLOT 12
200 INPUT 11 SEtECT FILE NUI'1BER II ; F
205 PLOT 12.10.10
210 8= INT (F/ 6)
220 ~~= F- 6* 8
230 IF B> 9THEN 8= 8+ 7
250 8$= CHI":$ (8+ 4:3)
26 0 PLOT 27' 4: PR HH II REA II B$ 11 5F (I 0-5F7F II :PLOT :27 ·' 27
2E.5 IF F= OTHEN 1000: REM EDIT DISK TITLE
270 FF$= " 11 :FT$= 1111

c

280 S= 21 * t·~+ 243:?.1
:290 FOR I= '2TO 7
300 FF$= FF$+ CHP$ (PEEK c::+ I))
310 NEXT
320 FOP I= 8TO 10
330 FTS= FT$+ CHR$ CPE~K (S+ I))
340 HE:=<T
350 P= 1: GOSIJE: 1900: A~~$= :x:s
36 0 P= 11 : GO SUB 1 9 0 0 : I . .J~~$= ;-:;s
380 P= 12:GOSUB 1800:88$= Y$
400 P= 14:GOSU8 1800:82$= Y$
42 0 P= 16 : GOSUB 1 9 0 0 : LB$= X$
440 P= 17:GOSUB l800:LA$= V$
460 P= 19: GOSUB 1800: SA$= V$
490 PRHH :PFHm 11 ATT~:IBUTE
500 PRINT :PRINT "FILE NAME
510 PRIHT : PI<:INT "FILE TYPE
520 PRINT :PRINT "UERSION ~HI.

530 PRINT :PRINT ":::TART BLOC¥
540 PRINT : PI<:ItH "SIZE
550 PRINT : PRit4T "LA~:T BLOCK
56 (I PRINT : PR HH II LOA[> A[:{)RESS

"AN$
11 FF$
"FT$
"l.JN$
"SB$
~~~:2$ 

"LB$ 
"LA$ 

570 PI<: INT :PI<: INT ":::TAF.:T ADDRESS "!::A$· 
575 PR ItH : PRINT 
580 INPUT II CHA~~GE TH I~: ENTR'y'';:· II .: Q$ 
590 IF Q$= 11 'r' " THEN 620 
595 PLOT 28 .• 11 
6 (I (I INPUT II REA[i AHOTH~I<: HHRY? II .: G!$ : IF Q${ > II N II THH~ 19 (I 

610 Et-~[) :~:EM ********** 
62 (I INPUT II CHA~~GE ATTRIBUTE II ; G!$ : IF Q$( > II (I II TH~J~ AN$= Q$ 
630 I ~~PUT II CHAt·~GF t·~At·1f:? II.: Q$: IF Q$( > II I) II THH~ FF$::: 1]$ 
640 INPUT "CHANGE TVPE? 11 ;Q$:IF Q$( > 11 0"THEN FTS= QS 
650 WPUT "CHA~~GE UH::::rmrr- ".= os: r F QS< > II O"THH1 ut·~$= Q$ 
66 (I INPUT II CHANGE STAfH BLOCK? II .: Q$ : IF QS< > II (I II THH~ SB$=· 1).$ 
670 H~PUT "CHANGF :::IZE? ... :Q$: IF OS< > "O"THH~ :::zl;= 1J.t 
680 INPUT "CHAt·tGE LAST BLOCK'' II .: G•$: IF 0$< > II O"THEN L8$= 1)$ 

690 HtPIJT "CHA~~I:.;E LOAD AODI':E::::::? ".:G!$:JF Q$< > HO"THEN LA$= Q$. 
7 o o INPUT II cHm~GE :;TART ADDRESS? II .: Qs: IF 1)$< > II o II THH~ sAs= G!S 
705 FF$= LEFT$ (FF$+ II II·' E.) 
71 0 FOF.: l = 1TO 6 
720 POKES+ I+ l,ASC (MJO$ (FF$,J,l)) 
730 ~tEXT 
735 FT$= t FFT$ <FT$+ II II • 3) 

740 FOR I= 1TO 3 
75 0 POKE' S+ I+ 7 .. ASC ( M l[:o$ ( FH- .. J.. 1> ) 
760 t~E>-~T 

770 P= 11:X$= UHS:GOSUB 1700 
780 P= 12: 'l$= :38$: GOSUB 1600 
790 P= 14:Y$= SZS:GOSUB 1600 
BOO P= 16:X$= L8$:GOSU8 1700 
810 P= 17:Y$= LAS:GOSUB 1600 
82 0 P= 1 9 : 'r'$= SA$ : G0~:1_11:;: 16 0 0 
83 0 P= 1 : :=<$= AH$ : GOSUF: 17 0 0 
qoo F'LrJT ?7 , 4: PPH-H "lo.IRI "8$" '5F00-5F7F 11

: PI_OT 
a10 PPJNT !~P!NT 

920 ':;r1 T(I 60(1 

999 PFM ********** 
1000 REM DISK Tln_E 
1 01 0 [)T$= II" 

.-.""":" .-.-, 
/.:.i .• Ll 

IS 



I6 

11}20 ::;= '24321 
1030 FOP I= ?TO 11 
1040 DTS= DTS+ CHRS <PEEV (S+ I ) ) 
1 050 HE><T 
1060 PF.:Hn : PRHH "[:.I::::K ~1A~1E "[)T$ 

1070 PRINT :PRJHT 
1 o::: 0 I ~WUT II CHA~lGE D I ::;f::: HAt·1E';:· II .: 1)$ 

1090 IF O:l< > "'l"THHl 5'35 
11 (I (I I t·4PUT II HF:I.o.l [:.I ::;f:~ t·1At·1E II .: Gt$ : IF OS< .:· II 0 II THF.Jl [:• T $= i)$ 
1105 [)T$= lfFT$ ([)T$+ II 

11 
.. 10) 

1110 FOR I= 1TO 10 
1120 POVE :::+ I+ 1. A::;c 0·1H4 <DH .. I .. 1) ) 
113 o t·u::;-::r 
1 140 CiOTO '300 
1599 REM ** HEX TO WORD ** 
1600 XS= RIGHT$ CYS .. 7) :GOSU8 1700 
1610 P= P+ 1 
1620 X$= LEFT$ CYS, J) :GOSUB l700 
1 t·~· 0 RETUF.Jl 
1699 RFM ** HEX TO BYTF ** 
1700 Xt= ASC <LEFTS (XS .. t))- 48 
1705 IF X1> 9THEN X1= X1- 7 
1710 X2= ASC (RIGHTS (X$,1))- 48 
1715 IF X2> 9THEN X2= X2- r 
1720 POKES+ P,\6* Xt+ X2 
1 730 RETURt·l 
1799 REM ** ~JRD TO HEX ** 
1800 X= PEFK (S+ P):GOSUB 1910 
1 :::4 (I '·r':f.= :X::t. 
1850 X= PEFK (S+ P+ J):GOSU8 1910 
1 :::E. 0 'r'$= :>::S+ \'$ 

1 87 0 F.:FTUF.ll 
1899 REM ** BYTE TO HE/ ** 
1900 X= PEFK (8+ P> 
191 o ::-:: t = r m < >;.. 1 E.) 
1920 X?= X- 16* Xl 
1930 IF Xt> 9THEN X\: Xl+ 7 
1940 IF X2> 9THFN X2= X2+ 7 
1950 XS= CHR$ (Xt+ 48)+ CHR$ <X2+ 48) 
1960 RFTURt·l 

Cueties 

10 C(0)= 1 
20 C(1)= 7 
30 C(2)= 4 
40 FOR Y= 0'10 127 
50 PLOT 6,C(Y- 3* INT (Y/ 3)) 
60 PLOT 2,250,0,Y,127,255 
70 NEXT 



Screen Memory - Problems and Cures 

by Tom Devlin 
3809 Airport Road 

Waterford, MI 48095 

I have noticed a few references to 
screen memory problems recently and while 
these problems are usually simple to fix 
information on how to diagnose and repair 
them has been lacking. The following will 
give a quick overview of the operation of 
the screen memory as well as examples of 
some of the more common problems and 
their solutions. 

As most of you know, the screen memory 
has only 4K of RAM but occupies 8K of 
memory space. This 8K area runs from 
6000-7FFFH and is divided into two 
halves, 'fast' (6000-6FFFH), and 'slow' 
(7000-7FFFH). If the 'slow' memory is 
addressed the CPU waits until the 5027 
CRT Con troller chip is finished with a 
character before accessing the screen 
memory; addressing the 'fast' area lets 
the CPU gain access at once. This is 
probably only of academic interest; I 
mention it only to point out that there 
is in fact a difference. 

The screen memory proper consists of 8 
4K by 1 4027 dynamic memory chips (UD4-
UD11). Each chip handles 1 bit of th e 8 
bit character/CCI data word. 

The most common problem is random dots 
of color appearing on the screen. This is 
usually caused by the 5 volt power supply 
being a little low. The 4027 memory chips 
are very fussy about the 5 volt level and 
setting the supply to exactly 5 volts 
with a digital voltmeter should clear 
things up. 

A bad memory chip can cause some weird 
things to happen. Characters can switch 
colors or change to an entirely different 
character. You may have blocks of color 
that will not erase or a character may 
start (or refuse) to blink. This is more 

than just annoying, it disables your 
DELete, COPy and, on V6.78, DUPlicate 
functions because these commands use the 
screen memory as a temporary buffer. 

Finding the chip responsible requires 
nothing more than a knowledge of the 
ASCII character values and the CCI code. 
If, for example, a green character (PLOT 
6,2) changes to cyan (PLOT 6,6) it must 
have added blue (PLOT 6,4). Since binary 
bits add up in 1,2,4,8,16,32,64,128 order 
within the data word, you know that the 
third bit has turned on. Which chip con
trols the third bit? Simple; the chips 
are mounted on the logic board in the 
same order as the bits in the data word 
(UD4 is bit one, UD5 is bit two and so 
on). A little counting makes it obvious 
that UD6 is the culprit. 

Characters changing can be diagnosed 
the same way; if a space (ASCII 3 2) sud
denly becomes an exclamation point (ASCII 
33) UD4 (bit one) is at fault. 

Once you have identified the mal
functioning chip you will have to find a 
replacement. This isn't easy; the 150ns 
4027 memory chips originally used are hard 
to find and even harder to pay for. I 
have discovered that the more readily 
available (and far cheaper due to higher 
production volumes) 150ns 4116 (16K by 1) 
will plug right in. The 4116 chips are 
also not as sensitive to the 5 val t sup
ply as the 4027 part. (At this point some 
of you are thinking "if we have all that 
extra memory in the 4116 chips is there 
any way of using it? " . Sure is, assuming 
that there is any interest (drop me a 
line) next time I'll show you how to add 
another page of screen memory.) 

Most of the problems due to bad memory 



chips will show up as one hit (of the 
possible eight) being erratic. Another 
less common problem involves entire rows, 
columns or sections of the screen going 
berserk. This is usually caused by one of 
the three 7 4S 153 address multiplexers 
UE8, UE9 or UD12. There is no handy one-

tlnQ!lassifitb Abutrlising 
We are offering for sale the following 
machines: 

(1) Intecolor 8063 (I) CP/M, hi-res, 
dual 250K floppies plus word pro
cessing software. Tube & keyboard 
need work. SN 20384. Original cost: 
$9200. 

(2) Intecolor 8001G with dual floppies, 
modem port. Fair condition. SN 
18974. (Floppies SN 41229.) Original 
cost $1550. 

(3) Intecolor 8900 with floppies and 
word processing. Mint condition. SN 
400644. (Floppies SN 41838.) 

(4) 2 NEC printers. Condition unknown. 
SN 541005053-7812 
SN 541006301-7902 

( 5) ADDS 580 console. Needs work. SN 
A25519. 

No responsible offer will be refused. 

Bonnie Krypel 
Inside Sales Coordinator 
Apache Electronic Systems, Inc. 
900 Jorie Blvd., Suite 124 
Oakbrook, Illinois 60521-2211 

***************************************** 

WANTED: Genesis III program. Will buy or 
trade. 

Maurice Adams 
3621 Buffalo Rd. 
New Albany, NY 14513 

***************************************** 

FOR SALE: Compucolor II V6.78 
Two disk drives, deluxe keyboard, Assem
bler, FORTRAN, Text Editor, Formatter. 
Cost $3000, will sacrifice for $1500 or 
best offer. 

AndyMau 
5 Eldridge Street, Store North. 
New York NY 10002 (212) 431-1277 

18 

to-one relationship between these chips 
and the problems they cause; unless you 
can read schematics and have access to a 
scope the best bet would probably be to 
replace them one at a time until the 
problem goes away. C 

Tech Tip 

by John Newman 
PO Box 37, Darlington 

Western Australia 6070 

Since the publication of the article on 
disk drive improvements in the Feb/Mar 
issue, a couple of improvements have been 
suggested. One is to reduce the 1 OOOuF 
capacitor to 470uF in the motor run-on 
circuit (Figure 3). The reasons are that 
most 1000uF caps are too large to fit 
under the disk drive cover, and it has 
been found that some drives 
intermittently misread, causing the usual 
track 0 reset. 

The other suggestions have to do with the 
speed control switch. One user has fitted 
a multi-turn pot to the front panel which 
is connected in circuit only when the 
switch is set to the low-speed position. 
The normal speed is left at 300RPM. A 
related modification is to use a spring 
loaded switch so that it cannot 
inadvertently be left in the low-speed 
posit ion. C 

Tech Tip 
by Alexander V. Pinter 

P.O. Box 230 
Columbus, GA 31902 

The Compucolor Assembler program 
(#990014) doesn't need the 20 disk 
blocks allocated to it on the disk. The 
last five blocks are "DS" type variable 
spaces that are filled in by the program 
itself at run time. To make the assem
bler take up less room on disk, do this: 

FCS>LOA ASM.PRG 8200 
FCS>SAV ASM.PRG 8200 D7D 

Now the program is smaller by 5 blocks 
(and will load more quickly, too). C 



--:: 

Tid-Bits for Cornpucolor 

by Bovard Rosen 
Box 434 

Huntington Valley, PA 19006 

From my experience servicing the CCII 
I have found an improvement over the 
Maintenance Manual's procedure for pro
ducing sharp color images. Enter CRT mode 
with the key sequence ESC (CRT), BG ON. 
The computer is in the CRT mode for 
changing background color. Press CONTROL 
(and hold) and Q (for red). Press ERASE 
PAGE to produce a full red screen. Review 
the screen for no other color. If re
quired, make adjustment, provided you are 
experienced. If you do not know how and 
feel that you wish to try, please contact 
me for instructions. This step is not for 
the inexperienced. Repeat GREEN, YELLOW, 
BLUE, MAGENTA, CYAN and WHITE back
grounds. Once satisfied that each screen 
was only one bright color, then continue. 
Set background to BLACK and then press FG 
ON for foreground color. Press CAPS LOCK 
key to put the computer in graphics char
acters. Set color to GREEN and press the 
following sequence of keys: 

ESCYG 
You will see green horizontal lines. 
These lines are your reference lines. 
Green, red and blue are individual 
colors. The other colors are mixtures of 
them. Now we are going to review and trim 
up the colors as best we can. Set the 
color to yellow. Yellow is red and green, 

therefore we are going to adjust the red 
to combine with the green to produce the 
best yellow possible. First observe the 
center portion of the screen, approxi
mately a four by four inch square. The 
controls for moving the red up/ down are 
on the neck of the picture tube. Don't 
touch anything other than those parts I 
tell you. For that matter, please think 
twice if you're not too sure. The red 
knob on the white housing will move the 
red up/down. Again, this adjustment is 
only for the center of the screen. Press 
the ESC Y N keys for vertical lines. The 
adjustment is the round dial immediately 
beneath the red knob we just used. Repeat 
the above for the following sequence of 
colors: CYAN, MAGENTA, WHITE. Did you use 
the blue knob in the above procedures 
when adjusting the blue color? Now that 
the center of the screen is pretty well 
adjusted, we are concerned with the 
edges. Please refer to your maintenance 
manual for the adjustment of the 
upper/lower/right/left edges. The main 
point I wanted to get across was the 
change described above to get the job 
done better. A BASIC program to test the 
colors all over the screen is given in 
Listing 1. I call it "COLOR". C 

Listing 1 5 PLOT 12,15,6,3 
10 FOR I = 1 TO 1E6 
15 FOR K = 1 TO 7 
20 FOR J = 0 TO 63 
30 PLOT 3,J,M,6,K,K + 4a 
35 PLOT 6,K 
40 NEXT J 
42 M = M + 1 
43 IF M = 64 THEN M = 0 
45 NEXT K 
50 NEXT I 

19 



Blue Sky Dept.. 

by David B. Suits 

Is it possible to enhance the color 
capabilities of the Compucolor II? Not 
being very far advanced in analog elec
tronics, I will allow myself to speculate 
on matters I know little about. The re
sult will be, I hope, interesting enter
tainment, even if more knowledgeable 
readers find these ideas impractical. 

Consider: The CRT color is maintained 
by illuminating zero, one, two or all 
three of three different colored dots on 
the screen. We specify which dots will be 
intensified by controlling three electron 
guns. Figure 1 shows a simplified dia
gram. If a magenta dot is showing on the 
screen, that means that, at a particular 
location on the screen, the red and blue 
dots are being intensified, which means 
that there are signals travelling to both 
the red and blue guns. If you were to 
reach inside the computer and rip out the 
blue line, all magenta colors would in
stantly change to red. (And any other 
color which incorporated blue would 
change: blue to black, cyan to green, and 
white to yellow.) But it is inelegant 
to change screen colors by ripping out 
wires. A more sophisticated procedure 
would be to place a switch in each of the 
lines. Now, if those switches could be 
activated under software control, we 
would have a nifty new addition to the 
Compucolor' s color graphics capabilities. 

Figure 1 

'"~ CRT COOI'ROLLER 
control, address, 

20 

(Some such on-off control is used, by the 
way, in some Intecolor computers.) 
Specifically, it would provide for fast 
(practically instantaneous) changes of 
some colors or color combinations. You 
could, under software control, turn off 
the red gun. Then anything you drew in 
red would not show on the screen. Turn 
the red gun on, and--poof! --there it 
would be. 

Let's extend the possibilities. Some 
color CRTs (such as your TV set) allow 
for more than eight colors. But how do we 
get more than eight colors if we have 
only three control lines? Easy. Open up 
your computer and you will find some 
trimpots, or variable resistors, one for 
each color. These determine the intensity 
of each color. Turning up the red pot, 
for example, will brighten the red and 
consequently slightly change those colors 
in which red plays a part: yellow, 
magenta and white. All we need, then, is 
to put these trimpots under software 
control. We'll still be able to display a 
maximum of eight colors at one time, but 
these may be any eight colors we wish. 

My idea is to build two parallel out
put ports which will provide 16 control 
bits in all: 1 bit each for the on-off 
control for each of the three guns; 4 
bits each for controlling the intensity 
of each gun; and 1 unused bit. (See 

blue -
green .. CRT 

red .. 

sync, etc. 



Figure 2.) 
lev e ls for 
choi ce of 
of 4096! 

This gives us 16 
each primary color. 
eigh t colors out of 

intensity 
That ' s a 

a pale tt e 

Will it be easy to implement? Well, 
the on- off control for each primary color 
might be arranged as an AND gate just 
beyond the CRT controller chip. (Figure 
3.) The control of the intensity is 
beyond my abilities, but I wouldn't be 

surprised to le a rn that t h ere is some 
simple chip t hat c ould selec t the 16 
l e v els . On th e other h and, th e volt a g e 
levels there might be too high to be 
easily dealt with. Or perhaps the scheme 
suffers from some more fundamental flaw. 

There's your challenge for today: 
either built it, or else tell the rest of 
us why it's impractical. C 

Figure 2 PORT B 

Figure 3 

PORT B 
(high) 

bit 7 6 5 

[ blue I green I red 

'----v--" 
Cn--()ff Control 

7 6 5 

I I I 
'-- ........,.... 

intensity green 

PORT B 4 
(low) 

PORT A 4 
(high) 

PORT A I . ·- ·-··--·---
(low) 

: ~:----------------~ 
:=-X -=J 

4 3 2 1 0 

(not J 
used). I I l 

'- -v- ../ 

intensity blue 

PORT A 

4 3 2 1 0 

I I I l 
_.,; '-- .,1 

"V" 

intensity red 

I I . I 

blue 

green 
CRT 

sync, etc. 



Bar Cursor 

~y F M Goo4 
(Reprint.ed by permission 

from CUWEST, Aug., 1982) 

The BAR program is a machine language 
program which allows input to a BASIC 
program to be done via a coloured bar 
which the user moves up or down across a 
list of selections printed out by the 
BASIC program. When the user has posi
tioned the bar on the selection he 
chooses, he presses the RETURN key and 
program execution returns to the BASIC 
program. 

tion of the list, and Y is the number of 
the chosen selection. 

Before executing the Y = CALL(X) instruc
tion, the program must POKE into the 
third byte of the subroutine the number 
of selections in the list. The printed 
list must follow the following format: 

( 1 ) For best results, it should be 
printed 1n white. 

The subroutine is accessed by the 
function: 

(2) There must be four 
of each selection 

spaces in front 
in order to 

Y = CALL(X) allow for the arrow. 

where X is the top left hand memory posi-

ORG 

START: 

PUT BAR: 

LOOPPUTBAR 1 : 
LOOPPUTBAR: 

22 

ODOOOH 

DI 
MVI 8,20 ;No. of selections in list. 
DCR B ;B=counter for maximum no. 

;of movements down. 
SHLD REGTMP1 ;Store HL. 
XCHG 
SHLD TOPPOS ;Store D - position of the 

XCHG 
XRA A 
MOV 
MOV 
MVI 
INX 

H,D 
L,E 
M, '-' 
H 

MVI M, 1 
INX H 
MVI M, 1

-
1 

INX H 
MVI M, 1 
INX H 
MVI M, I> I 

INX H 
MVI M, 1 

INX H 
INX H 
INX H 

;top selection. 

Get position of bar 
from DE into HL. 
Put in red arrow. 

STA ACCTMP ;Temporarily store A 

MVI 
INX 
MOV 
ORI 

;A=no. of current selection. 

C,3 
H 

;Put in cyan background (bar). 

A,M 
001000008 ;Set background to cyan. 

c 



MOV M,A 
INX H 
MOV A,M 
CPI 32 
JNZ LOOPPUTBAR1 
OCR C ;Continue bar until 3 spaces in 

;a row. 
JNZ LOOPPUTBAR 

LOOPGETKEY: LDA KEYFLAG ;Put KEYFLAG 
MOV 
LXI 

C,A ;in reg. C. 
H,5000 

LOOPSLOWGETKEY: DCX 
MOV 
ANA 
JNZ 

H 
A,H 
A 
LOOPSLOWGETKEY 

UP: 

DOWN: 

** CHECK FOR KEYS ** 

MVI 
OUT 
IN 
CPI 
JZ 

MVI 
OUT 
IN 
CPI 
JZ 

MVI 
OUT 
IN 
CPI 
JZ 

MVI 
OUT 
IN 
CPI 
JZ 

A,2 
7 ;Check for return 

;by direct accessing 
OEFH ; of keyboard. 
GOTSELECTION ;Yes, return pressed. 

A,3 
7 
1 
ODFH 
UP 

A,5 
7 

OEFH 
DOWN 

A,7 
7 
1 
OEFH 
HOME 

;Check for up arrow. 

;Yes, up pressed. 

;Check for down arrow. 

;Yes, down pressed. 

; Check for home. 

;Yes, HOME pressed. 

XRA A ;Key not pressed, 
STA KEYFLAG ;so clear KEYFLAG 
MOV C,A ;and reg C. 
JMP LOOPGETKEY 
CALL 
MVI 
MOV 
STA 
LDA 
ANA 
JZ 

CALL 
LDA 
OCR 
STA 
LXI 
DAD 
XCHG 
JMP 

CALL 

PAUSE 
C,1 ;SetCto1. 
A,C ;I.e. key pressed . 
KEYFLAG ;Store at KEYFLAG. 
ACCTMP ;Restore bar position. 
A ;At top of list? 
LOOPGETKEY ;Yes, then don't move bar. 

CEARBAR ;Clear current bar. 
ACCTMP ;Restore A. 
A ;Move bar up. 
ACCTMP ;Store new pos. 
H,-128 
D ;Get new bar position. 

;Put new pos in DE. 
PUT BAR ;Put new bar. 

PAUSE 
MVI C, 1 ;Set C to one. 
MOV A,C ;I.e. key pressed. 
STA KEYFLAG ;Store at KEYFLAG. 
LDA ACCTMP ;Restore bar position. 
CMP B ;At bottom of list? 
JZ LOOPGETKEY ;Yes, then don't move bar. 

CALL 
LDA 
INR 
STA 
LXI 
DAD 
XCHG 

CLEAR BAR 
ACCTMP 
A 
ACCTMP 
H, 128 
D 

;Clear current bar. 
;Restore A. 
;Move bar down. 
;Store new pos. 

;Set new pos. 
;Put new bar pos in DE. 

~~~- ----

23

24

HOME:

GOTSELECTION:

PAUSE:

JMP PUT BAR ;Put new bar.

XRA A ;Clear KEYFLAG.
STA KEYFLAG
CALL CLEAR BAR ;Clear current bar.
LHLD TOPPOS ;Restore top bar position.
XCHG ;Put into DE.
XRA A ;Bar position = o.
JMP PUTBAR ;Put new bar.

LDA ACCTMP ;Get position of bar.
INR A ;Convert to selection no.
MOV E,A ; Put value into DE
MVI D,O ; for return to BASIC.
LHLD REGTMP1 ;Restore HL.
EI ;Enable interrupts.
RET ;Return to BASIC program.

;This routine checks the value of KEYFLAG
;and depending on its value either waits
;for a short while or returns to the program
;immediately.

This allows the user to either step slowly
;down the list by pressing and releasing the
;key or move rapidly down the list by keeping
;the key pressed.

KEYFLAG indicates whether the key is kept
;depressed or not ;

if KEYFLAG=O then not depressed.
if KEYFLAG=1 then depressed.

Thus us KEYFLAG=1 then routine will not
;execute a pause and will return to the
; program immediately and if KEYFLAG=O the
; routine will pause before returning.

LDA
ANA
RNZ

KEYFLAG ;Get value of KEYFLAG.
A ; Is it z·ero?

;No, return without pause.

;Pause while HL counts down to zero.

LOOPPAUSE:
LXI
DCX

H,20000
H

MOV A,H
ANA A
JNZ LOOPPAUSE ;Not zero, decrement again.
RET ; Pause ended, return to program.

CLEARBAR: MOV H,D
L,E
M,32
H

;Get bar position from
;DE into HL. MOV

MVI
INX
INX
MVI
INX
INX
MVI
INX
INX
INX
INX

LOOPCLEARBARl: MVI
LOOPCLEARBAR: INX

MOV
ANI
MOV
INX

;Clear arrow.

H
M,32
H
H
M,32
H
H
H
H

C,3
H

;Clear bar.

A,M
00000111B
M,A
H

;Set background to black.

MOV A,M

REGTMP1:
TOPPOS:

CPI 32
JNZ LOOPCLEARBAR1
DCR C ;Continue to clear bar
JNZ LOOPCLEARBAR ;until 3 spaces in a row.
RET ; Finished clearing.

DS
DS

2
2

;Temporary storage for HL.
;Position of top selection.

';

~.

ACCTMP:
KEYFLAG:

ADVERTISEMENT from

DS
DS

END START

;Temporary storage for A.
;Flag indica ting whether key
;is kept pressed (:1) or key
;pressed then released (:0).

HOWARD ROSEN, Inc
P. C). E:o :x: 4:34

(215) -464-714:':· Hunt i n•;~don 1-)a 1 l e:-,-·, Pa. 191306

Response to our last
INTERFACE for the
problems encountered

advertisement for the MBS-8K RS232 SERIAL
EP:::;()t··.J t·'f:=<: -:30 lj.J.:<. -:. ·::.u r· pr· i ·= 1 n g. ~<Je gu es-:. t h a. t the
were common, and the INTERFACE board as a

·::-o 1 uti on '-'·-'·"'· ·::. quite hottly sought after. For more information and
price on that gem of an interface board please contact us.

There are some game diskettes available from ISC <CCII) in stocK.
The·/ .::..r e a e<. i I .:t.b 1 e .:;;. t .::.. t t r· a.c t i ·.,·e pr ice-:.. P 1 ea. se 1 e t us f< n QI..<J \J .. Ih a. t
your needs are. If you've been thinking about the Data Base program,
but can't decide, you probablv would appreciate seeing some examples
of Data Base Program In use. We have, from our own inventory
control, a very real demonstration. The demonstration is an actual
printed report. A copy of the report is available. Please request:
Data Base In Action.

For tho·::.e of you
including computers,

1n need of printers, or other computer
,_,,,e ·::.e 1 1 the f o I 1 O\J.J i n g br· c..n ds:

PRC:!DUCT

C Ot···iPUT E R
COt··1PUTER
t-·1 C)t··.J I T 0 R
t··10t··.J I TC)R
P R I t--.JT E F.:
PRINTER
PRit··.JTER
D I :::;i<:::;
DI sv:::;

t··1At··.JUFACTURER

ALTO:::;
f'·.JEC
At·,1DEf<.
:::;At··.JYO
IDS
O~< I DATA
TRANSTAR
BA:::;F
l)EF.:BAT I t··1

PRODUCT

CC)t--1F'UT ER
C0t-·1PUTEF.:
t··1 C)t··.J I T C) R
PRINTER
PR I t·.JTER
P F.: I r·,n E P
t·10DEt···1:::;
DI Sk.S

t··1ANUFACTURER

TELEI.)IDEO
NORTH~;TAR

t··.JEC
At·-iADD<
t··.JEC
TOSHIBA
HAY.ES
CC: I I

it ems.,

In addition to the NEC PC-8000 Computer system, mentioned in the
last issue, available for a very special price, we are also proud to
announce the latest NEC Computer, the PC 8800. The PC 8800 is
offered as an 8-bit (expandable to 16-bit by board insertion) with a
varietv of disK drives available, for example; 5~ in. Dual drive,
single s1ded, double density, 320K; 5~ in. Dual drive, double sided,
double dens1ty, 640K; or the 8 in. Dual drive, double sided, double
densitv, 2.4M. The graphics is 640 x 400, and available 1n either
green or color. Bundled svstems are availabl e: Computer, Monitor,
Drive, ~ So~tware (Mul tiolan, Wordstar, Mailmerge, CP/M 2.2, BASIC
t·.J ::::o _:. • Do '·/OU 1-: -~\-'e r, eed tor· the (jr· eek .:;;. 1 ph :<.bet·~· Both t··.JEC: C:ompu t er· ·::.
1ncl ude i~: a~ Y ~ ~ ; ~ 9 ~ ~ ~ ~ ~ 0 ~ P 0 T U t X • W ~ r E A
() ::<.n d -:.orne 0 t j-, er· 'J ·::.e-f 1J 1 C h :i.r· ::<.C t er· ·;::. , •t ·.j + !>:; ::::: l t .\ J~.

in~ormation, including pricing, please write us wi th your
spec1fic requests.

25

The Freepost 64K Bank Board:
a review

by Christopher J. Zerr
14741 N.E. 31st Unit 1-C

Bellevue, W A 98007

ITEM: Freepost 64K Bank Board (kit form)
SUPPLIER: Freepost Computer Systems

431 East 20th Street 10D
New York, NY 10010

PTice: $199.00

Most CCII owners are presently not
utilizing their full memory capacity.
ISC left an 8K address space in memory
(4000H -- SFFFH) for use with EPROM
(Erasable Programmable Read Only Memory)
chips as desired by the end user. First
we saw Torn Devlin's RAM board for this
area which gives you an extra 8K of RAM.
Shortly thereafter we had the announce
ment of a multi-bank ERPOM board from
Freepost Computers in New York. This
board can be purchased in two ways:
assembled and tested for $249.00 or in
kit form for $199.00. I purchased the
kit form, so this review will pertain to
that.

Assembly of the board is quite simple.
All you need is a pencil type soldering
iron, some solder, and about three hours.
First you solder all the sockets into
their respective holes. Be alert, though,
because sockets are not supplied for UF6
(the 7447 BCD decoder/driver). The parts
I got were confusing because I got a 16
pin plug and two 16 pin sockets, and
there just happen to be three 16 pin
areas for sockets, and the plug is not
one of them. The plug is to be used in
case you install the Devlin RAM board:
the plug is supposed to replace the IC in
UF8. But why Freepost sent a 16 pin plug
for a 14 pin socket I don't know.

Once the bank board is assembled, you
may install the Devlin 8K RAM board if
you have one, or you may use another ROM

2&

board. I am using the Devlin board,
which requires eight wires to be connec
ted to the logic board. Two come from the
RAM board to their places as specified
in Devlin's documentation. The other six
come from the bank board to the logic
board. With only eight wires to connect,
I saw no reason to purchase Freepost's
optional card edge connector ($10).
There are places on the logic board for
soldering all of the wires except one,
which I soldered directly to the 50 pin
bus edge.

There were a few problems. First, the
component layout drawing is incorrect.
(Some ICs were mislabelled.) Second, it
wasn't clear how to set one of the RAM
card jumpers. One connection is from
jumper J on the card to a spot on the
logic board. But nothing was said about
the pre-wired jumper on the ram card
from J to K. When I called Freepost
about this, they said to remove to
jumper.

Third, the 7447 IC (UF6) is wired
incorrectly. If you use a common anode
for the LED (by the way, this option was
not documented very well), then pins 3, 4
and 5 of the 7 44 7 must be connected to + 5
volts. I pulled the three pins out of the
socket and wire-wrapped them together
and then attached them to +5 volts. Also,
pins 6 and 8 must be pulled to ground.
(This option, by the way, shows you which
bank has been selected.)

After all this I was ready to power up
the CCII. I turned it on and ... on it
carne with no problems. I typed "OUT
255,7" to set up the RAM card and then
ran a memory test. Everything worked just
fine.

, ...

Upon power up, the bank board is set
to some random bank. To correct this,
pull pin 1 of the 74161 (UFZ) out of the
socket and run a jumper from pin 26 of
the keyboard (CPU reset) to the pin you
just pulled out. Now whenever you power
up or hit CPU reset, it will automatic
ally place you in Bank 0.

In all, the small trouble and confu
sion was worth saving the $50 for the
kit form. If you have at least a little
electronics knowledge then you should try
the kit. C

REMIRDER

Beg inning with Volume 6 (Aug/Sept) ,
the subscription rate for COLORCUE
will be US$18 in North America and
US$30 elsewhere.

MORE DISK STORAGE FOR $24.95!

Store 50% more ASCII data.

Works on both V6.78 and V8.79.

Supplied for 8200H and 4000H.

Uses CDO: and/or CDl:

PACK.PRG packs with Huffman
Codes, UNPACK.PRG restores.

All ASCII codes accommodated,
use for ASM.SRC, Text Editor,
CTE files, etc.

Delay for personal checks,
Send Postal Money Order for
same day shipment of program
disk and user instructions to:

VANCE PINTER
P.O. BOX 20

COLUMBUS, GEORGIA 31902

7ii£ FINAL FRoNtiER
VOLJR MISSION: Rid Federation Space of the Klingons.
VOLJR ENEMY: The Klingon Deep Space Fleet, allied

forces from the Romulan Empire~ and time.
VOLJR ALLIES: Only 1 to 3 Starbases <Don't let the

Romulans destroy them).
VOLJR SHIP: The mightest ship in space •.• The U.S.S.

Enterprise with Phasers, Photon Torpedoes, Regenerative
warp power, limited impulse power, and more. You must
allocate energy to these systems as you see fit.

This innovative implementation of a classic computer game is
complete with many new features and graphics. AND there is more
to come as adventure scenarios to link with this program are
on the drawing board.

Over 7900 repeatable games are possible or have the computer
generate a random game. Variable galaxy size allows you to
play from a few minutes to a few hours with "SAVE GAME"
feature in case you can't finish at one sitting.

$25.00 including disk and detailed instructions from:
Rick Taubol d
197 Hollybrook Road
Rochester, New York 14623

27

Color cue
1&1 Brookside Dr.
Rochester, NY 1.4&1.8

BULK RATE
US POST AGE

PAID

Rocheste~ N. Y
Permit No. 4 1 5

Colorcue

I

r.

$2

Colorcue
A bi-monthly publication by and for
Intecolor and Compucolor Users

Editors:
Ben Barlow
David B. Suits

June/July, 1983
Volume 5, Number 6 Compuserve: 70045,1062

3 Editors• Notes

4 Big Money in Advertising, by Ben Barlow
How does Colorcue compare?

5 Assembly Language Programming, by Joseph Norris
Part XII: Opening/Closing Files

8 The Final Frontier, reviewed by John R. Bell

9 The Final Frontier, another review, by Bill Barlow

9 Tech Tip, by John Newman
More on disk drive improvements

10 Compiling BASIC, by Peter Hiner
Part I: History

13 Cueties

14 Go the Superior way with Your IRA, by Doug van Putte
Avoiding the tax man

17 Transformers (not electrical), by David B. Suits
A curiosity about numbers

18 Unclassified Advertising

19 Repairing BASIC Line Numbers, by Mike Barrick
Recovering from disaster

20 Animated Hourglass, by Tom Andries
The PLOT thickens.

25 Garfield Hairy Deal Calendar, by Mike Barrick
Revised from a program by Carl Reinke

Editors' Notes

A Changing of the Guard
We have some good news and some bad

news. The bad news is that our editorship
of Color cue comes to an end with this
issue. It is a decision we have been
thinking about for a while, and it was
not an easy one to make. We have been
putting Colorcue together for two years;
and what a fine two years it has been! We
have come to know many of you through
your letters, articles and phone calls,
and we hope to have generated at least a
little bit of communication among Compu
color and Intecolor users.

The good news is that one of our most
articulate and prolific contributors is
to become the next editor: Joseph Norris.
Joe has had (and continues to have) an
on-going involvement with ISC equipment.
He is very much concerned to keep Color
cue alive for another twelve months and,
in the process, to help encourage Compu
color and Intecolor users to take note of
the resources generally left available to
them. He has some good ideas for the
coming year's issues, so hang on to your
hats. The new subscription rate (US$18 in
the US, Canada and Mexico, US$30 else
where) will remain in effect; the publi
cation schedule of every other month will
be kept; and the guarantee that you'll
get your money's worth or your money back
will of course be honored.

Back issues of Colorcue will still be
available (see the inside of the back
cover for details) from our Rochester
address. Requests for back issues of the
issues under Norris' editor ship, as well
as all editorial and subscription corres
pondence, should now go to:

Joseph Norris
19 West Second Street
Moorestown, NJ 08057.

Although we are leaving as editors, we
hope that we will not be leaving as po
tential contributors. There is still much
to be said about these machines we've

been pounding on for four or five years,
and we will probably have more to say. By
the way, your articles and contributions
are needed just as much as ever. Don't be
lazy. -- BCBandDBS

F AS BAS Revealed
Speaking of FASBAS, this issue of

Colorcue brings to you the first of a
series on the FASBAS BASIC compiler by no
other than the author himself, Peter
Hiner. Even if you're not expert in
assembly language, and even if you're not
really the sort to go mucking about
inside a compiler, you will probably
learn a lot by reading his articles.
They tell you a great deal about regular,
interpreted BASIC along the way.

ISCNews
Knox Pannill III, well known to

readers of the Compucolor software man
ual, has been appointed to the position
of manager of graphics systems support
in Atlanta. Intecolor Corp. (now a sub
sidiary company of Intelligent Sytems
Co.) announced the 2427D color graphics
terminal incorporating a 16 bit Zilog
28002 and an 8085, compatible with Tek
tronix' 4010, 4014, and 4027, and with
DEC's VT100/VT52 terminals. The terminal
features a readable bit map, 560H X 288V
resolution, a 64 color palette with 8
colors concurrently displayable, and a
$1,995 price (100 quantity). Intecolor
is also offering its VHR-19 terminal for
$3,995, which features a 19 inch high
resolution screen (1024 X 768 displayed
out of 1024 X 1024), high level graphics
with ploygon fill, and 8 displayable
colors selectable from a palette of
4,096. An NEC 7220 graphics processor, a
seperate alphanumeric processor, and a
Z80 team up to drive the machine. (Note:
before rushing out to buy one, check out
the NEC APC which offers the same
graphics, and more. -- BCB)

Our congratulations go to Tom Devlin,
the first reader in memory to mention the
Colorcue covers! At our editorial con
ferences, we spend a long time discussing
covers, and have thought at times of
going to a standard format "table of
contents" type cover. It' nice to know
that someone likes them the way they are.

-=
3

Big Money in Advertising

by Ben Barlow

If you're anything at all like me, you've
hefted a recent copy of ~~ magazine
with all that advertising and wondered
just how much money they take in. I've
also wondered how many pages of ads they
have (never wondered enough to count
them, though). The other day I came
across some information in a trade publi
cation called Computer & Electronics
~arketing that helped answer those
burning questions. The summary is dis
played for you in the table below. Just
for fun, I added a line for Colorcue to
see how we stack up against the "big
boys", and got surprised - advertising in
Colorcue costs more per reader than any
of the less popular magazines, even Byte!
For a moment, I felt that our adver-

tisers would feel cheated. After all, our
rate per reader is more than three times
~~'s! But after reflection, I convinced
myself that Colorcue is really a bargain
for advertisers. Almost anyone in the
country can afford at least a quarter
page, and our readers represent a
specialty market. Although ~~ might
reach 304,230 people per month, only a
small fraction of those represent a mar
ket for any particular product. IBM PC
owners won't buy software from an Apple
ad; Apple people aren't interested in Z80
disassemblers. 100% of our readers,
though, are a market for our advertisers.
So considered on the basis of cost per
applicable subscriber, Colorcue comes out
on top. ~

Magazine Circulation
(monthly)

Ad pages
per yr

Ad cost Ad ratio Ad cost per
subscriber

Revenue
from ads

Compute
Personal Computing
Popular Computing
Byte
PC World
PC
80 Micro
Creative Computing
Infoworld
Colorcue

1,957,670
525,000
306,231
304,230
170,000
110' 000
108,160
108,007
58' 913

401

1,494
1,857

809
4,001
2,400
4,200

N/A
2,082
2,237

18

per page ads/ eds

3,895
9,950
4,900
5,950
3,800
3 '226
2,395
4,995
3,780

30

1.1
1.2
1.5
1.5
1.1
1.5
N/A
1.1
1.0

.1

.oo

.02

.02

.02

.02

.03

.02

.os

.06

.07

5,819,130
18,477,150
3,964,100

23,805,950
9,120,000

13 '549 '200
N/A

10,399,590
8,455,860

540

Ad rates quoted for full page b&w. Eds refers to editorial (non-ad) pages.

4

Assembly Language Programming

by Joseph Norris
19 West Second Street
Moorestown, N J 08057

(Note: This article refers to program
listings which, for completeness, were
printed in the April/May issue of Color
cue. In order to devote more space to
articles, we are not reprinting them
here. If you do not have a copy of the
previous issue, we will gladly send a
copy of the listing (and a refund of your
postage) at your request. - eds.)

PART XII: Opening/Closing the File
As we begin this second of three

articles, we know how to parse a data
string for a valid file name, and we have
placed some parameters in the File
Parameter Block (FPB). We are ready to
call upon the disk directory and OPEN
the disk file.
The OPEN routine

The operating system will open files
that exist already on disk, or a new
file that we wish to create. There is a
separate procedure for opening each of
these types. In our program a "new" files ·
is a file with a name unique to the disk
in the drive, i.e., we cannot have
"FIRST.SRC;01" existing and hope to open
"FIRST.SRC;02 ". [1] To call the proper
routine, we have only to enter the cor
rect code number in the first cell of
the FPB (FPB 1 in our program). A "0" in
this slot will cause the routine to look
for an existing file name and version
(default is ";01"); a "1" will ask it to
open a "new" file. I have chosen to use
unique file names because, with this
feature, SOURCE.PRG can serve as a func
tioning mini-data base.

Since we eventually want to recall and
edit previously created files, our pro
gram always looks for an existing file
first. Here is the procedure (see OPENA
in Listing IV).

We must give the OPEN routine the
address of the FPB by placing it in the
HL registers, place a "0" in the first
byte of the FPB and call OPEN. At this
point the OPEN routine will access the
file directory and look for the file
name we have parsed. The following
parameters will follow the routine:

-The "0" will be replaced in the first
FPB slot by a code number (usually 06H
or 20H);

-any error code will be in BC (with the
carry flag set if error),

-DE will be unpredictable , and
-the FPB pointer will reside, still, in
HL.

-If the carry is reset, no errors
occurred in opening. It is possible to
follow CALL OPEN with CALL EMESS, to
print the error message.

In our program we assume, for the
moment, that any error is EFNF (File Not
Found) and proceed to open a new file at
program module CREATE. But let's see
what happens if the old file is accepted.
Continuing in OPENA, we display the name
of the opened file (NMDSP) and then
prepare to read it into the disk buffer,
which, for us, is the same as INBUF, the
text buffer. (This dual usage of buffer
space must be approached with care, but
is quite secure in our program.) At this
point, INBUF is still filled with spaces.

s

To read the file, we must supply the
FPB with two more parameters: (a) the
starting address of the text buffer
(INBUF) in FBUF, and the length of the
text buffer in FXBC. These may be ref
erenced as FPB+32 and FPB+34. (See Part X
of this series.) FXBC, the buffer
length, must be a multiple of the stan
dard block size of 128 bytes. We now
"rewind" the file--that is, we set
parameters so the FPB knows which byte is
the first byte--by calling R WSEQI. This
routine initializes FBLK, FAUX and FPTR
by setting them to zero. With the FPB
data complete as described up to this
point, all R WSEQI needs is the FPB ad
dress in HL. This call must follow the
call to OPEN. There are no status
parameters when RWSEQI is complete. Now
all the required data are in the FPB,
and INBUF is still cleared with spaces.

We are now ready to transfer the text
bytes from the disk file into INBUF. We
draw our text box and then call READ,
which uses the routine GTBYT to read
data from the disk. A simple loop pulls
all 128 bytes quickly. GTBYT has the
following properties:

To operate, it needs only the address
of FPB in HL. Each accessed byte will
appear in the accumulator at the end
of the call. BC and DE are unaffected,
and the FPB pointer remains in HL. The
carry bit will be set if there is an
error. If the carry and zero flags are
both set, then the prescribed buffer
length was filled without reading all
the data bytes in the file.

As we "get" each data byte, we also
print it with LO, in the text box on the
screen. In routine READ (Listing IV) the
B register is the counter, set to the
number of bytes to be read and printed.
In the File Parameter Block, the last
entry, FPTR (pointer), begins with the
value OOOOH and increments by one each
time GTBYT is called. At the end of the
last counter decrement, FPTR will hold
0080H (= 128 bytes). Now we can draw an
analogy between BASIC's GET statement in
random files, and the GTBYT routine. In
the BASIC example: GET 1,3,5;G$ [20]--FPrR.
would be loaded with the number of the
byte to begin reading on--in this case
"5" --and the B register counter would be
loaded with 20--the number of bytes to

6

be read. (We have not yet considered a
System routine that uses the file
record-byte organization, but it exists.)

At this point we return to the option
line for the next instruction. But sup
pose our file does not yet exist. What
happens to create it? Going back to
OPENA, we .see that, after the instruction
line CALL OPEN, a "jump on carry" in
struction branches the program to
CREATE. This branch will be effective if
OPEN generates a file error, such as
"file not found" mentioned before. (If a
file error occurs, the carry flag is
set.) It may be that a different file
~rror has occurred, and, if so, we will
have another opportunity to explore it,
but our assumption is that the desired
file does not exist and must be created
on disk.

The CREATE routine
The possibility of a file error sug

gests that we call RESET, a System rou
tine to reset the heads on our disk
drives, as a precaution. We will now
call OPEN again, but this time with the
"new file" code in the first slot of
FPB 1. If an error again occurs, routine
ERRORS will display it for us; otherwise,
we print the file name on the screen for
reference, as before, draw the test box,
and go back to the beginning of the pro
gram to erase the disk buffer for new
text (but leaving the FPB data undis
turbed!). Routine OPEN, this time, will
verify that the file name does not exist,
and will place reference parameters in
the FPB. At this point, the directory is
unchanged, so that, should the program be
aborted, no damage to data on the disk
will result. However, the FPB data is
essential to closing the new file cor
rectly and must not be changed before the
closing routine has been called.

The choices in our option line are
appropriate either to the program with
an opened file or to a program with a
closed file. For instance, we cannot
print a file that has not been opened,
neither can we edit its text. I have
installed a byte in memory to hold a "1"
if a file is open and a 11 0 11 if no file is
opened. This slot is labelled FS: (File
Status) in the data storage section of
the listing. You will notice that
several routines install the appropriate
status byte in FS.

When any option is selected, the pro
gram routines FSO and FSC (File Status
Open, File Status Closed) are used to
test the FS flag. A jump to a likely
error message results if the test fails.

The TEXT routine
The next likely option to be selected,

after opening a file, is the entering or
editing of text. Option 2 will branch to
routine TEXT, which sets the buffer
length to 128 bytes and uses INPUT (David
Suits's routine) to enter or edit the 128
byte buffer , simultan e ously showing
changes on the screen. We are altering
the disk buffer too, of course, since it
is the same as the "text buffer". As long
as the maximum buffer length is not
exceeded (monitored by MCHAR) the FPB
data will remain valid. With the text m
its final form, the file may now be
written back to disk and closed.
The CLOSEA Routine

We check FSO first to verify that an
open file exists. The procedure which
follows insures that new text or edited
text will be written back into the ex
isting version of the file, or to a new
file if the new name was unique to the
disk. INSEQO uses RWSEQI for another
initialization, and continues by veri
fying that there is room on the disk for
our file. Since we use only a single
block of 128 bytes, we will never have
trouble rewriting an edited file. With
out this feature, we could never write
back to the same .SRC file, if we went
beyond 128 bytes, without danger of
writing over a subsequent disk file. In
the case of a new file, we need only one
block to verify a good file write.

The next step is to use PTBYT to write
the disk buffer to disk. (See routine
WRITE.) It works much the same as GTBYT,
moving FPTR as before , from 0 to 128.
PTBYT requires the presence of the byte
to be written in the accumulator and the
FPB pointer in HL. The B register is our
counter for 128 bytes; the DE registers
i::"!ep track of the current buffer address.
J.'he following status will result:

The accumulator will contain the byte
·.,· ritten, BC and DE are unchanged, and
t :; e HL registers still hold the FPB
pointer. Carry flag reset indicates no
errors. If both the carry and zero
flags are set, the allocated file
space was filled before all bytes were
written.

With the file written to disk, we must
now update the directory--add the new
file if appropriate--and free the disk
buffer space. CLSEQO does all this for
us. It needs only the HL pointer to the
FPB. All other parameters are already in
the FPB for final closing. The status
parameters are:

-The accumulator contents are altered,
-BC holds the error code, if any,
-and DE is altered.
-The carry flag set indicates a closing
error, in whi ch case the HL registers
will be altered.

At this point we have "closed the
loop". Listing IV contains all the nec
essary modules in their entirety. If
portions of any routine from the last
issue were previously installed, check
them carefully to see that they now ·
coincide with the expanded listing.

A WORD OF CAUTION: Since this program
makes use of the disk directory, it
would be wise to create files on a clean
disk until you are cert"ain the program
holds no errors; otherwise the directory
may be damaged and other programs on the
disk will be inaccessible.

Next Time
In the final article in this series we

will examine routines to print the text
file to a printer through the RS232 port,
and install the ENDIT routines. We will
also examine, briefly, a few remaining
disk file routines. While you are wait
ing, it could be a useful experiment to
reformulate the 128 byte record into a
data base page of an address book. You
can print the field headings, one below
the other, and apportion the 128 bytes
into name, address, telephone, etc. In
such an application, rather than printing
each byte as it comes from GTBYT, you
will want to transfer bytes in their
field lengths from INBUF to the screen,
field by field. Use OSTR to position the
cursor after the field heading. You are
invited to write to me if there are
questions or comments.

NOTES [1] In other formats, a "new" file
can also be one with a previously
established file name, and a higher
version number. To do this, we would
open the file as version ;01, for
instance, edit the text as before, but
poke 02H into FVER before calling
a..s:a:p. -=

7

The Final Frontier - a Revzew

by John R. Bell
8300 Fourth Avenue

North Bergen, NJ 07047

We are all familiar with the Compucolor
version of STAR TREK and many have come
to know the updated version in the
Rochester Users' Group library, but The
Final Frontier, a new STAR TREK from Rick
Taubold and Bill Goss, is a quantum leap
above them both. For starters, when you
run the menu on the The Final Frontier
disk, you hear the STAR-TREK theme song!
Those of you without soundware will real
ly miss something. The song drags a bit

. toward the end. All the notes are there,
they just come out slower than you'd
expect. An animation spectacular is the
next treat. The ENTERPRISE and a Klingon
battlecruiser glide onto the screen and
exchange phaser fire. The ENTERPRISE is
victorious (of course) and the Klingon
ship shimmers into nonexistence. The two
starships are superbly drawn.

As with most sophistic a ted games, the
commands are numerous and a bit overwhel
ming at first. But not to worry, there's
a HELP feature available and extensive
instructions before the game. During the
game, the screen lists the various i terns
like energy in the shields, warp drive,
and phasers, number of photon torpedoes
available, and number of Klingons and
Romulans still in the galaxy. Yes, there
are Romulans to contend with, and they
are nastier than the Klingons, because
they don't show up in the Long Range
Sensor scans. (As every trekkie knows,
they have a cloaking device.)

At the start of the game, you can seed
the random number generator with a number
from 1 to 9, or have the machine generate
a really random one based on both the
realtime clock and the amount of time
since you last pressed return.

Once having selected a seed, yo·.< can
then define the size of the galaxy, from
3 (for a 3 x 3 galaxy) to 10 (10 x 10).
This, coupled with the methods of seeding
the random number generator, gives you a

8

choice of 7,992 repeatable games and an
unlimited number of random games. But
what really sets this game apart from all
others is the graphics. You have a large,
functional viewscreen, and you can see
the shields "flash" when you take phaser
hits from the enemy. When you' r e in RED
ALERT the screen changes color, and a RED
ALERT signal flashes. Various i terns can
appear in your viewscreen; stars, Kling
ons, Romulans, and your Starbase, and
they change size depending on their dis
tance from you! Up close, the images of
the Klingons and Romulans are quite im
pressive. I won't tell you what happens
when you go into hyperspace - I don't
want to spoil the surprise.

The game has some interesting aspects
to it. When you're all done, if your
rating is high enough, you will be pro
moted to the rank of Starfleet Admiral..
If you quit, you will be apprised of the
consequences of your action and will be
told what the universe thinks of you. The
instructions say "BEWARE OF BLACKHOLES!"
and you should believe it. Blackholes are
present in this game, and can really
alter your game plan. Also, the gravi ta
tional field of stars can affect your
photon torpedoes. I tried to shoot a
torpedo through some stars, and the de
flection was such that the torpedo came
back and destroyed the ENTERPRISE (with
rather spectacular results).

In summary, I would say that this is
undoubtedly the best STAR TREK program
C' ve seen. Friends of mine with Ataris,
Commodores, Apples, NECs, and TRASH-80's
would rather play this STAR TREK than any
other STAR TREK they've ever gotten their
hands on. The programmers set the price
at a low $25. so that everyone can afford
it, without resorting to piracy. All in
all, The Final Frontier is the best STAR
TREKgame available on a.1y machine at any
price. .::

'

The Final Frontier- Another Review

by Bill Barlow

Captain's Log, Stardate 8173.65. I just played !he Final Frontier on my Compu
color II. It was fascinating with its STAR TREK introduction and the graphics that
went with it. The first time I tried to play I got blown away by Romulans and
Klingons. Since I thought it was going to be easy with the experience I've had I
thought there was a bug in the program! This is kind of like a hit and wait for your
punishment game. You hit the Klingons and wait for them to destroy you. It has good
graphics and sound except that the music doesn't have a beat to it, and there's only
sound during the intro. The commands are easy to remember. You have "t" for Torpedo
and "m" for Move etc... The only thing that I didn't understand was the LONG RANGE
SCAN. I didn't know that my ship's position was always in the center of the scanner,
so I thought I was where I was supposed to be when really I was almost in front of a
Klingon warship! If you understand the scanner you can find your Federation Starbase
and get more torpedoes and impulse power. Overall this game is very good, if you
like to be challenged! It's hard to wm at this one, fellow crew members, so set
your phasers to stun and go get 'em! c: (made for 32K)

Tech Tip

by John Newman
PO Box 37, Darlington
West Australia 6070

Since ihe publication of the article on disk drive improvements in the Feb/Mar
issue, a couple of improvements have been suggested.

One is to reduce the lOOOuF capacitor to 470uF in the motor run-on circuit (Fig.3
in the Feb/Mar 83 issue) - most lOOOuF caps are too large to fit under the disk
drive cover, and we have found that some disk drives intermittently misread, causing
the usual track 0 reset.

The other suggestions relate to the speed control switch. One user has fitted a
multi-turn pot to the front panel which is only connected in the circuit when the
switch is set to the low speed position; the normal speed is left at 300RPM. A
related modification is to use a spring loaded switch so that it cannot be inad
vertently left in the low-speed position. C

9

Compiling BASIC

by Peter Hiner
11 Penny Croft

Harpenden, Herts
ALS 2PD England

PART I: HIS'REY

Dave Suits thought that the chance of
some free publicity might induce me to
write about my BASIC compiler (FASBAS),
how it works and what I learnt during its
development. He was right.

Winding the clock back about two
years, it all started from a curiosity to
find out what was hidden in ROM. I spent
a lot of time vainly trying to follow the
program step by step from address 0000
and got lost . in the mysteries of cold
start routines. I decided that a better
approach would be to try to identify the
purpose of the subroutines without
worrying about details, and then see how
they fitted together. So I borrowed a
printer and a large pile of paper, and
generated a complete listing of the dis
assembled contents of ROM.

After many weeks of labour, helped by
some lucky guesses, the jigsaw started to
fall into place. I suppose I had expected
to find a lot of convenient BASIC sub
routines that I could easily use in
Assembly Language programs; this was not
to be. The first problem with the BASIC
routines was that they operate on float
ing point values, and I could not see how
to handle them within the body of an
Assembly Language program. Then I got the
idea that if I wrote a rudimentary sort
of compiler, which would take simple
BASIC instructions and generate an Assem
bly Language SRC file, I could edit the
file to add the rest of the program,
somehow keeping the floating point rou
tines separate and avoiding the difficult
problem of interfacing with them. AI-

though I did not eventually follow this
route, the concept of generating an
Assembly Language SRC file was retained,
and I got started on the compiler.

The first major landmark was when I
managed to compile a program like this:

10 A = 1
20 PRINT A

What a tremendous achievement!
I knew the addresses of the subrou

tines for COS, SIN, etc., so I was soon
able to compile A = COS (B). The ari th
metic functions were a bit more tricky,
as they involved putting things onto the
stack, but once I had mastered these, and
included simple IF statements, I had an
elementary language for writing BASIC
programs and compiling them. The first
program of any consequence that I com
piled gave a spectacular ten times in
crease in speed, but I have subsequently
realized that this was partly due to the
rudimentary (and hence slow) nature of
the BASIC program. For example, the
statanent:

100 IF A+B*C = 3 THEN GOSUB 500
had to be broken down into:

100 X = B * C
101 X =A+ X
102 IF X = 3 THEN GOSUB 500

I went on to add further essential
instructions such as INPUT, PLOT, etc.,
and at this stage I had achieved my am
bition to be able to compile useful pro
grams, even if they had to be written
specially to match the limited set of

instructions available. I might have left
it alone at this point, but at the insis
tence of fellow members of the UK User
Group (and encouraged in particular by
Dave Thomas) I continued towards the goal
of being able to compile any BASIC pro
gram without imposing restrictions on the
way it was written. And when at last I
thought I had finished and I released
FASBAS VER12.20, I got back not only bug
reports, but also requests for removal of
the few remammg limitations (and in
this case I mention particularly the
Australians as hard taskmasters!). With
the current version (VER12.21) I hope I
have reached a satisfactory level of
transparency, and further versions will
extend the scope of the program to in
clude V9.80 BASIC, generating code for
loading into EPROM, etc.

F ASBAS BASiai
Enough of the history. How does the

compiler work? First it loads from disk a
table of Assembly Language instructions
including a library of subroutines and
the ROM addresses appropriate to the
version of the machine for which the
BASIC program is to be compiled. Then it
assigns input and output buffer space for
the BASIC and Assembly Language files.
The library of subroutines is immediately
transferred to the output buffer, to.
become the start of the compiled program.
During these operations part of the
FASBAS program itself gets overwritten,
and that is why it can not be interrupted
and restarted without reloading from
disk. The library space will be overwrit
ten by lists of variables, etc., but the
table of ROM addresses is retained for
use in generating the compiled program.

Now the BASIC program is loaded to the
input buffer and FASBAS scans through it
looking for DATA statements (also for
mul tidimension numerical arrays, but
these will be discussed later) . If a DATA
statement is found, a label Dnnnn: is
generated (where nnnn is the BASIC line
number), and written to output buffer
together with the actual data. Thus all
the data is gathered in order and suit
ably labeled so that the BASIC functions
of READ and RESTORE can easily be simu
lated by the compiled program.

During the second scan through the
BASIC program, the main body of the com
piled program is written to output buf
fer. To describe this I will give exam
ples, starting with the simplest.

Each line of BASIC starts with a two
byte linking address (pointing to the
start of the next line) and then the line
number expressed as a two byte (16 bit)
binary value. F AS BAS skips over the link
ing address (which is not needed) and
generates a label Lnnnn: for the line
number.

Suppose that the first line is:

10 GOTO 500
FASBAS generates L10: JMP L500. At this

stage we do not know what the memory
address for line 500 will be, but it will
be labeled (L500:) when we get to it, and
the Assembler will insert the actual
memory address later. Similarly GOSUB 500
would become CALL L500. To digress for a
moment, let us consider the difference in
operation between the compiled JMP L500
and the BASIC GOTO 500. The compiled
version contains a direct jump instruc
tion which will be executed almost in
stantaneously. The BASIC interpreter
would operate on GOTO 500 as follows: The
token representing GOTO ·would be looked
up in a tq.ble to find the address of the
appropriate routine, and then 500 would
be converted from the three ASCII charac
ters '5', '0', '0' to a 16 bit binary
value. This value would be compared with
the current line number to see whether
the search for line 500 could be carried
out by scanning forwards from the present
position or whether the search had to be
started from the beginning of the BASIC
program. (It cannot search backwards.)
The search is carried out by reading each
line number and comparing it with 500. If
not equal, then the linking address is
used to enable the interpreter to skip
directly to the start of the next line,
to compare that line number with 500; and
so on. Clearly, for this function the
compiled program can operate hundreds or
even thousands of times faster, depending
on the length of the BASIC program which
has to be searched through.

Now we will deal with a statement like
A= 5. F AS BAS sees that the line begins
with a variable and therefore knows that
it has to deal with an equate statement.
FASBAS keeps a record of variables used
(for assigning memory space at the end),
so first it looks through this list to
see whether it has already recorded
variable A (which will be given the label
VA). F AS BAS also stores VA in a temporary
buffer for use in a moment. Then it skips

over the equal sign and evaluates the
rest of the statement (in this case sim
ply 5). Constants are handled very much
like variables, and 5 will be called K5,
will be recorded in a list, and at the
end will be assigned memory space, into
which F ASBAS will put the 4 byte floating
point value for 5.

LXI H,K5
CALL

LXI H,VA
CALL

Point to !oration containing value 5.
Subroutine to 1ove contents of
identified location to the BASIC
Accu1ulator.
Point to !oration of variable A.
Subroutine to 1ove contents of
BASIC Arcu1ulator to identified
location.

Listing 1

The compiled program generated by the
statement will be something like Listing
1. The BASIC Accumulator mentioned in the
listing refers to a 4 byte store located
at 80DEH to 80E1H, which is central to
all BASIC mathematical operations. Again,
we will digress to consider how the BASIC
interpreter would handle the statement
A= 5, and you will see that it uses the
Accumulator in a similar way, but has a
lot of additional work to do. When the
BASIC interpreter sees a line starting
with a variable, it knows it has to deal
with an equate statement. First it
searches through its store of variables,
looking for A, and if it cannot find A,
it creates a new variable location for A.
Variables are stored at the end of the
BASIC program and are followed by storage
space for arrays. So if it has to create
a new variable location, it must first
move all the arrays 6 bytes higher in
memory to make space (2 bytes for the
name of the variable and 4 bytes to store
a floating point value). The interpreter
pushes the address of the variable lo
cation onto the stack and then checks for
the presence of an equals sign (SN ERROR
if missing). Now it evaluates the rest of
the statement, and since this is the
constant 5, it has to convert 5 from
ASCII to a floating point value, which it
puts in the Accumulator. Then it pops the
address of variable A from the stack to
registers HL and moves the constants of
the Accumulator to the location identi
fied by HL. If the statement to be inter
preted were A=B, then the second part of

the operation would be like the first
(search for variable B, etc., and then
move the contents of variable B's loca
tion via the Accumulator to the location
of variable A).

I hope you can now see why BASIC can
often be speeded up by replacing con
stants with variables which have been
used early in the program: the search for
a variable location will then be faster
than the complicated routine for convert
ing a constant from ASCII to floating
point. The compiled version of a program
saves times by pointing directly to the
location containing the required floating
point value, and it does not make any
difference whether this is a variable or
a constant, or where it is first used in ·
the program.

The mathematical functions such as
SQR, LOG, COS, etc. are simple to deal
with provided that we do not attempt to
delve deep into the subroutines for hand
ling them. If we consider A=COS (B) , the
first part is as described for A=5 above.
To evaluate COS(B) , FASBAS notes that it
has to generate a statement to call the
COS subroutine (it pushes onto the stack
a pointer to the address of the COS sub
routine in its table of ROM subroutines),
and goes on to evaluate the parenthetical
expression. The compiled program will
follow the principle of putting a value
(in this case variable B) into the BASIC
Accumulator, calling a subroutine to
operate on the contents of the Accumula
tor, and then expecting to find the
result of that operation in the Accumula
tor. So the compiled version of A=COS (B)
would be as in Listing 2.

LXI H,VB
CALL

CALL

LXI H,VA
CALL

Point to !oration of variable B.
Subroutine to 1ove contents of identified

; location to BASIC Arru1ulator.
; Subroutine to generate COS(B) with
; result in Accu1ulator.
; Point to !oration of variable A.
; Subroutine to tove contents of
; Accu1ulator to identified location.

Listing Z

When we start looking into an example
of simple arithmetic, the same principles
for using the Accumulator will apply, but
there is an added complication that we
now have one more variable (or constant)
to handle. For the statement A=B-C, we

know that we have to get the result of
evaluating B-C into the Accumulator so
that it can be moved to the location for
variable A. As F AS BAS works through the
line, it finds variable B and generates
instructions to move it to the Accumula
tor. Then it finds the minus sign, so it
generates an instruction to PUSH the
contents of the Accumulator onto the
stack. Now it generates instructions to
move variable C to the Accumulator, to
POP variable B from the stack to regis
ters BC and · DE and to call the Subtrac
tion subroutine. Now B-C is in the Accum
ulator. This principle could easily be
extended to handle A=B-C+D, and the
result of B-C would now be pushed onto
the stack, variable D would be moved to
the Accumulator and the Addition subrou
tine would be called, resulting in B-C+D
in the Accumulator. The compiled program
for A=B-C+D would look like Listing 3.

LXI H,VB ; Point to variable B.
CALL .••• ; Move variable B to Accuaulator.
CALL ; Push variable B onto stack.
LXI H,VC ; Point to variable C.
CALL .••. Move variable C to Accumulator.
CALL

CALL
LXI H,VD
CALL
CALL

UI H,VA
CALL

Call subtraction routine (which includes
instructions to pop variable B fro• stack
to registers BC and DEl.
Push result B-C onto stack.
Point to variable D.
Move variable D to accuaulator.
Call addition subroutine (which
pops B-C fro; stack to registers).
Point to variable A.
Move B-C+D from Accu1ulator to
location of variable A.

Listing 3

Cueties

5 FLOT .:;·;.: C= 0
10 PLOT 27,24,12

No doubt you will comment that this is
very long- winded. The final compiled
version takes up 36 bytes of memory space
compared with 7 bytes for BASIC (or 12
bytes if you include line number, linking
address and line terminator). I am afraid
this is the penalty you have to pay for
getting an increase in speed.

The method described for evaluating
and compiling an expression like A=B-C+D
is fine as long as you are simply working
from left to right. I will leave the
delights of carrying out arithmetic op
erations in priority order until next
time, when we will also look at some of
the more complicated functions.

Meanwhile I should include a note of
explanation about the SRC file, which
FASBAS generates as an intermediate step
towards the final compiled version of a
BASIC program. I have described the out
put of FASBAS as if it were Assembly
Language, and originally it was precisely
that. But I found that the SRC file was
typically 10 times the size of the orig
inal BASIC program, so I' tokenized many
of the instructions to save space. 'JMP'
becomes lower case 'j ', 'CALL' becomes
lower case 'c', etc., but if you do not
have a lower case character generator you
will see a lot of graphic symbols. Also I
omitted all spaces, commas, and carriage
returns, and the H character denoting
hexadecimal values. All of this serves to
disguise what is really genuine Assembly
Language, but the special version of
Assembler (FBASM) sorts it all out.

NEXT TIME: Expression evaluation and
string handling. ~

20 FOR '<'= OTO 31STEF· 4
PLOT 6,C ·-·It:"

4.-.)

30
4(1
50

FOR ;,;= 0TO 62STEP 3
PLOT 3,X,Y.ll6,117.32
PLOT 3,i·Vr'+ l.ll8.ll':;,,32

60 PLOT 3,X,Y+ 2.32.116,117
70 FLOT 3.X.Y+ 3.32.118.119
:30 t48<T i<: C= C+ 1: HE~~T '/

GOTO 10

I3

Go the Superior Way with your IRA

by Dous Van PuUe
18 Cross Bow Drive

Rochester, NY 14624

This article is for you Compucolor/Inte
color users who have invested or plan to
invest in an IRA. Is there one of you
that would pass up the chance to earn
thousands of ext-ra dollars on your IRA
investment using a safe and simple
rrethod? I think not! My goal is to per
suade you that this can happen, and that
it will require very little effort or
risk on your part. It all begins with an
IRA investment, but it goes one important
step beyond. In carrying out this step,
your computer can be a real profit-making
partner.

Last year was a landmark in the evolution
of government approved retirement plans.
For the first time, individual retirement
accounts became available to all workers.
Regardless of other plans, you could set
up IRA's for a maximum of $2000 for both
yourself and for your working spouse.
And millions of Americans did just that.
That act allowed them to:

o Deduct the amount invested from their
gross income before taxes - an
immediate tax savings. And •.

o Participate in a myriad of investment
vehicles to accummulate tax deferred
savings until retirement at a minimum
age of 59 1/2 years.

It sounds like the American dream tax
shelter, doesn't it? It certainly is,
especially when you invest that IRA
wisely.

~4

The wise folks have their IRA's in in
vestments that stress high interest or
high dividends. Its a simple economic
fact that one can profit immensely from
the compounding of high yields. The
preferred investments include money mar
ket funds, utilities, bonds, and high
yielding stocks. If you are not invest
ment wise, you can still have access to
all these investment vehicles without
brokerage fees by participating in a
mutual fund. If you are already doing
all of this and are wondering where all
the extra thousands are coming from -
hold onto your socks because I'm going to
convince you that you can achieve even
greater returns.

I propose to you a method that will allow
you to participate in all of the above
vehicles and skim off the cream from each
one at low risk, without much effort, and
all without much investment savvy.
Sounds almost too good to be true,
doesn't it? No, it's not against the
law! Read on further .••

Mutual funds not only offer all the in
vestment vehicles I've talked about, but
they allow you to switch from one vehicle
to another with a toll-free telephone
call - in other words, you are your own
money manager. You can switch your IRA
when the time is right to maximize your
yields.

Why does this opportunity arise? Con
sider Figure I : Interest Rates vs. Stock
Values. It is generally accepted that as

stock prices increase, interest rates
decrease, and in the opposite manner, as
stock prices decrease, interest rates
increase. Wouldn't it be great if one
could take advantage of both high stock
values and high interest rates? Well, it
is possible by making use of a strategy
originally proposed by R. Fabian [l].

STOCK INTEREST STOCK INTEREST
VALUES RATES VALUES RATES
------ -------- ------ --------

\ I \ I
UP 1\ \I \1 1\ UP

II II II II
II II II II
II II II II
II II II II
II II II II
II II II II
I\ \1 DOWN \I 1\

I \ I \

FIGURE I: STOCK VALUES vs. INTEREST RATES

What is the strategy? Consider Figure
II, a plot of a typical stock value over
a two year period. This plot illustrates
the basic strategy in two axioms.

On a r1smg stock market, you switch
from an interest fund to a stock fund.
Suppose your IRA is invested in a money
market fund which has a nice interest
rate, when the stock fund begins to
appreciate in value. As the money
market interest rate starts to drop,
you'll begin to wish you could get some
of the stock fund action. You can get
that action by a simple telephone call.
The mutual fund will sell your money
market shares and invest all the pro
ceeds into the stock fund you specify.
Now you can profit from the appreci
ation in the stock fund shares and also
collect the stock fund dividends.

- On a falling stock market, you switch
from a stock fund to an interest fund.
Sooner or later the stock fund shares
will begin to depreciate in value. By
making another telephone call, you con
vert your IRA back to money market
shares. Now you can begin to proft
from the increasing interest rates in
your money market shares. Meanwhile,
you are patting yourself on the back
for taking that nice capital gain from
the sale of your stock fund shares.

I know that you are thinking that it's
all too neat. After all, Figure II is
plotted after the fact, and everybody
tends to be 100% accurate with hindsight.
So •••

I SWITCH TO INTEREST FUND
I ·.

F I *
u I
N I *
D I

I
v I * *
A I
L I
u I .. .
E I SWITCH TO STOCK FUND

I
I
+------+------+------+------+------+------+------+------+

TWO YEAR PERIOD

FIGURE II: STOCK FUND FLUCTUATION

Where does one get the switch signal in
real time?

o One way relies upon my computer pro
gram, STCXK FUND swrn:H STRATEGY
PROGRAM, to help you make the switch
decision. The program allows one to
calculate the direction of the stock
shares each week based on data taken
from his local newspaper. The data
input required by the program are the
week-ending values of the stock
fund(s), and the Dow Industrial and the
Dow Transportation indices. A com
parison is then made between the week
ending values and their respective 39-
week averages. The individual com
parisons are then combined to compute
the upward or downward direction of the
stock fund shares.. A menu of the pro
gram functions is listed on Figure III.
Contact me if you'd like more details
[2] on the stock program.

STOCK FUND SWITCH STRATEGY PROGRAM

1. CREATE STOCK FILES.
2. ENTER WEEKLY VALUES.
3. PRINT DECISION TABLE.
4. PRINT & EDIT DATA FILES.
5. INPUT MULTIPLE WEEKS OF DATA.
6. PLOT STOCK & DOW FOR ONE YEAR.
7. ADD A NEW STOCK FILE.
8. EXPLANATION OF PROGRAM STRATEGY.
9. STORE DATA AND END PROGRAM.

FIGURE III: SFSSP PROGRAM MENU

o Another way is to sub
scribe to a financial
newsletter [3] that
will give you the
switch signal.

NICHOLAS
FUND

funds. The switch method results in about
30% better return for the Nicolas Fund,
while it yields a 560% greater return
over the holding method for the Penn
sylvania Mutual Fund. That is the result
of compounding that extra return over a
10 year period! Now you can visualize
the source of those extra thousands of
dollars for your retirement.
You can manage your own IRA's aggressive
ly, using a simple, relatively risk free
method to earn thousands of extra dollars
for your retirement. Are you ready to
JOin me now in reaping the extensive
benefits that are ours for the taking? -=
[1 J Based on article in PERSONAL FINANCE,

Vol. IX, No. 11, entitled "Beat The
Market with No-Load Mutual Funds" by R.
Fabian, an SEC-registered investment
advisor.

[2] Send $1 to cover postage for copies
of the SFSSP program documentation and
the article in footnote 1:

[3] TELEPHONE SWITCH NEWSLETTER, P.O. Box
2538, Huntington Beach, CA 92647.

PERCENTAGE GROWTH RATE+
GAIN (%)

BUY TELE- BUY- TELE-
AND PHONE AND PHONE
HOLD SWITCH* HOLD SWITCH*

277 378 14.2 17 .o
Both the SFSSP Program
($39.95) and a typical
newsletter subscription
($97 /year) are tax de
ductable.

PENNSYLVANIA

What are the potential
gains of the dynamic
switching method over
the typical static hold
ing method? Consider
Figure IV which compares
the methods for two

I6

MUTUAL FUND 115 528 7.2 20.2

+
*

COMPOUND ANNUAL GROWTH RATE.
ASSUMES 6% YIELD ON MONEY MARKET FUND.

FIGURE IV: SWITCH vs. HOLD STRATEGY COMPARISON
FOR 10-YEAR PERIOD ENDING 12/31/81

Transformers (not electrical)

by David B. Suits

Here's an interesting fact about num
bers. Given any positive integer (i.e.,
1, 2, 3, ••.), if it is odd, then multi
ply it by 3 and add 1. Otherwise, divide
it by 2. Repeat the process for the re
sult. Continue this for as long as you
please. Curiously, the result you get
will eventually be 1. Any positive
integer will "transform to 1". (I don't
know whether anyone has actually been
able to prove that yet.) You can test
this to your satisfaction using the
program in Listing 1.

Actually, this might just as well be
called "transform to 4" or "transform to
2", since, if you don't stop at 1, the
next step will be 4, and the next will
be 2; and then you'll be back at 1, and
you'll loop in this fashion forever.
Perhaps it should be called "transform
to the 4-2-1 loop".

You can enhance the transform to 1
program by printing out a list of num
bers along with the number of steps it
takes to transform to 1. The number of
steps is usually surprisingly small. And
there are a few peculiarities: 5 takes 5
steps. That's a nice symmetry. Let me
invent a term. I'll call any number which

is equal to its transform step count an
isostep. Is 5 the only isostep? I don't
know how to prove whether it is or not;
but the program in Listing 2 will help
you look around for others. I put vari
able TN into program ISOSTEP so that you
can use 4 or 2 as the terminating number
and look around for isosteps in transform
to 4 and transform to 2 sequences.

Incidentally, can you think of other
transforms which will necessarily lead
to a final loop? I don't mean trivial
transforms such as "If n is odd, then
add 1, else divide by 2." I mean,
rather, simple transforms which yield
surprising results. And what's more, the
transform ought to have the same result
for any number. That is, the transform
"If n is odd, then add 1, else subtract
1" will of course lead to a simple loop
(and right away). But it won't be the
same terminating condition for every
number. Just to get you started, here is
an alternative version of the transform
to 1: "If n is odd, then N=3*N-1, else
N=N/2." In this case, 1 is subtracted
from 3*N instead of being added to 3*N,
as it is in the original transform to 1.
Will this work? And if so, will there be

Listing Z

Listing 1
10 REM Program TRANSFORM TO 1
20 PRINT
30 INPUT "Enter any positive integer: ";N
40 IF (N <> INT(N)) OR (N < 1) THEN 30
50 COUNT = 0
60 IF N = 1 THEN 120
70 PRINT N;
80 IF N/2 <> INT (N/2) THEN N = 3*N+1 : GOTO 100
90 N = N/2
100 COUNT = COUNT+1
110 GOTO 60 : REM Repeat until N = 1.
120 PRINT N : REM It will be 1 when it gets here.
130 PRINT COUNT" steps."
140 GOTO 20

10 REM Program ISOSTEP
20 TN = 1 : REM Terminating Number.
30 LO = 1 : MAX= 100 : REM Look at numbers LO .. MAX.
40 PRINT
50 FOR J = LO TO MAX
60 N = J
70 REM Transform it to TN and count the steps it takes.
80 COUNT = 0
90 IF N = TN THEN 160
100 IF N/2 <> INT(N/2) THEN N = 3*N+1 : GOTO 120
110 N:N/2
120 COUNT = COUNT+1
130 GOTO 90
140 REM Print the original number and its step count.
150 REM If the number is an isostep, print it in red.
160 IF J = COUNT THEN PLOT 17 : PRINT J,COUNT, : GOTO 180
170 PLOT 18 : PRINT J, : PLOT 23 : PRINT COUNT,
180 NEXT J

17

the same isosteps as m the original
transform to 1?

All this is to whet your appetite.
There's a lot to investigate here. For
example, do prime numbers play any
peculiar role in the transform to 1 (or
4 or 2)? Are there numbers whose step
count is prime? Are there prime iso
steps? Is there a relationship between
any two numbers which have the same step
count (e.g., 5 and 32)? Is there a rela
tionship between any two isosteps? Is
there any way to predict what a number's
step count will be, or whether it will be
an isostep? And.... Well, you get the
idea.

Happy transforms. II:

tlnQllnssifitb Abutrtising

**

FOR SALE: Compucolor II V6.78.
16K RAM. Analog board needs repa ir .
Sold as is. Money order only, please .
$450.

Roland Lundberg
1506 44th Ave. SW
Seattle, WA 98116

**

FOR SALE: Intecolor 3621 V8.79.
16K, standard keyboard. Includes
Programming and maintenance manuals.

Excellent condition. Asking $800.

Stephen Zehl
19 Courtenay Circle
Pittsford, NY 14534
(716) 586-3787

**

Repairing BASIC Line Numbers

by Mike Barrick
Valley Forge High School
9999 Independence Blvd.
Parma Heights, OH 44130

A short time ago a single bad memory
location in my CCII damaged many of my
programs. When parts of the program would
scroll through the bad memory location,
the ASCII value would change by sixteen.
For example, the letter "T" would become
"D" because the ASCII value would be
reduced by sixteen.

After replacing the bad memory IC, I
began to repair the programs. This was
time consuming, but easy using FRED!.
Unfortunately, some line numbers had been
changed, and FRED I doesn 1 t edit line
numbers. I had repaired a few line num
bers in the past using tips from Dennis
Martin 1 s article "How to Poke Without
Getting Jabbed" in the Dec/Jan 1980
Colorcue, but this time there were too
many to repair using that method.

I wrote the following program to ap
pend to each program to be repaired. The
program is begun with a RUN 65000 and
requests a START ADDRESS where a scan of
memory is to begin looking for a line
number. The starting address is usually
the beginning of BASIC in RAM, but may be

a best guess of the memory location where
the line number that is to be repaired is
lbcated. Beginning at the starting ad
dress, the program scans memory looking
for a zero which indicates the end of a
line of BASIC coding. It then jumps to
the memory location of the next line
number which is contained in the third
and fourth bytes beyond the location of
the zero. The line number is converted
from hex to decimal and displayed. If the
line number is the one to be repaired, it
allows a correction to be made. If there
is still quite a span to the desired
number, enter a zero and the program
returns to START ADDRESS for a better
guess at the location of the desired line
number. If the second guess brings the
user a few line numbers before the de
sired one, a move to the line number to
be repaired can be made by entering the
same line number as displayed and the
program moves to the next line number.
This procedure can be repeated until you
reach the line number to be repaired. ~

** 1000 REM
2000 REM *
3000 REM *
4000 REM *
5000 REM *
6000 REM *

CORRLN - REPAIR DAMAGED LINE NO.
M. P. BARRICK - VFHS - 07/83

ALL INTECOLORS - USE CORRECT AD

*
*
*
*
*

7000 REM **
8000 REM
65000 REM APPEND THIS PROGRAM TO REPAIR A DAMAGED LINE NO,
65050 REM BASIC ON THE CC-II STARTS AT 33434
65100 INPUT "START ADDRESS - ";AD
65200 REM LOCATE FIRST LINE NUMBER AFTER START ADDRESS
65210 IF PEEK(AD)=O THEN GOSUB 65300
65220 AD=rAD+1
65250 GOTO 65200
65300 REM CONVERT LINE NUMBER TO DECIMAL
65j10 LN~PEEK(AD+3)+PEEK(AD+4)*256
65330 GOSUB 65400
65340 AD:-AD+4.
65350 RETURN
65400 REM DISPLAY LINE NUMBER AND CHANGE IF DESIRED
65410 PRINT
65420 PRINT "CHANGE LINE NO. ";LN;" TO- ", . INPUT "";CN
65430 IF CN20 THEN GOTO 65000
65440 HB=INT(CN/256) : LB=CN-HB*256
65460 POKE AD+3 ,LB : POKE AD+4 ,HB
65490 RETURN

I9

Animated Hourglass

by Tom Andries
815 W. Douglas Rd. Lot #1

Mishawaka, IN 46545

David Suits's book Color Graphics for
the Intecolor 3651 and Compucolor II
Computers impressed me with the speed and
elegance of animation that could be
achieved using the PRINT command. It also
made me wonder how effective and impres
sive the various graphic plot modes
incorporated in the CCII could be in an
animated situation. At first it appeared
that most of the plot graphics were too
sluggish for most animation purposes,
but I finally decided that what we
needed was merely an appropriate subject.
Sand flowing in an hourglass struck me
as being a suitable compromise for speed
and realism.

The appended program is well-remarked
and should generally be easy to follow.
However, a few words are in order about
the routine and subroutines which move
the "sand" from the top of the hourglass
to the bottom.

Lines 1070 through 1500 cause the
screen memory location where the "sand"
is, and where it is going, to be PEEKed
at in a predetermined sequence. The
contents of a given location will then
determine what is POKEd in by the sand
movement subroutines. Only the locations
actually being operated on are looked at,
to keep the routine as speedy as pos
sible. My first intention had been to
sequence through the affected cursor
positions, but it soon became clear that
it would be more efficient to use plot
positions and derive the respective X
and Y coordinates and screen memory loca
tions from them.

The term "pass" in
material refers to the

20

the descriptive
manipulation of

the hourglass:
bottom-left and
order.

top-left, top-right,
bottom-right, in that

The routine moves one "grain" of
"sand" at a time in each of these quad
rants until the right-center column (plot
column 63) is reached. Then the starting
pass values are reset for the next dia
gonal line in each of the four quad
rants.

The subroutines to drop and heap the
sand use a modified form of the PLOT
2,254,x plot submode. Those of you
familiar with the plot submode know that
each cursor position on the screen is
composed of eight blocks, called plot
blocks, which can be turned on or off
depending on the value specified for x.
Figure 1 shows a cursor position divided
up into plot blocks and the value as
signed to each block. To create a plot
character using this submode, the desired
plot blocks are filled in and the binary
weights associated with each filled-in
block are added together. This is the x
value for that particular character. It
should be obvious that any combination of

· plot blocks can be represented by values
from 0 to 254. The value 255, which
should turn all the blocks on, cannot be
used as it is reserved to signal an exit
from PLOT mode.

1 16
2 32
4 64
8 128

Figure 1

Actually the plot subroutine is not
used at all; the desired x values and
CCI codes are POKEd directly into screen
memory. This is not only faster than
using the PLOT mode, but has the added

· advantage of allowing us to use the 255
character, which of course is outlawed
in PLOT mode. A plot character with a 255
value looks just like a space on the
screen, but unlike the space, which is
printed in the current background color,
the plot character is printed using the
foreground color.

found at the top, it has to be yellow,
and at the bottom, cyan. When a space is
found its location determines what re
places it. If the space is in the top
left quadrant, plot character 16 is used;
if in the top-right quadrant, plot char
acter 1; bottom-left, plot character 128;
and bottom-right, plot character 8. From
now on when we fill in any position with
a solid color it will be done with the
255 plot character.

Referring again to Figure 2, and com
paring it to the checks made in the

CCI Code = 30(Cyan on yellow) + 128 = 158
I I <------------- Left _______ J__)
I I

I

Character
Plot code

16 17 49
I

51 115 119 247 ~5~ 127 119 55 51 17 19
I I

I I

<------------- Left -------~--)
:<-1---------- Right -----------> I

BOTTOM

Character 128 136 200 204 236 238
Plot code

254~25~ 239 238 206 204 140 136 8
• I

CCI Code= 51(Yellow on Cyan) + 128 = 179

Figure 2

Figure 2 shows the sequence used to
advance from one sand grain configura
tion to the next. The progression is from
the outer edges toward the center. The
very first thing the PEEKer will find in
each virgin screen position is a yellow
space (32 in the even-numbered screen
memory location and 24 in the next higher
screen memory location) at the top, and
a cyan space (32 and 48) at the bottom.
The CCI codes represent black on yellow
and black on cyan, respectively, because
that is what we used when the hourglass
was first drawn. We don't have to check
for the color, though. If a space is

subroutines (lines 1600 to 17 50 for the
top and 1830 to 1960 for the bottom), we
can see that the plot character value
found in a given screen location deter
mines the next code to be inserted there.
For instance, if either a 49 or 19 is
found in a screen location at the top of
the hourglass, a 51 replaces it. A 119
will change to either a 24 7 or a 12 7
depending on whether the X cursor value
is less than 31, or greater than 30
(left or right side). We only have to
POKE the CCI code in once, right after
finding a space, because once we start
painting a location either yellow on cyan

or cyan on yellow, it will never change
to anything else.

angular characters which form the angled
glass at the top. These are not plot
characters and must be handled differ
ently. Lines 1730 and 1740 make sure
these change from yellow to cyan when
the adjacent cursor positions are all
cyan. We don't have to worry about this
at the bottom as the sand never gets high
enough to reach the angled glass. All we
have to do there is freeze the X pos
ition value once we reach the edges, and
increment the Y value as each row fills
with sand. Line 1480 checks the last top
location to be filled in. If it is cyan
we're done except for erasing the re
mainder of the sand stream.

You may have noticed that the CCI
values are 158 and 179 for top and bot
tom respectively. At the top we want to
end up with cyan on yellow which is CCI
code 30, and at the bottom we want yellow
on cyan which is CCI code 51. To each of
these we must add 128. This is how
screen memory knows to use a plot charac
ter. Without the added 128, we would get
a character from the special character
set.

The routine for the bottom of the
display is similar but not as complex as
the top; however, we must also check the
bottom for the straight vertical yellow
line that makes up the 11 sand stream 11

(character 110 from the special character
set). Line 1850 takes care of this.

All in all, I think the action is
impressive and realistic. I was pleasant
ly surprised to discover that the sand
completes its movement from the top to
bottom in 3 minutes and ten seconds,
which is roughly the time it takes for a
great number of egg and telephone-call
timers of this type. c:

The subroutine composed of lines 1770
through 1810 provides the correctional
data to keep our starting pass values
accurate when we reach the special tri-

22

1 F:El'l
2 F;EI'I
.;, REM
4 REN
5 F:EH
b F;Ei'l
7 F:EH
8 REi'l
·;a F;EN

AHUIATED HOURGLASs·· BV TON At-lOF:IES
815 W. UOUGLAS RD. LOT #1

t'II SHAWHKA, WD I ANA 4C545
SEPTEI'IBER 2L 1983

DRAW THE HOURGLASS

1121 PLOT 6, e: F:Ei'l SET COLOR, 8LACK OH BLACK
20 PLOT 12: REI'I ERASE SCREEN
30 PLOT 15: F:EI'I SNALL CHARACTEF:S
40 PLOT 27, lO:F:EI'I WRITE UERTICAL
50 PLOT 29: REi'! ~tAKE SURE FLAG IS OFF
60 F:El'l *'** DRAW LEFT UF'F: I GHT , .. ,..,..
70 PLOT 6, 56: F:Ei't SET FRAI'tE COLOR - BLACK Oti I.JHITE
80 FOR i<= 1'3TO 21: REI'I CUF:SOR COLLII'IH FOR LEFT UPRIGHT
·30 PLOT 3, t-:, 1: F:EI'I SET CURSOR START U~G POSIT I Oti
180 FOR 'I= OTO 30: REI't CURSOR ROW
110 PLOT ·;.6: REI'I PF: ItH CROSSHATCH CHt=tRACTER
1.20 ti8<T '1: REI'! tiE}-:T ROW
130 PR It~T : F:EI'I C.• OW T LET THE CHAF:AC TER COUt~TER GET ','OU '
140 tiEi<T ;.:: REt·l tiEi<T COLUI'IN
150 F:Ei·l "*'+< DRAW RIGHT UFF:IGi-iT
160 FOR :'<= 41 TO 43: F:E!·l COLU!·lti
170 PLOT ::;, i':.l: RE!·I SET CUF:SOR
1:.:0:0 FOR \'= 0TO 30: F:Ei't F.:OW
1·::.0 PLOT ·?6: k:EI'l i=·R ItH CROSSHATCH
200 ti8<T '1: F:EI'I t~Ei<T ROW
:ao PRINT :REI·I WATCH ThE CHAF:ACTEF: CGUHT'
2.2~1 t~8<T :,-;: RE!·l HE:<T COLUi'lti
230 REI'1 +<'+<* C.•RAW TOP CF:OSS-I·tEI·i8EF:
241<:1 PLOT 27, .24: F:E!·l SET PAGE l'liJC•E .. I..JR I TE LEFT TO RIGHT
250 FOF: '/= 2TO 3: F:El'l TWO ROu.IS HIGH
260 PLOT 3, 22, '/: RE!·l SET CUF:SCrF.:
270 FOF: ><= 22TO 41i:1: RE!·I 1·::; COLU!•lHS lHC.'E
280 PLOT ·:;.t.: F:EI'I PRit-IT CROSSHATCH
2'30 NEXT ;.; : RE!·1 ti8<T COLUI·l~~

300 PRit-IT
310 t-t8<T '1: REI'l t·~E>,:T ROW

880 PLOT 6 , 6: F.:Et·l C', 'AH Ot~ BLHC.k
8'30 PLOT 124: F.;EN LEFT-TO-RIGHT CIIAGC,tlAL
'3\010 PRitH :RE~I CHF1F.:ACTER COUhT
910 ~~E'<i \': Ral ~lE:<T F.;OI.oJ TILL C•O~lE
'320 FOR I== 1 TO 1008: ~lEi<T I: F.;Et·i :.•JH IT AloiH I i .. .E
'330 REt•l *'** START THE SAiK• STF.Erit·1 ::t : . ..-

340 PLOT 3 , 64,0: F.;Ef'l HIC.oE THE 'liS.i:8LE CUF.SC.~
950 FOR 'I== 17TO 28: F:El'l 12 ROldS OF '...! EF.:TICAL i i::L.~....GI.J L.i:r;ES
'360 PLOT 3 .. 127: REt·l BLI~lD CUF;SOF: .. Si·IALL Cf-iriF..F.CIC:;;;S
970 PLOT 31 : F.: E~l COLU~lt~ < CEiHEF; OF SCREEll)
980 PLOT '•': RE~l ROW
930 PLOT 51 : RE!'l 8L I HD CUF:SOR CCI CODE - '/ELLOt.J G~1 C,'rii·l
1800 PLOT 110: F:El·l I)ERTICAL LHiE <SEE CHF1F.:ACTER SET>
1010 FOR I== 1 TO 15: NE;,:T I : RE~l I .• JA IT A 8 IT TO SLCdd STREFit•l
1820 ~·lE,<T 'y': F;Et·l t~E:,<T ROI.J
1030 REN
1040 RE~l
1050 RE!'l

, .. ,.. ... ROUT It~E TO DROP SAND

1060 RE~l ·SET UP STARTit~G PARAt·lETERS

1070 C= 0: RE~l COUt-ITER TO KEEP TRACK OF PASSES
1080 TL= 62: REN TOP-LEFT COLU~ltl
1090 TR= 63: REN TOP-RIGHT COLUt·1tl
1100 BL= 62: RE~l BOTTm1-LEFT COLUt·IN
1110 SF.:= 63: REN 80TT0~1-RIGHT COLUt·lH
1120 T'/= 95: RE~1 TOP F:OW
1130 \'8= 11 : F.:El'1 BOTTO~! F;OW
1140 L T= 47': REl·l TOP-LEFT EDGE Lit·liT
1150 RT= 78: F;E~1 TOP-RIGHT EDGE Lit·liT
1160 LB= 43: REt·1 BOTTON-LEFT E!:OGE Lir'liT
1178 F.$= 82: F:El·1 80TT0~1-RIGHT EDGE LitHT
1180 '/T= ·:;.5: F:El·l TOP ROW Lit·liT
11'30 8\'= 11: RE~l BOTTO~! ROW L U1I T
1200 CS= 29772: RE~1 SCREEN CHECK FOR TOP EDGE LitHT AC•.JUSTt·1EJ·~T
1210 LS= 32: RE~l CHECK 'JALUE FOR TOP-LEFT C.•IAGOHAL FLOTTIHG
1220 F:El'l - THE ROUTWE -
1230 X= INT <TL/ 2): F.:El•l DEF.:IUE TOP-LEFT COLUt·1H FF.:Ot·1 PLOT r:·OSIII(ji1
1240 \'= WT 0: (127- T\')/ 4):F:El·1 C.•EF:I 1.)E TOP-LEFT ~:OW
1250 SC= 128* \'+ i<+ ><+ 28672: REN CALCULATE SCF:EEll t·lEl·IOF;',' LOCATIC1H
1260 GOSUB 1618: F.:Et·l SEE I.JHAT · S IN THERE HtlD F£F'LF1CE IT
1278 i<= INT O:TR/ 2) : RE~l DERl'JE TOP-RIGHT COLUI·\~·4

320 REl'l *'•* C.•RAW BOTT0~1 CROSS-t·1E~18ER ***
330 FOR -'i = 29TO 30: RE~1 TWO ROWS
348 PLOT 3, .22, \': REt·l SET CUF:SOR
350 FOR ;,;::: :2.2TO 40: REl·l 1'3 COLUi·lt·lS
360 PLOT '36: REN PF: ItH CROSSHATCH
371<:1 ~~8<T i< • REN ~lEi<T COLUt·lt..j
380 P;;:nn
3'31<:1 ~~8,:T 'r': RE~1 HE:<T ROtd
400 RE1'1 **"'
410 PLOT 6,48:RE~1

DRAW TOP AND BOTTON STF:AIGHT-SWED GLASS
SET GLASS COLOR <BLACK Ot4 C'.,'AH)

420 FOR V= 4TO 6: RE~l
430 PLOT 3 , 22, ·,·: REl·l
440 PRitH SPC(1'3): REI'I

THREE ROWS OF STF~AIGHT-SIDED GLASS
SET CUF:SOF.: STAF;T

450 1~8<T \ ' : REI'1 t~E)<T
460 PRIIH : REN Dot..jE
4 70 REI'! BOTTO~!

PR It~T C\'A~~ SPACES
ROW
AT THE TOP

480 FOR \ '== 26 TO 28: REt·l THF:EE ROldS OF STRAIGHT-SI!>ED GLASS
49€1 PLOT 3, 22, ',.•: RE~t SET CUF:SOF.: STAF:T
500 PRHH SPC(1'3): F.:E~l C'/At-1 SPACES
510 H8<T '1: RE~1 ~~E;,:T F.:Otv
520 PRINT : RE~1 DO~~E AT BOTTON
530 RE!'l *** DF.:AI.v CLEAR SLOPED GLASS AT TOP .too t oo t;

540 PLOT 3, :2,2, 7: RE~1 CUF.:SOR STAF.:T
550 PLOT 124: RE!·l LEFT-TO-RIGHT DIAGONHL <SEE CHAF.:ACTEF.: SET>
560 PRINT SPC< 17);: F.:E~I C'/AN ·SPACES
570 PLOT 126: REl·1 RIGHT-TO-LEFT DIAGOtlHL <SEE CHAF.;ACTEF: SET:.O
580 PRINT : RE~1 DONE WITH C'/AN
5'3<0 REl·l *'"'* FILL TOP WITH SHt~D ... ,..,t>
600 PLOT 6, 24: F.:E~l BLACK ON ','ELLOW
-610 REl•l SET STARTit~G 'JALUES
620 ~~= 22: RE~1 COLU~lH

· 630 SP= 17: F;EN ~iU~18ER OF ','ELLOtJ SPACES
64€1 FOR 'I= 8TO 15: F:El·1 ROW ~lU~18EF5

65€1 i\= i<+ 1: REl·1 ItlCRE~IEtH COLUt·ltl
668 SP= SP- 2: RE~1 DECF:EASE t~Ut·18ER OF SPACES 8',' -
670 PLOT 3, X, '1: RE~1 CURSOR STAF;T
680 PLOT 124: RE!·l LEFT-TO-RIGHT DIAGOHFIL
6'3<0 PRINT SPC O: SP): REt·! '/ELLOI.J SPACES
700 PLOT 126: REN RIGHT-TO-LEFT C.• I AG0~1HL
710 PRINT :REl'1 CLEAR CHHRACTER COUtH BUFFER

1280 SC= 128=i< 'I +)<;+ :~:+ 28672:F:EN CALCULATE IGP-PIGHT 3CFEC:i~ LOCriTWtl 720 NEXT \': REt-1 t~E~:T ROW UNTIL C•ONE AT TOP

GOSUB 1610: REl·t REPLACE THE CONTEHTS
TL= TL+ 1:REt·l UPCJATE TOP-LEFT PLOT FOSITIOt~
TR= TR- 1:RE~1 UPDATE TOP-RIGHT PLOT POSITIOti
TV= TY- t:RE~1 UPDATE TOP PLOT POSITIOH ~;01 .•. 1

IF TR= 62THEI~ C= C+ 1:GOSU8 1778:F:El·1 SEI :_;p ~iE:<T FHSS
'y'B= '18+ l:RE~l UPDATE 80TTOl'1 F.:OW PLOT POSITIOtl
i~= INT <BL/ 2): F:El'l DERI 1JE BOTTOl'l-LEFT CGLU~I~l

'I= INT <<127- '/8)/ 4):REl'1 vERI'.'E 80TTm1-LEF7 F:OW
SC= 128>~' '•'+ :<+ ~<+ 28672:RE~1 CALCULATE SCF:EEH :·!EI·IOF:\' L..OC.r1TIGH
GOSUB 1830: RE~1 SEE I..JHAT ' S THEF:E, POKE SG~lETHW;j tlEI.o.l
BL= BL+ 1 :RE~l UP(.'I~TE 80TTOl'1-LEFT PLOT POSIIIC•h

1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
13'30

,730 RE~t ,.,,.,* DRAW ·. WAIST . C1F GLASS
.740 PLOT 6, 6: F.:Ei·l C'r'AH ON BLACK
750 PLOT 3, 31 , 16: F:Et·l SET CUF.SOF: TO CEiHEF; 1jF [.o I SF'Lri',
760 PLOT 120• REt·1 DF:AloJ ><:-sHAPEi:• CHARACTEF: •.:SEE CHF1F:ACTC:R SEI:·
7'70 REt·1 **'+< DRAW SLOPED 80TT;jf•1 GLASS *'**
780 ;,:= 31 : REt•1 COLU~1N STAF.:T
7'?0 SP= - 1: F.:Et·l HU~IBEF: OF SPACES
800 FOR \ '= 1 7TO 25: REt· I ~~ ItlE ROtoJS
8H:1 i<= i<- 1:F:Et·1 C.•EC.F:Et·IEHT COLUi·IH i='OSITI<::rl
820 SF= SP+ .::: F:Et·l IHCFEASE tlt..;~18Er', .:;;:= ::;p:=,c;;::;
830 PLOT 6, 6: F:EN C'iAH Otl E:LACl<
840 PLOT 3, i<, o,.•: F.;Et·l SET CUF.:SGF: · STAP7

:"**

IF BL= 63THEI~ BL= 62- C: F.;EN SET UP FOF: tiE:.,:T F·FtSS
IF BL= < LBTHEH BL= LB+ 1: F:El·l PAST LEFT EvGE7· FFEE::E 1 , ·

X= I t-H .; BR_... 2) : REl'1 DER I UE 80TTOl'l-F: I GHT CC,LUt·lti F·OS IT I C<H

.. 1400
141121

"' 142121

850 PLOT 126:F.:El·1 RIGHT-TO-LEFT DI;;G0~1F1L

860 PLOT 6 , 48: F:Et·1 BLACl< 0~~ C'.."At-4
870 PRitH SPC < SP) : RE~I C', 'F1H SPHCES

1430 SC~ 128>tc ','+ ~<:+ ><+ 28672:F:El'1 CALCULATE SCC:EEtl r·IEI·iC;;:•,· UJC.F!II•:•ti
1440 GOSUB 1830: REI'! CHECK IT AI·K.1 CHAI~GE IT
1450 BR= BR- 1: REI'! UPDATE 80TTOI'1-F: I GHT PLOT i=CIS;: TI C;t;
146tl IF BR= 62THEi-l BR= t>3+ C:'/8= 8\':::::Ei·l SEI _:r . ~ ::::7 r ·n::;,..:.
1478 IF BF:= > RBTHEI~ 8R= F:B- 1:8\'= 8\'+ 1:','5= 8'.':FEd F: i ·~i-il .;:.:,. ,:;::~
1480 IF PEEK <30654 J = 255THEI4 1520
1490 REI'! C'o'AN SPACE THEF:E? C!Ot·lE .. E::C~T FC;F: .:.;_.::;;r1-Ur.
1500 GOTO 1230: REI'! DROP SOI·lE t·lOF:E SFit·lD
15113 REI'1 +'** GET RH) OF RE1·1AHHtiG Snt~D SIF.:Enf1 "" ,
1520 FOR \'= 17TO 22: F.:EI'l F I '.-'E F:OI.,IS
1530 PLOT 3, 127,31, '(,51: REI'1 E:LIHO CUF:SOR - iSLHCf .: •:•i; Cinti
154tl PLOT 32: REt·! PRINT SPACE Ot'EF SAHD STF:EF1i·1 .
1550 FOR I= 1TO 15:tlEi<:T I:F:Et-1 l.dAIT A E:IT FGR F:EflLISi·l
1560 NE'r:T V: REt·1 DO IT AGAIN
1570 PLOT 6, 2: REI'! BACK TO HORt·1AL PRitlT
1572 PLOT 3,0,13
1574 PRINT "'r'OUR 3-1'1INUTE ":PRINT
1576 PRINT "EGG IS "
1578 PLOT 3, 5.17: PRINT "'":PLOT 28 .. 23
1500 PLOT 27, 11 : REI'1 ENABLE SCROLL NODE
15'30 END
1600 REJ'1 '-* SUBROUTINE TO DROP SAND ***
t.6..HLl.E__E'EEK_(SC2.=?_32ftt..j!L_2Q_30.THEl:L.E..C!KE _ _5c..,__u_ E.CIKE_ _:3!::_-+:: _ 1 , 15:3: GC(iC .i. ;-:::o
1620 IF PEEK <SC)= 32THEN POKE SC, 16: POKE SC+ L 15:3: GOTO 17'30
163tl IF PEEK <SC)= lOR PEEK <SC>= 16THEH POKE SC .. 17:GOTO 1730
1640 IF PEEK <SC)= 17AND ~<> 30THEN POKE SC .. 1'3:CjOTO 1730
1650 IF PEEK <SC>= 17THEN POKE SC, 49: GOTO 173(1
1660 IF PEEK <SC)= 490R PEEK <SC)= 1'3THEN POKE SC .. 51: GOTO 1730
1670 IF .PEEK <SC)= 51AND ~<> 30THEN POKE ·.:;c,55:GOTO 173>3
1680 IF PEEK <SC)= 51THEN POKE SC,115:GOTO 1730
16'30 IF PEEK <SC)= 550R PEEl< (SC>= 115THEN POKE SC .. 119: GOTO 1730
1700 IF PEEK (SC) = 11 9AND ~·: > 3tlTHEN POKE SC, 127: GOTO 1 73f1
1710 IF PEEK <SC)= 119THEI-l POKE SC, 247: GOTO 1730
1720 IF PEEK <SC)= 1270R PEEK <SC)= 247THEil POKE SC .. 255
173tl IF ~« 32AND ~<+ '-r'= LSAt~D PEEl< <SC>= 255THEI~ F'Of<E ·.:;c- 2, 124:Po~;c:

SC- 1,4S:LS~LS+ 2

1740 IF ~<+ '-r'= 46AND PEEK <SC>= 255THEi-l POKE SC+ 2 .. 126: POKE SC+ 3 .. 4,3
1750 RETURN.
1760 RE!'1 ..., .. ,.. SUBROUTWE TO F:ESET TOP PASS 1)RLUES
177tl TL= 62- C:TR= 63+ C
1780 IF PEEK <CS>= 255THEN LT= LT+ 2: RT= RT- 2: '/T= '/T- 2: CS= CS+ 126
1790 IF TR= > RTTHEN TR= RT- t:TL= LT+ 1:'/T= 'r'T- l:T'i= '/T:GQTO 1810
1800 TY= 'y'T
1810 RETURN
1820 REI'1
1830 IF PEEK
1840 IF PEEK
1850 IF PEEK
1860 IF PEEK
1870 IF PEEK
1880 IF PEEK
1890 IF PEEK
1 ':'100 IF PEEK
1910 IF PEEK
1920 IF PEEK
1 '33tl IF PEEK
1 '340 IF PEEK
1950 IF PEEK
1 ':'160 RETURN

... ,..,.. SUBROUTINE TO ACCUt·1ULATE SAHD ~, • .,.,
O:SC)= 32AND X> 30THEi~ POKE SC, :3: POKE SC+ L 17'?: G.::JTO
<SC)= 32THEN POKE SC .. 128: POKE SC+ L 1 ;-3: GOTO 1 :!60
<SC)= 110THEN POKE SC .. :3:PO~;E SC+ L 17'?:GOTO l ':!t.O
<SC)= 80R PEEl< <SC)= '128THEt·l POKE SC .. 136: GOTO 1'?6>:1
<SC)= 136AND l<> 30THE1l POKE SC .. 14ft: GOTO E•60
<SC)= 136THEN POKE SC, 2fl0: GOTO 196(1
<SC)= 1400R PEEK <SC)= 200THEI~ POKE SC .. :204: GOTO l':!t.O
<SC)= 204AND ~':> 30THEl~ POKE SC, :206: GOTO 1'?t:.o
<SC)= 204THEN POKE SC, 236: GOTO 1'961:)
(SC)= 2060R PEEK •:SC>= 236Ti-iEH Pm;E SC, 238: GOTO l'?t·O
(SC)= 238RND)<;> 30THEH PO~.E SC .. 239: GOTO 1'?60
(SC)= 238THEN POKE SC, 254: GOE1 1'?60
< SC) = 2390R PEEl< < SC) = :254 THEH F·m.E SC .. 255

HAVE YOO RENEWED?

It's renewal time for most subscribers. In order for COLORCUE to
continue, your subcriptions are urgently needed. Don't delay!

24

Garfield Hairy Deal Calendar

revised for CCII by Mike Barrick
Valley Forge High School
9999 Independence Blvd.
Parma Heights, OH 44130

= . .Q~z;:a::;i ·-·--..-·--·-=
. -· ·-·· ·... ·-· ----- ··-

... ·-· ·-·-·· ·-. ·- ·-·-
·---. -- ·--

··-·-·- ·--
....

·- ·-···
·····--

I I J 4 t
I 1 I I II 11 U

LJ U U II 17 It I t
~~UUIIUU

.. ... ,.,. ... 'ftmntl.t..W

I J l 4 t
I 1 I I II 11 U

U U U II 17 11 U
lt u u u 11 Ul J l
u ll Jt lt lL

..... ,.,. .. ~,.,~
J 4 t I 1 ~ :

It ll 12 U U U II

~l ~= ~= ~ ~ ~ ~

..... ,. .. ,...,.,&All'
1 z J • ' • 7 1: 1: i ~ ~; t: ~: !t
~ ~! ~: Ul 11 ZT U

...... ,. .. ,...,..,
I Z l t

t f 7 I I ll U
IJ u u lJ 11 l1 ll

!:~~~~:~JIH

sn,..'!ll'll1f11Dftllntut'

' ' J 4 I I 1 I I

g~~=~~H~
Jlni-TiftWDTDP'IUJ.Io1'

1 1) • ' •
1 I I U U U ll

U U It 11 U U ltl

:; g ~ :: JS 11 lT

llnJ ... ,.,. ... ,...,.ls.\1'

' ' ' 4 t I t I I 10
11 U U U lS II 17

i! ~= ~ ~ ~: ;! lt

JO'W-'nft•aftllntiSM'

I l l 4 1

*~~~nu~:
sn ... -nntwmftllntu:r

' ' ' 4 J I 1 I t U

~~:H~~~:H

** 1000 REM
2000 REM *
3000 REM *
4000 REM *
5000 REM *
6000 REM *

GARFLD - GARFIELD HAIRY DEAL CALENDAR
AUTHOR : CARL REINKE - VFHS - MAY 1983

REVISED FOR CCII - M. BARRICK - 5/83

*
*
*
*
*

7000 REM **
8000 REM
9000 CLEAR 1000 : DIM A (12 ,42) ,A$ (12)
10000 REM ROUTINE : MAIN PROGRAM
10300 L=O : PLOT 12
10400 PRINT "GARFIELD CALENDAR BY KARL REINKE "
10500 PRINT " COMPUCOLOR II VER 8/79"
10600 PRINT
10700 INPUT "ENTER YEAR NUMBER- ";YR
10800 PRINT : IF Y/4=INT(YR/4) THEN L=1
10900 PRINT "SUNDAY= 1 •••.•••• SATURDAY= 7"
11000 INPUT "ENTER DAY THE YEAR BEGINS- ";D
11100 IF D>7 OR D<1 THEN 11000
12100 PRINT
12200 PRINT "TYPE PERSONALIZED MESSAGE BELOW:"
12300 INPUT "";H$(3)
12600 PRINT
12700 INPUT "TYPE 4 FOR 1200 BAUD - ";PR
12800 IF PR>O THEN PLOT 27,18,PR
14200 PLOT 27,13 : POKE 33289,80
14400 H$(1)="GARFIELD'S BIG, FAT, HAIRY, DEAL"
14600 H$(2l="CALENDAR FOR"+STR$(YRl
14700 PRINT : PRINT : PRINT : PRINT
15000 REM BEGIN GARFIELD PICTURE ROUTINE
15100 READ A,B,C : IF A=999 THEN 20000
15300 FOR X=A TO B : PRINT TAB(Xl;"*"; :NEXT X
16100 IF C=1 THEN PRINT GOTO 15000
16300 IF C=2 THEN PRINT" BIG, FAT,";
16500 IF C=3 THEN PRINT " HAIRY DEAL!";
17500 GOTO 15000

GOTO 15000

25

.. • 20000
20200
20400
20600
20700
20800
21200
21300
21500
22100
22300
22500
22700
23100
23300
23500
25200
25400
25600
26200
26400
26600
26800
28200
28300
28400
29700
29900
40000
40500
40700
40800
40900
45000
45300
45500
45600
45700
45900
50000
51100
51200
51300
51400
51500
51600
52100
52200
52300
52400
52500
52600
52700
52800
52900
53100

REM BEGIN CALENDAR PRINTING ROUTINE
FOR X=1 TO 12 : READ ASCX) ,N : IF X=2 AND L=1 THEN N=N+1
FOR Y=1 TON : A(X,Y+CD-1))=Y :NEXT Y
D=D-(28-N) : IF D>7 THEN D=D-7
NEXT X
PRINT : PRINT
FOR I=1 TO 3 : PRINT TAB((80-LEN(H$(I)))/2)H$(I)
PRINT : NEXT I
OUT 6,12
FOR X=1 TO 6
PRINT TAB ((25-LEN (R$ (X))) /2) ;A$ (X);
PRINT TAB(49+((27-LEN(A$(X+6)))/2)) ;A$(X+6)
Z=O : GOSUB 40000
PRINT TAB(01l;"SUN MON TUE WED THR FRI SAT";
PRINT TAB(49l;"SUN MON TUE WED THR FRI SAT•
Z=O : GOSUB 40000
FOR Y=1 TO 6 : Q=1 : U=O :FOR Z=1+(7*(Y-1ll TO 7*Y
GOSUB 45000 : NEXT Z
Q=49 : U=6
FOR Z=1+(7*CY-1)) TO 7*Y : GOSUB 45000 :NEXT Z
PRINT
NEXT Y
NEXT X
PRINT : PRINT
PRINT TAB(03)"PROGRAMMED BY KARL REINKE";
PRINT • *** VALLEY FORGE HIGH SCHOOL - CLASS OF 1983"
OUT 6,12 : OUT 6,12 : POKE 33265,0
RESTORE 10000 : GOTO 10000
REM
FOR Y~Z+1 TO Z+27 : PRINT TAB(Y)"="; :NEXT Y
IF Z=O THEN Z=48 : GOTO 40000
PRINT
RETURN
REM
PRINT TAB (Q-1);
IF A(X+U,Z)=O THEN PRINT • "; : RETURN
DN$=STR$(A(X+U,Z)) : IF A(X+U,Zl<10 THEN DN$=" "+DN$
DN$=" •+DN$: PRINT DN$;
RETURN
REM GARFIELD PICTURE DATA
DATA 33,39,1,19,24,0,26,32,0,40,40,1
DATA 12,18,0,25,25,0,41,44,1
DATA 11,11,2,45,45,1
DATA 10,12,3,46,46,1
DATA 10,12,0,16,16,0,20,20,0
DATA 26,26,0,30,30,0,36,36,0,42,46,1
DATA 13,15,0,17,19,0,21,25,0,27,29,0,31,35,0,37,41,1
DATA 32,34,1
DATA 32,34,1
DATA 35,37,1
DATA 35,37,1
DATA 37,39,1
DATA 37,39,1
DATA 40,42,0,51,57,1
DATA 40,42,0,47,50,0,53,57,0,61,67,1
DATA 37,37,0,41,43,0,46,46,0,51,57,0,59,60,0,64,67,1

53200 DATA
53300 DATA
53400 DATA
53500 DATA
53600 DATA
53700 DATA
53800 DATA
53900 DATA
54100 DATA
54150 DATA
54200 DATA
54300 DATA
54400 DATA
54500 DATA
54700 DATA
55100 DATA
55200 DATA
55300 DATA
55400 DATA
55500 DATA
55600 DATA
55700 DATA
55800 DATA
55900 DATA
56100 DATA
56200 DATA
56300 DATA
56500 DATA
56700 DATA
56900 DATA
57100 DATA
57300 DATA
57500 DATA
57700 DATA
57900 DATA
58100 DATA
58300 DATA
58500 DATA
58700 DATA
58900 DATA
59100 DATA
59300 DATA
59500 DATA
59700 DATA
59900 DATA
60100 DATA
60300 DATA
60500 DATA
62000 REM
62100 DATA
62200 DATA
6~300 DATA
62400 DATA
64500 DATA
64600 DATA

35,36,0,38,38,0,41,43,0,45,45,0,49,58,0,61,67,1
33,34,0,37,37,0,39,39,0,41,44,0,47,47,0,49,49,0
51,51,0,53,53,0,55,55,0
57,57,0,60,60,0,62,62,0,64,64,0,66,66,1
35,42,0,49,55,0,57,58,0,66,66,1
35,41,0,52,53,0,57,57,0,59,63,0,65,65,0,69,71,1
33,40,0,46,46,0,58,58,0,65,66,0,68,68,0,70,73,1
32,34,0,38,40,0,45,45,0,59,59,0,66,72,1
32,35,0,40,40,0,42,43,0,45,45,0
58,58,0,66,66,0,68,68,1
30,36,0,39,41,0,44,66,0,68,69,1
31,32,0,38,38,0,44,44,0,46,47,0,53,55,0,57,57,0
60,62,0,64,68,0,70,70,1
30,33,0,38,38,0,43,45,0,49,56,0
59,63,0,69,69,0,71,71,1
30,35,0,38,38,0,46,46,0,57,59,0,65,65,0,70,71,1
31,36,0,39,43,0,47,56,0,60,64,0,66,66,0,70,71,1
29,33,0,69,70,1
23,30,0,33,33,0,39,39,0,62,62,0,64,68,0,70,70,1
21,25,0,28,30,0,34,38,0,42,42,0,62,62,0,67,69,1
19,25,0,29,30,0,36,46,0,61,61,0,68,68,1
18,25,0,30,30,0,41,43,0,60,60,0,62,63,0,66,67,1
17,20,0,24,25,0,31,31,0,59,64,1
17,20,0,25,25,0,58,59,1
16,21,0,27,27,0,30,35,0,59,59,1
16,17,0,20,22,0,25,25,0,27,30,0,33,37,0,60,60,1
16,18,0,21,23,0,26,29,0,33,34,0,38,39,0,60,60,1
17,19,0,28,28,0,32,32,0,38,40,0,61,61,1
11,21,0,37,41,0,61,61,1
08,14,0,17,17,0,20,23,0,36,41,0,45,45,0
47,47,0,52,52,0,54,54,0,62,62,1
06,10,0,13,13,4,18,18,0,40,41,0
46,47,0,52,53,0,62,62,1
05,07,0,09,11,0,17,25,0,38,41,0,47,47,0
52,52,0,62,62,1
05,07,0,14,19,0,22,28,0,35,41,0,47,47,0
52,52,0,62,64,1
05,09,0,13,13,0,16,18,0,22,28,0,38,45,0
47,47,0,52,58,0,61,61,0,63,63,0,65,65,1
06,06,0,17,17,0,22,28,0,44,44,0,46,47,0
54,54,0,57,57,0,59,59,0,61,61,0,63,63,0,65,65,1
06,07,0,23,28,0,41,41,0,45,45,0,48,48,0
54,54,0,57,57,0,59,60,0,62,62,0,64,65,1
08,09,0,25,28,0,42,42,0,45,45,0,47,48,0
54,54,0,57,63,1
09,11,0,24,31,0,36,36,0,42,42,0,45,46,0,49,57,1
12,23,0,32,45,1
999,999,999

*** CALENDAR DATA ***
"JANUARY•,31,•FEBRUARY•,28
"MARCH",31,.APRIL",30
"MAY.,31,.JUNE•,3o,•JuLY",31
"AUGUST", 31, •sEPTEI<!BER", 3 0
"OCTOBER",31,"NOVEMBER",30
"DECEMBER", 31

Back Issues Sale

Back issues of Colorcue are an excellent source of information about
Compucolor computers, ISC computers, and programming in general. Inter
views, interesting articles, and programs are all there with a touch of
history.

The list below includes every Colorcue ever published. If it's not on the
list, then there wasn't one.

RETROVIEW: Vol. 3, 111 (Dec 79/Jan 80) includes: an interview with Bill
Greene; Compucolor-teletype inter face; user group hotline; introduction to
the Screen Editor; PEEKing at BASIC programs; talking to other computers;
making programs compatible with V6.78 and V7.80 software; software
modifications.

MULTI-ISSUES at $3.50 each
Oct, Nov, Dec 1978
Jan, Feb, Mar 1979

INDIVIDUAL ISSUES at $1.50 each
Dec 1979/Jan 1980
Apr 1980

INDIVIDUAL ISSUES at
Dec 1980/Jan 1981
Dec 1981/Jan 1982
Jun/Jul 1982
Dec 1982/Jan 1983
Jun/Jul 1983

POSTAGE

$2.50 each

Apr , May/Jun 1979
Aug, Sept/Oct, Nov 1979

Feb 1980
May 1980

Aug/Sept 1981
Feb/Mar 1982
Aug/Sept 1982
Feb/Mar 1983

US, Canada and Mexico -- First Class Postage included.
Europe, S. America -- Add $1.00 per item for air, or

$.40 per i tern for surface.

Mar 1980
Jun/Jul 1980

Oct/Nov
Apr/May
Oct/Nov
Apr/May

1981
1982
1982
1983

Asia, Africa, Middle East -- add $1.40 per item for air, or
$.60 per item for surface

Discount
For orders of 10 or more items, subtract 25%
from total after postage.

ORDER FROM: Colorcue
Editorial Offices
161 Brookside Drive
Rochester, NY 14618

Color cue
161 Brookside Dr.
Rochester, NY 14618

BULK RATE
U.S. POST AGE

PAID

Rocheste~ N. Y.
Permit No. 4 1 5

	Vol. 5, No. 1, Aug/Sep 1982
	Vol. 5, No. 2, Oct/Nov 1982
	Vol. 5, No. 3, Dec/Jan 1983
	Vol. 5, No. 4, FebMar 1983
	Vol. 5, No. 5, Apr/May 1983
	Vol. 5, No. 6, Jun/Jul 1983

