

Colorcue

A bi-monthly publication by and for
Intecolor and Compucolor Users

- Editors:
August/September 1981 Ben Barlow
Volume 4, Numper 1 David B. Suits

3 Editors' Notes
3 Compucolor Policy

5 The Serial Port, by Ben Barlow
How to use the RS232 port.

13 Lower Case y's, by Tom Devlin
A simple, cheap fix for a nagging problem

14 Screen Dump to MX-86, by Mark Fairbrother
Subroutine to move graphic image from screen to printer

17 User Group Bulletin Board

19 Assembly Language Programming, by David B. Suits
Part 1 of a series for the beginner

Advertisers: You will find our advertising policies attractive! Write
for details.

Authors: This is a user-oriented and supported publication. Your
articles/tips/hints are required to make it go. Send your articles or
write for information.

Colorcue is published bi-monthly by Intelligent Systems Corporation,
with editorial offices in Rochester, New York. Editorial and subscription
correspondence should be addressed to the Editors, Colorcue, 161
Brookside Drive, Rochester, NY 14618. Product related correspondence
should be addressed to ISC, 225 Technology Park, Norcross, GA 30092,
ATTN: Susan Sheridan. Reproduction in whole or part without permission
is discouraged. Opinions expressed in by-line articles are not
necessarily those of the editors or of ISC. Hardware/software items are
checked to the best of our abilities, but are NOT guaranteed.

Editors’
Notes ...

The editorial duties of Color—
cue have been assumed by a new
editor. In fact, there are two of
us. Since we plan to be around
for a while, 1let wus introduce
ourselves,

David B. Suits obtained his
PhD. in philosophy from the
University of Waterloo in Ontario,
Canada, and teaches philosophy at
the Rochester Institute of Technol-
ogy. He has published articles in
both philosophy and microcomputer
journals and has written a book
about Intecolor/Compucolor graph-
ics. Dave became interested in
computers when he discovered that
his programmable calculator was
too small to handle a chess-play-
ing program., He's been the librar-
ian of the Rochester Compucolor
Users Group for 2 1/2 years and
is interested in artificial intel-
ligence, music, and hardware.

Ben Barlow is a computer
hacker. A systems programmer for
many years, he is now involved
with computers only as a hobby.
He works for the Xerox Corporation
in Rochester, and for the past 2
1/2 vyears he has edited and
published Datachip, the Rochester
Compucolor Users Group newslet-
ter. His interests lie in the area
of hardware and extermnal world
interfaces.,

A word about policies is in
order, especially in light of the
recent shifts of Colorcue direc—
tion. Colorcue will continue to
be a bi-monthly (every 2 months)
publication directed toward both
new and experienced users of
Intecolor and Compucolor compu—

ters. We are committed to its
timely publication and to a goal
of providing top—quality, accu-
rate and useful information to
our readers. At the same time,
however, we're dependent upon your
participation. We need your arti-
cles, programs and ideas to make
this magazine into what it should
be and what we're sure you want
it to be. Let us and your fellow
users know what you’ve been doing
with your computer.

All current subscriptions are
good mnow for one year (six
issues), as are the applications
of those of you who responded to
the query about an Intecolor
publication. No remnewal worries
for anybody until next year! So,
sit back, read, enjoy. (And, we
trust, learn.)

Dave and Ben

Compucolor
Policy

Because of a ruling by the
Federal Communications Commis—
sion, Intelligent Systems Corpora-
tion 1s no longer permitted to
sell the Compucolor II personal
computer in the United States.
The ruling stems from the FCC's
determination that most personal
computers generate substantial
interference——resulting in im—
paired television reception, You
may have mnoticed that when you
work with the Compucolor II, a
television viewer in the next room
can have troubles getting a good
picture. This problem is especial-
ly troublesome to apartment resi-

dents, who have no control over
the activities of neighbors in
adjoining rooms. Since televi-
sions and personal computers are
communication media, the FCC step—
ped in., Vacuum cleaners, hair
dryers, and other appliances are
not affected by the ruling, even
though they are often much more
annoying to the television viewer,
because they are not communica-
tions equipment.

But personal computer owners
need not be worried that they are
operating machines illegally. The
ruling applies only to machines
manufactured after the FCC dead-
line, which, in the <case of
Intelligent Systems, was April,
1981. All Compucolor IIs already
in service are perfectly accept-—
able——no modifications are neces—
sary.

Virtually all personal compu-
ter manufacturers were affected
by the FCC’s decision., Companies
such as Apple and Radio Shack were
faced with modifying their pro-
ducts in order to meet the new
standards. Intelligent Systems
started to reseach the changes in
design, components, and produc-—
tion that would have to be made
in order to meet the new stan-
dards. Qur financial planners and
marketing people assessed the
overall costs of such changes and
weighed them against current prof-
its and projected profits. Then
we investigated all possible alter—
natives to come up with a final
decision about how we would comply
with the ruling.

In the course of studying the
problem, it became evident that
re—designing the Compucolor II in
order to comply with the FCC
standards was simply too expen—
sive. It would mean further
channeling of resources away from

the company’'s mainstay line or
business and scientific compu—
ters, and that was not feasible.
Consequently, Intelligent Systems
Corporation had no choice but to
discontinue manufacture of the
Compucolor II., However, since the
FCC ruling does not affect over-—
seas clients, the company still
manufactures Compucolor IIs for
sale in foreign markets,

Once the decision was made to
discontinue the Compucolor II for
domestic markets, company leaders
turned their attention to Compu-—
color II owners in order to
determine how they might best be
served. A two~-point plan was
developed that serves past custom—
ers well beyond any legal or moral
responsibility, Intelligent Sys-—
tems Corporation provides:

(1) A source of information
—— Colorcue. Despite increasing
costs of postage, editorial time,
and materials, Colorcue will con-
tinue to be published. This
newsletter supplies wusers with
valuable information such as names
of people who welcome contact from
other users, and user group
locations for those who wish to
meet with other owners, Intelli-
gent Systems decided to sponsor
publication of the newsletter so
that all users will have a place
to turn for information.

(2) A source of parts and
repair, Intelligent Systems con-
tinues to maintain its repair
facility at the factory. Replace-
ment parts and trained service
personnel are available to give
satisfactory turn—around time at
a reasonable cost. This ensures
that all owners will be able to
maintain their units properly for
best performance., @

The Serial Port

by Ben Barlow

Stop! You apply the brakes as the traffic light changes first to
yellow and then to red. You are obeying the rules associated with a
standard established back in the 1930's just as your computer's RS232
port obeys the RS232 standard as it sends and receives data. The traffic
light's purpose is to control traffic flow; the RS232's purpose is to
control data flow. Just as the traffic light does not care what kind of
traffic is stopping below it, the RS232 standard specifies rules for
sending and receiving data but does not restrict the data being sent.
The only requirement is that data characters be transmitted in a serial
(bit by bit) manner, rather than in parallel (all bits simultaneously).
RS§232 is not concerned with the type of code, parity, or the number of
stop bits, synchronous or asynchronous transmission - only with the
signalling levels to be used to transmit data and the protocol used to
interchange it.

Why have a standard, anyway? The answer is obvious, just as it is
at the intersection of two streets. Some commonly understood method of
control is required to make sure control is orderly, and to ensure
compatible products. A good standard serves as the base for manufacturers
to develop products, and promotes healthy competition (read lower price).
Look at the host of different terminal and computer devices on the market
manufactured by a myriad of manufacturers whose products are compatible
because of the RS232 standard.

The RS232 standard (current revision level C adopted in 1969) governs
the connection of terminals and computing equipment to modems. Although
it's not intended to describe direct terminal to computer interfacing,
it's been used that way often, especially since the onset of personal
computing. The standard defines three aspects of the interface - 1)the
electrical standard (which is what most advertising refers to) 2)the
mechanical standard, and 3) the interchange, or protocol standard. The
latter is frequently determined by the software in the respective
computers and terminals., Let's look at these three aspects separately.

The easiest one to understand is the mechanical interface. The
ubiquitous DB25 connector has become almost synonymous with RS232C. This
familiar 25 pin plug (male) and socket (female) combination appears on
the end of every cable and is built into most equipment that meets the

standard. Some of the ISC computers use an edge connector to provide
the RS232 interface, which must have an added cable to give a DB25-type
connection., By convention, terminals and modems usually have female
connectors, which leads to male/male cables, but this is not universally

true.

female - § male - P

DB 25 Connectors

Fig. 1

Electrical characteristics are alsc easy to understand. RS232 signals
are bhased cn specified voltage levels. Your ccmputer 1is constructed
largely of TTL family devices (integrated circuitsj). This family alsc
uses veoltage levels for signal determination. TTL levels range between
O and 5 volts; logic § is recognized as being a wvoltage between 0 and
.4 volts, and logic 1 is recognized as being between 2.4 and 5.0 volts.
A voltage between .4V and 2.4V is undefined. This 1s 8 relatively small
difference in voltage, and can easily be affected by electrical surges
caused by moters turning on (refrigerators, copiers, vacuum cleaners),
or even by line capacitance if the TTL signal must be passed over a long
(measured in feet)distance. Thus, it's unacceptable as a data communication
method over any useful distance.

The RS232C standard, on the other hand, specifies voltages ranging
from -25V to +25V and provides much greater immunity to noise. A positive
signal is a voltage between 3V and 25V, and a negative signal 1is a
voltage between —-25V and -3V, The area between -3V and +3V is undefined.
ISC computers use plus 9V and minus 9V as the signalling levels,

The interchange standards are the most difficult to describe because
of the many options which are possible. The simplest is the send-only
interface, sometimes known as ''send and pray". A simple send/receive
interface can be constructed relatively easily, and a send/receive (or
simply send) interface with appropriate handshake can also be constructed
without much trouble. The standard includes many features such as

signalling on a secondary channel, ring detection (for dialup connections),

and data rate selection. These are fairly uncommon, though, so we'll

not discuss their use. Let's look instead at the signals used in common

interfaces that you may apply to your computer, and then actually put

them to use.

Some

Pin #1 (PG) is a common Frame Ground electrically connecting the
frames of the two machines being connected. It can sometimes be
omitted, especially if, as in ISC machines, frame ground and signal
ground (see later) are connected. When connecting to another piece
of equipment (e.g. modem or printer), check the outlets into which
each is plugged to make sure the polarity is identical. If the
electrician made a mistake, it could be a costly ome for your

machine. Sears sells an inexpensive tester for this purpose. (Cat.

49662)

Pin #2 (TD) is for Transmitted Data, meaning data going out of the
interface (or, in the case of a modem, into the interface). The
transmitted data circuit at one end must be connected to the received
data circuit at the other. This reversal, sometimes accomplished
by the modem and sometimes by the cable, is frequently the cause
of initial operational difficulties when connecting gear.

Pin #3 (RD) is Received Data, data coming into the interface.

Pin #7 (SG) is Signal Ground and is the reference point for positive
and negative signal determination,

other signals used for handshaking occur in pairs, such as:

DataSet Ready and Data Terminal Ready (pins 6 (DSR) and 20 (DTR)
respectively). It's not difficult to imagine the use of these. They
tell each connected machine that the other is up.

Request To Send (pin 4, RTS) and Clear To Send (pin 5, CIS) are a
pair of signals used to request and grant permission to transmit
data. In the conventional terminal/modem arrangement, CTS is the

modem's response which enables data flow from the terminal.

These eight signals are the most commonly used signals of the 25 (3

unassigned) defined by the standard.

When a sender can send data faster than the receiver can process
it, there needs to be some interchange protocol established so that the
sender does not swamp the receiver with data and cause data loss (overrun).
Several different conventions have been established over the last decade
and one of these is implemented using the RS232 signals. It is used by
most of the popular personal computer printers, such as the IDS 440-450-460
lines, the Epson, Heath, Base-2 and others. The method is to lower the
CTS (or sometimes DTR) line when the receiver does not want to receive
any more data. (The ability to sense this signal was omitted from early
Compucolors, and is the subject of an engineering change known as
ECN002137, the "handshake mod").

Now let's take a look at what is required to connect an ISC computer
to an Epson MX80 printer and a Cat Novation modem, two of the most
popular and useful peripherals to be found.

The first step is the construction of a cable that will connect the
RS232 port to the devices. Figure 2 shows the connections needed for
each, Notice that the signals for each are different. It would seem at
first that two cables will be needed, one for the printer, and one for
the modem. With a little cleverness, though, we can make one cable in
the form of a Y, with your computer on the bottom and the printer and
modem each on its own arm. It'll be necessary to plug and unplug devices,
since both should not be powered on and connected to the Y-cable
simultaneously., Fancy switching arrangements are an alternative, as are
separate cables, but the Y-cable works, and it's cheap. If you follow
the construction diagram (Figure 2) you should have no trouble, but some
hints are in order:

If you use an IDC-type (insulation displacement connector) at the
PC board end, press it solidly and evenly together in a vise using

even pressure and care. Don't plan to take it apart again!

If you use a solder-type connector at the PC board end, insulate
the pin by slipping a length of heatshrink tubing over the wires
before soldering. Any 20-24 gauge 4 conductor stranded wire can
be used. Belden 8723 is excellent, but can be obtained only in 500
ft. spools.

Solder~-type DB25 connectors are the easiest to use.

.

Use lengths of heatshrink tubing on the Y connections and on the
Y itself.

Label the connectors on the legs as "printer" and 'modem'.

(Isc) / 3
1 Printer
D 32

cTs 9-(5) .]
GND 14 (7] 2
3
cci Modem

“Y” Cable

Fig. 2

The popular and versatile Epson MX80 printer has recently received rave
reviews, and its connection to your computer is not difficult, and will
serve as an illustration for the use of other printers. The Epson must
be ordered with the RS232/current loop interface (Cat. mo. 814l). Follow
the instructions for installing the interface, and when the case is
open, make the following jumper and switch settings on the interface
board:

JNOR - cut and remove.

JREV - solder (carefully) a jumper of 28 or 30 gauge wire.
SW 1-8 - all off.

The printer is now set up to receive data at 9600 BPS, its maximum speed,
and respond to potential overflow conditions by raising the clear to
send line to your computer.

If you have a Compucolor with a Rev. 3 or earlier computer/logic
board, you'll need to add ECN002137. Your dealer can do this for you,
or by following the logic in Figure 3, you can make the modification
yourself. (If sufficient interest develops among older Compucolorists,

m Intelligent Systems Corp. ENGINEERING CHANGE NOTICE

TITLE OOl LOGIU 01 ABSY . DWG NO 10062 REV 4 ECN o214y

TYPE OF [JDESIGN DEFICIENTY (MANDATORY) Xl PRODUCT IMPROVEMENT SHEET L Of 1

CHANGE [JDOCMENTATION CORRECTION ONLY [JOTHER PARTS DISPOSITION
IN IN

REASON FOR CHANGE PROCFSS STOCK

PROVIDE PROPER CLEAR-TO-SEND LOGIC LEVELS FROM MODEM PORT TO LOGIC PCB. O [J REWORK

= @ VUSE As Is
0 [0 scRap

EFFECTIVITY

DESCRIPTION OF CHANGE

1) PTE PIN 9 OF 'J2' EDGE CONNECTOR TO 'UD1' PIN 4,
2) TTE PIN 6 OF 'UD1' TO PIN 3 OF 'UC1'. NEXT ARTWORK?*
3) TIE PIN 4 OF ®*UCl' TO PIN 10 OF ‘UELl'. FECN 2104 18 VOID
4) ADD 10K 1/4 WATT RESTISTOK (ISC#200036) BETWEEN PIN 4 OF 'UD1' AND +12 VOLTS
REWORK EXISTING BOARDS AS REQUIRELR FOR PRINTER HANDSHAKE Ok MODEM 'CTS'.
ADD RESISTOR BETWESN PTN 4 OF 'UD1' AND +12 VOLT DC SOURCE.

NOTE: COMPUCOLOR SOFTWARE 'S100T' ROUTINE SAMPLES BIT 7 OF KEYBOARD 'J2'

INPUT. "S1OUT' TS CALLED BY SETTING 1479 IN OUTPUT FLAG LOCATTONS.

EXAMPLE: IN BASIC- POKR 33265,14 THIS SENDS BASTC TO RS232 PORT.
POKE 33249,1& THIS SENDS FCS TO THE RS232 PORT.

IC TABLE

+12VD0C UEl - 74LS157

R

S

2

3 ucl - 74Ls04
2 UE]

c Upl - MC1489

[11 la1

KEYBOARD PORT

iSc p2 - 178

Fig. 3

the editorial staff will develop a step—by-step installation sequence
and kit. - ed.) Connect the "printer" connector of the Y-cable to the
MX80 and turn on the power. There are several ways to direct BASIC output
to the RS232 port, to the printer (or modem, when you connect it):

1. Enter BASIC with ESC M rather than ESC E,

2. Execute a PLOT 27,13 statement.
3. Execute a POKE x,l14 where x = 33265 (for V6.78 and V8.79) or x

= 40886 (for V5.79).

Return BASIC output to the screemn by executing a POKE x,0 statement,

where x is as above.

10

FCS output may also be directed to the RS232 port (handy for printing
directories) by entering FCS by the ESC G sequence rather than ESC D.

Output can be returned to the screen by typing either:

1. CPU RESET, or
2. executing POKE y,0 where y = 33249 (V6.78, V8.79) or y = 40884
(v5.79).

With the MX80 set as described above, no other controls or opticns
need be set (the computer defaults to 9600 BPS). Other printers may
require speed and stop bit selection. Since the modem connection requires
this, let's take a look now. As with directing output, the speed, stop
bits, and half/full duplex modes can be set either with keystroke
sequences or by executing BASIC statements.

SPEED
Keystrokes:

ESC R s where s = 1 for 110 BPS 4 for 1200 BPS
2 150 5 2400
3 300 6 4800
7 9600.

BASIC:

PLOT 27,18,s where s is as described above.

STOP BITS
Keystroke:
A7 ON (one stop bit)
A7 OFF (two stop bits).

BASIC:
PLOT 14 (one stop bit)
PLOT 15 (two stop bits).

HALF/FULL DUPLEX
Keystrokes:
ESC H (half duplex - echo each character locally
as well tramsmitting it)
ESC F (full duplex - just send it).

11

BASIC:
PLOT 27,8 (half)
PLOT 27,6 (full).

Connecting the Cat Novation modem is simple. Disconnect the printer
and plug the "modem" connector of the Y-cable into the modem. Select
speed and stop bits with appropriate commands, direct the output to the
RS232 port and dial your favorite timesharing sytem, information utility,

or friend., The command sequence to use is:

1. CPU RESET

2, A7 ON or A7 OFF
3. ESC R speed

4. ESC F or H

5. ESC M.

Two of the more popular information utilities to which you may subscribe
are:

MICRONET The SOURCE

Personal Computing Division Telecomputing Corporation of America
Compuserve Inc. 1616 Anderson Rd.

5000 Arlington Centre Blvd. McLean, Virginia 22102

Columbus, Ohio 43220 703-821-6660

614-457-8600

(LA S Ny

Unfortunately, there may be more to using the port than is indicated
in this article. Your printer may cause lower case y's or slashes to
print on the screen or printer, and when connected to a remote timesharing
system, the distant computer may send control sequences that will cause
your disk to spin, your screen to clear, or strange characters to be
displayed. These problems can be very annoying, but don't despair——fhere
are cures. The lower case y problem can be easily ctured by software or
hardware. (See the following article). To solve the remote data/local
interpretation problem, a program such as ISC's (or other vendor's) 1is
needed to act as a data filter and translator for the incoming data. (A
past issue of Colorcue contained a simple data filter program. For a

reprint, send a SASE to our editorial offices requesting it. —ed.) @&

12

Screen Dump to
the MX80 Printer

by Mark D. Fairbrother
Carriage House East, A5
Rt. 11

Kirkwood, NY 13795

This program will produce a hardcopy of the 128 by 128 resolution
ISC graphics screen on an Epson MX-80 printer. Only those character
positions that have the plot bit set in their color byte will be printed;
all others will be treated as blanks. The reason I chose not to print
other characters is due to the difference in size of an ISC plot block
(4 by 2) versus an MX-80 plot block (3 by 2). In order to faithfully
reproduce the ISC graphics, the screen is scanned three Y positions and
two X positions at a time to form an MX-80 graphic character. Since a
character such as an "A" occupies what looks to the printer like omne
and a third lines, to avoid gaps it is not printed.

The program consists of three sections: initialization, dot
scan/character build/print, and point test. The following is a breakdown
f the program, by section and line.

INITIALIZATION

0 and 1 Set up the array MS, which is used by the point test
subroutine. These lines must be executed before the dump
subroutine is called.

DOT SCAN/CHARACTER BUILD/PRIET

9000 Disable keyboard.

9010 Set up for stop bit (PLOT 14 . . 15), 1200 Baud (PLOT
27,18,4), and send all output to the RS-232 port (PLOT
27,13). Set print width to 132 characters per line. The PLOT
14 at line 9030 sets double width characters, which change
the line width to 66. The PLOT 14 must be reissued for every
line output.

9020-9040 Scan the CRT Y positions in increments of three and X in
increments of two. This corresponds with the number of dots
per MX-80 block.

9050-9200 CH is the character to be sent to the printer and is built

14

one dot at a time. The characters are located from CHR$(160)
to CHRS(223), or all dots off to all dots on. On return from
the point test routine, PT will be set to -1 to skip two X
points, 0 if that X,Y point is off, or >0 if that X,Y point
is on. The printing process will take 20 to 25 seconds per
printer line (around 15 minutes for a whole screen) depending
on the number of blanks. The code at line 9060 is to handle
the scanning at the next to last lines.

9210 Move to top of the next sheet of paper.

9220 Return output to screen.

9230-9240 Enable keyboard interrupt and return.

POINT TEST - TEST POINT AT SX,SY

9510 Initialize PT.

9520 Compute the address within the screen buffer of the character
the dot specified by SX, SY is within.

9530 Get the ASCII code and color byte of the character.

9540 If it is not a blank and is a graphic character, continue
testing.

9550-9560 Return PT = -1 if two X tests can be skipped as being
unprintable (each character is two points wide).

9570 Convert SX and SY to an index into MS,

9580 See if point is on. MS and DO are used to isolate a particular

bit in the byte stored for the graphic character. (See your
Programming Manual for the relationship between a graphic
point and the byte stored in memory.) PT will be zero if
the point is off and non~zero if the point is omn.

As mentioned above, it will take around 15 minutes for a complete
picture to print., Translation of the algorithm into machine language
will undoubtedly speed it up. (Any takers? - ed.) ‘

To use the subroutine, simply bury it in a program that draws a
picture, and GOSUB 9000 to start it. If you do not have the y-eliminator,
put some sort of delay in before calling the subroutine to allow time

to set up the printer and turn it on. @&

(Listing follows.)

15

Listing 1. The screen dump subrouitine

0 DR RS(T 130 NEXT 4

I FOR I=0T0 7 9160 NEXT 1
S = INT (2 D) 9170 PFRINT CHRS (THI,

TNEXT] 918G NEXT X
MOG OUT 8,4 919G PRINT CHRS {13

9010 PLOT 14,27,18,4,15,27,13,15 9200 NEXT ¥
9020 FOR Y= 0 70 176 STEP 3 9210 PRINT CHR$ (120

9030 PFLOT 14 tREM QUTPUT A FORMFEED
9040 FOR X= ¢ 70 124 STEP 2 9220 POKE 33265,¢
9030 TH= 1AD 7230 OUT 8,255
M= 9240 RETURN
M= Z Y300 REM SUBROUTINE TQ SEE IF POINT S5X,S5Y IS ON. PT=0 IF MOT,
9060 IF Y= {24 THEN Ih= { 750 FT= 0
9070 FOR I=0T0 IM 9520 AD= 28472+ Z1 INT (5X/ 21+ 128% INT (8Y/ 41
08B0 FOR 4= 070 ! 7550 DA= PEEK (ADY
9090 St= X+] :Cl= PEEK (AD+ DD
9100 Y= Y+ 1 9340 IF DA< > IZAND CL> 1276870 9570
7110 GOSUB 9500 3330 PT= -
9120 IF PT= - ITHEN M= M¥ 4 9340 RETURN
1B0TO 9140 9570 B0= 4% (5% AND Li+ {SY AND 3
130 IF FT> OTHEN CH= CH+ H 5580 PT= MS(DO) AND DA
7180 M= Mf 2 7390 RETURN

LATE NEWS: Compuworld Inc. has announced business software packages for
Intecolor computers, Programs include ColorCalc, ColorGraph, General
Ledger, and others. (See the August, 1981 issue of Mini-Micro Systems.)
We'll have more on these next issue. In the meantime, for more information
contact Fred Calev, Compuworld, 125 White Spruce Blvd., Rochester, NY
14623. (716) 424-6260.

Vi.® {(no sound) (US Funds)

Copyright (c) 1981 by David B. Suits [

Fast, machine language 1invaders arcade game
with color graphics and four levels of difficulty
from "not-too-difficult™ to "what-the~?!#*22",
Runs on V6.78 and V8.7% software with standard
keyboard.

Also included: fast, machine language version
of LIFE.

Special bonus: V2.8 of Alien Invasion (if I
ever get around to writing it; I'm basically
lazy, so I'm making no promises) will have
sound effects if you have Cap Electronics
Soundware or an equivalent device, and it will
be free to all purchasers of V1.0,

David B. Suits
49 Karenlee Dr.
Rochester, NY 14618

16

User Group Bulletin Board

The following 1list represents our most current information on
Intecolor/Compucolor User Groups. In the interest of keeping our readers
informed and in touch, we plan to run this list periodically. If you
have additions (because your group is not listed) or changes (because
names or numbers are different), drop a line to our editors so we can
tell the world. We'd like to include news of your group here, too., Have
your secretary write a piece about your group, its activities, interests,
and members. We also welcome pictures., (5 x 7 black and white glossies,
with good contrast.)

User groups are a very important medium for information tramsfer,
and we at Colorcue want to provide a platform for group information
interchange. Get your secretaries on the ball!

ALABAMA

Compucolor Users Group
Eike Mueller

12117 Comanche Trail, S.E.
Huntsville, Alabama 35803
(205) 883-7614

San Jose User Group

Vicki Oliver

1358 Branham Lane #4

San Jose, California 95118
(408) 267-5250

The SOURCE: CL0691

CALIFORNIA
Compucolor/Intecolor User Group
Stan Pro

S.P. Electronics Systems

5250 Van Nuys Boulevard

Van Nuys, Califormia 91401
(213) 788-8850

FLORIDA

JACKS - Jacksonville Area
Compucolor Knowledge
Seekers

Gary Haney

1723 Debbie Lane

El Cerrito User Group
Frasier Hewitt

c¢/o P.C. Computers

10166 San Pablo Avenue

El Cerrito, California 94530
(415) 428-0468 (F. Hewitt)

GOTO Group

Tommy W. Schenck

c/o Tom & Bobbie of Newberrys
1136 Fulton Mall

Fresno, California 93721

San Diego User Group

Hal Brehe

4671 Mt. Arnet Drive

San Diego, California 92117

Orange Park, Florida 32073
(904) 264-6785

Robinson High Computer Club
Mrs. Byman

6311 S. Lois Avenue

Tampa, Florida 33616

(813) 835-1211

GEORGIA

Compucolor Users Group

Irv Mullins

2194 Briarcliff Road, N.E.
Atlanta, Georgia 30329
Day: (404) 586-5156

Night: (404) 634-3919

17

MASSACHUSETTS
Compucolor Users Group
Richard Manazir

13 Grandview Street
Southwick, Mass. 01077
Day: (203) 688-1911
Night: (413) 569-6621

NEW JERSEY

Compucolor Users Group
Peter J. Miller

125 Buena Vista Drive
Ringwood, New Jersey 07456
Night: (201) 839-7251

NEW YORK

Compucolor Users' Group of Rochester
Gene Bailey

28 Dogwood Glen

Rochester, New York 14625

(716) 381-4027

OREGON

Compucolor II Users' Group
Bruce Vanderzanden

2006 "C'" Street

Forest Grove, Oregon 97116
(503) 357-2772

PENNSYLVANTA
Philadelphia CCII Users Group

AUSTRALIA
Compucolor User Group/Syd-

ney Area
Andrew lcIntosh
91 Regent Street
Chippendale, l.S.W., 2008
Australia

Compucolor User Group/lel-
bourne Area

ifeil Brandie

212 High Street

Windsor, Victoria, 3181

Australia

CANADA

Canadian Users Group
Glen Davis

Bsmt—-59 Kendal Avenue
Toronto, Ontario
Canada IM5R 1L8

Compucolor Users Group
Mark Herzog

House of Computers

368 Eglinton Avenue, West
Toronto, Ontario

Canada MON 1A2

(416) 482-4336 @«

Howard Rosen

P.0. Box 434

Huntington Valley, Pa. 19006
(215) 464=7145

VIRGIRTA

Compucolor Users Group
Rick Vick

702 W. Holly Avenue
Sterling, Virginia 22170
Day: (703) 827-3894
Night: (703) 430-3843

INTERNATTIONAL

Ham Radio Users Group

Bill Shanks, W2GTX

7 Lake Circle Drive
Vicksburg, Mississippi 39180

i8

Cueties ...

10 REM OOLORED SQUARES

206 REM BY STEVE REUBART

30 pLOT 27,24,15,29,6,0,12

A7 IN=1:C=1

50 FOR Y=0 TO 31 STEP 4

60 FOR X=0 TO 63 STEP 8

79 C=C+IN:PLOT 6,C

80 FOR I=Y TO Y+3:PLOT 3,%,I

9¢ PRINT " """ ":REM 8 NULLS

109 NEXT I,X,Y

119 FOR W=1 TO 600 :NEXT

120 IF IN=1 THEN Il=—1:C=64:
GOTO 58

139 eLoT 27,11,6,2,8

Assembly Language Programming

by David B. Suits

The Intecolor and Compucolor computers have a great deal to offer
in the way of color graphics. Using BASIC to access this power is
relatively easy, but its main disadvantage is speed. Assembly language
programming provides the ultimate in speed, but its main disadvantage
is coding time. Another disadvantage is instruction: what can you do
with assembly language if you don't know anything about it? Where can
you go to learn about it?

Answer: here! 1 sympathize with all those of you who want to learn
assembly language but are afraid to begin, or don't know where to begin.
This series of articles will be devoted to you, the rank beginner. I
will assume you know a little bit about programming your Intecolor or
Compucolor in BASIC. Other than that, all you need is a little curiosity,
and some perseverance. (And a subscription to Colorcue.)

Inside your computer's plastic shell there is an 8080A microprocessor
(call it "8080" for short), conmected to some Read Only Memory (ROM)
and some read/write memory, also called Random Access Memory (RAM). In
addition, the 8080 has a tiny bit of read/write memory inside itself,
referred to as the 8080's registers. Each of these registers is eight
binary digits (ome byte)-—except for the Stack Pointer (SP) and the
Program Counter (PC), which are 16 bits (two bytes) each. Certain of
the eight bit registers may be grouped together into pairs: registers
D and E can be paired and referred to as register pair D (some people
prefer to be explicit and say DE). H and L can be referred to as register
pair H (or HL), and so on. For the most part you will be concerned to
read from or write to registers A, B, C, D, E, H and L, and, often, the
register pairs BC, DE and HL. PC, SP and FLAGS are used automatically

REGISTER PAIR

REGISTER NAME
PC PC (Program Counter
SP SP (stack Pointer)
FLAGS A PSW (Program Status word)
B C B
D E D
H L H

ONE BYTE ONE BYTE

19

by the 8080 for its own purposes, and we won't bother with them for
quite a while, except for the FLAGS, which we'll make use of frequently.

The 8080 microprocessor is capable of understanding and carrying
out a varied set of instructions, each of which is simply a number (eight
bit binary) held somewhere in the computer's memory. The 8080 will look
at memory, copy the number it finds there into a secret internal register
of its own, and execute the instruction. This means that the 8080 must
know where in memory to find that instruction number in the first place.
That's the function of the Program Counter (PC), which points to a
specified memory location. When the information (always an eight bit
binary number) is read into the 8080, the PC is automatically incremented
to point to the next instruction in memory: that is, it is automatically
set up to get the next instruction as soon as the present instruction
has been carried out. More or less as in BASIC, the 8080 will execute
an instruction and then move on to the next one, execute it, move on to
the next one, and so on. And, more or less as in BASIC, you can use
GOTOs and GOSUBs to veer off to other parts of the program, except that
the 8080 will jump hither and yon according to JMP and CALL instructions.
More accurately, since the 8080 can understand only binary numbers, and
not letters, it will GOTO (JMP) somewhere or other in response to the
binary number 11000011 (=195 decimal), and GOSUB (CALL) some subroutine
or other in response to binary 11001101 (=decimal 205). Since we humans
have difficulty in talking in long strings of 1s and 0s, we write programs
using mneumonic names like JMP and CALL, which are then translated into
binary numbers by a program called an assembler. So there are two steps
to assembly language programming: (1) You write the program in assembly
language, perhaps using ISC's Screen Editor (or, Heaven forbid, the old
Text Editor), and save it on disk., (2) You run the assembler (or the
macro-assembler), which translates your assembly language program into
a series of binary numbers and stores the result (we can now call it
machine language, since it is in a form which the 8080 can understand)
on disk. You will need, then, to learn how to write an assembly language
program, and then you will have to learn how to use the assembler program
to translate what you've written., We'll cover both of those topics (and
more) in this series.

A crucial difference between BASIC (and other high level languages)
and assembly language is that in assembly language you do everything
one tiny, painstaking step at a time. Most single instructions in BASIC
would require a large number of assembly language instructions. Whereas
in BASIC you could write A=B+C, in assembly language you would have to

20

break it down into a series of minimal steps:

(1) Find the location in memory called "B".

(2) Copy the contents of location "B" into an internal
register of the 8080.

(3) Find the location in memory called “C".

(4) Add the contents of "C" to that internal 8080 register
which has been holding the contents of "B".

(5) Find the location in memory called "A".

(6) Copy the contents of that 8080 internal register (which
now contains the sum of "B" and "C") into that memory
location called "A",

Steps (1), (3) and (5) are themselves a series of operations which must
be broken down into a number of discrete 8080 instructions. (To make
matters more complex, BASIC uses not one, but four locations in memory
to store a number.)

Before we get into a discussion of the assembly language instructions
and what they mean, let's get accustomed to binary and hexadecimal
arithmetic. If you don't already know something of binary and hex, then
the following will serve as a brief introduction. The real key to learning
is experience. That means practice. And practice. The more you fiddle
around, the more you will feel at home. (Isn't this how many of us
learned BASIC?)

BINARY NUMBERS

When you add one to a (decimal) number, you get the next higher
number. Take the largest number representable by a single decimal
character, 9, and add one to it. You get 10. The digits shift just like
the wheels in an odometer: once a character reaches 9, it shifts back
to 0 and the character to the left moves up one. Each column in a decimal
number is occupied by some decimal character. The value of the whole
decimal number can be determined by multiplying the value of the character
by its column's weight., A decimal number has a one's column, a ten's
column, a hundred's column, and so on. These are merely the weights each
column has.

weight 1000 100 10
example number 0 2 3 8

[y

The decimal number 238 is two one hundreds plus three tens plus eight
ones: (2x100)+(3x10)+(8x1)=238. These weights are simply powers of ten

21

(powers of ten, because this is the decimal number system). The powers

start with 0: 10°=1. {In fact, any number to the zero power =1.)

powers 3 2 1 0
decimal weights 103=1000 102=100 10*=1¢ 10°=1

We now have all the principles necessary to develop any other number
system we please. For the binary number system, just repeat the previous
discussion, replacing "decimal'" with "binary", the ten allowable decimal
characters with the two allowable binary characters (1 and 0), and so
on. B PR

A binary odometer would turn considerably élbWér than the decimal

odometer (but there would be no savings in gas):
jooe \

000 001 010 011
+1 +1 +1 +1
001 010 011 100

As soon as you reach 1, you must start over again, whereas in the decimal
system you don't have to start over until you reach the character "9".
Don't misinterpret these numbers. The binary number 10 is not equal to
the decimal number 10. If you start at zero, you will have counted to
two when you get to binary 10, but you will have counted to ten when
you get to decimal 10.

Each column of a binary number has a weight, determined by the powers
of two:

powers 3 2 1 0
binary weights 23=8 22=4 21=2 20=1

Thus, a binary number is represented using the same underlying principles
as a decimal number. If we wish to translate binary into decimal, we
need only multiply the column weights by the column numbers and add them
up. For example:

weight
(expressed
in decimal) 23=8 22=4 231=2 20=1
example number 0 1 1 0 (binary)

In decimal this would be (0x8)+(1x4)+(1x2)+(0x1)=6. Your computer stores
numbers as eight binary digits (one byte), so we ought to become
accustomed to this table:

22

powers
(expressed
in decimal) 27=128 26=64 25=32 24=16 23=8 22=4 21=2 20=]

This means, incidentally, that the largest number which can be stored
in a given memory byte is 11111111 (binary) = 255 (decimal). Some of
the 8080's internal registers are 16 bits wide; in addition, each memory
location in the computer is referenced by its address (more on that
later), which is 16 bits. So we ought to become familiar with this table:

215=32768 214=16384 213=8192 212=4096 211=2048 21°0=1024 2°9=512 28=256
27=128 26=64 25=32 24=16 23=8 22=4 23=2 20=1

The largest number which two bytes can hold (and the highest address
allowed) is therefore 11111111 11111111 (binary) = 65535 (decimal).

With some '"hunting and pecking', these tables will allow you to
translate from decimal to birary and also back again. To translate from
decimal to binary, find the bit with the highest weight equal to or less
than the decimal number to be converted. Make the corresponding bit in
the binary number = 1 and subtract its weight from the decimal number.
Resume the process with the result of that subtraction until the result
is zero. For example, we can translate 238 (decimal) into binary by
noticing that the highest binary weight equal to or less than 238 1is
128. Make that bit =1.

512 256 128 64 32 16 8 4 2 1
0 0 1

Subtract 128 from 238 to get 110. The highest binary weight equal to or
less than 110 is 64. Set that bit = 1.

512 256 128 64 32 16 8 4 2 1
0 0 1 1

110-64=46. The bit under 32 becomes 1.

512 256 128 64 32 16 8 4 2 1
0 0 1 1 1

46-21=14, so the bit under 8 becomes 1.

. 512 256 128 64 32 16 8 4 2 1
0 0 1 1 1 0 1

23

14-8=6. Etc. The final result is 11101110 (binary).

1 0

bit 7 6
1 1 0 (binary)

4
1 0

5 3 2
1 1 1

An alternative method is to divide the decimal number by 2 and place
the remainder into the right-most bit of the binary number. Now divide
the quotient (i.e. the integer result) of the previous division by 2,
put the remainder in the next bit position to the left, and so on until

the quotient = 0.

119 remainder 0 (bit 0, i.e., right—-most bit)

59 remainder = 1 (bit 1)
29 remainder =1 (bit 2)
14 remainder = 1 (bit 3)
)29

7 remainder = 0 (bit 4)
Y14

3 remainder = 1 (bit §5)
_ 1 remainder = 1 (bit 6)

3
0 remainder =1 (bit 7)

HEXADECIMAL NUMBERS

The problem with binary numbers is that they are so confusing to
work with: all those zeros and ones create a fertile enviromnment for
errors. Decimal numbers are easier, because there are fewer characters
per number and because we're already familiar with them. Unfortunately,
the computer is too stupid to deal with ten different characters. We
might use decimal numbers for our own figuring and then translate between
decimal and binary when required., But that is usually a tedious operation.
What we need, then, is a way of expressing binary numbers without being
restricted to two digits, and yet without the burden of tedious
translation. Enter the hexadecimal system.

The binary system is built upon powers of two (that's 10 in binary).
The decimal system is built upon powers of ten (that's 10 in decimal).
So the hexadecimal system is built upon powers of 6 (hex) + 10 (dec) =
16 (that's---you guessed it!--10 in hexadecimal). Hexadecimal 1is

convenient because 16 is a power of two (the fourth power). This means

24

that we can represent four binary digits with one hexadecimal digit.
Or, that is, two hex digits will represent one byte, and four hex digits
will represent two bytes. That convenient symmetry does not exist between
binary and decimal. (Ten is not an integer power of two.) This does two
things for us: (1) it decreases the number of characters necessary to
represent a number, and (2) it allows a human to convert quickly between
binary and hex as the occasion demands.

The conversion is simple: start with the four least significant bits
(i.e., the right most four bits, or half a byte--sometimes called a
nibble, or nybble) and translate them into its hex equivalent. Move left
and convert the next nibble, and so on. To convert from hex to binary,
just replace each hex digit with its binary equivalent.

Well, in order to make these conversions, we'll have to define the
hexadecimal characters. We need sixteen of them, but we are accustomed
to using only ten (0-9). So we invent six more. It really doesn't matter
what they are, except that tradition calls for using the letters A-F.
(Perhaps because these symbols were easily available on typewriter
keyboards.) The relationships between the binary, decimal and hexadecimal
schemes are shown below. After working with hex and binary numbers for
a while, you will have this table memorized.

"HEX BINARY DECIMAL

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15
10 00010000 16
11 00010001 17

25

If you recall the principles which structure all number systems,
you should have no trcuble dealing with hex. A hex odometer would turn

slower than a decimal one:

00 09 0A OB 0C ©0p OE OF 10
#1 ... +1 +1 41 +1 +1 +1 4+l +1 ...
01 0OA OB 0C O0» O0E OF 10 11

I said before that one reason for not using decimal numbers was
because the computer was too primitive to handle ten different charscters;
two is its limit. (After all, the computer is merely a clever arrangement
of switches, each of which can be either on, =1, or off, =0.) And now
I offer the hexadecimal system with its sizteen characters. $So0? I lied.

No, no. It is true that the computer can't deal directly with anything
other than binary numbers, but hexadecimal numbers at least provide a
fast and efficient manner in which to represent binary numbers to humais,
which is what we are. We can always write a simple routine to translate
between hexadecimal and decimal if we need it. Besides, hex is firmly
rooted in tradition (short as the computer tradition is), and any attempt
to rip it up will probably cause the destruction of the universe,

Your computer's FCS understands only hex. (This makes it difficult
for BASIC, which understands only decimal, to talk to its own F(S!
Computer manufacturers work in mysterious ways.) Furthermore, ISC's
Machine Language Debug Package (a spectacular piece of software, by the
way) 1s easier to deal with in hex (although you can get by with decimal),

and we will be using it in this series. (Do you have yours yel?)

Next time: the 8080 instruction set. In the meantime, read anything
and everything you can get your hands on dealing with 8080 assembly
language. There are articles in magazines, books, and even assembly
language program listings—-cryptic as they might seem at first--can help
you become acquainted with this new language. Every human is partly a
self-teacher. You'd be surprised at how much information you can
assimilate simply by looking over some 8080 assembly language listings.
At least you will come to have an unconscious "feel' for the language.
And that's important. @&

26

HOWARD ROSEN, INC.

Fut the fimnishimg@ touwches to your Compucolor II or ISC computer.

Come wup to the world of word processing.
Evtend the wtilization of wour computer to tne other members of gour family.
x Letters
*x School reports
*x Business reports
If you now type-write it, Comp-U-Write it for a better product,

Ezsic requiremente faor CCIT or 3651/94651%
- 16K RAM,

117key kegboard.

Primter.

Comp-U~-Hriter software and instruction marnual.
For mamimum capabilityg!

Full 32k RAM.

Lower case characters.
Talk to other computerst Add 3 MODEM to gour system.

We carryg the entire CCII & ISC line of hardware/software, including spares.
Send for our 4-page order form for hardware/software. Request separately
by item Your spare parts needs.

Send your order now. XYWe pay the shippina.
Allow 5 weeks for delivery.

CCIT 3650/92650 Description Quantity Cost Amount
010057 010053 Uparade 72/101 keys 150.00
010058 010054 Uparade 72/117 keys 250.00
010059 010059 Upgrade 101/117 keys 100.00
010044 24in, RS 232C Cable 45.00
100986 0C2100 16k RAM Add-on 310.00
010051 Switchable Lower Case 150.00
0Co3LC 32 Lower (ase Characters 100.00
290001 990030 Simn. Formatted Twin Fachk 9,99
?00041 8ir. - 10 One Side Format __ 75.00
00044 8im. - 10 Two Side Format 100.00
991544 991545 Sire Comp-U-Writer 262.5
991544 8in. Comp~U-Hriter 262,50
21509 991532 FORTRAN 75,00
Centronics 737-3 Correspondence printer 850,00
Ease-2, Imnc., BS50 Impact printer 750.00
C,Ttoh Daisy wheel printer _ Z166. 00
CAT Nowvation MODEM Trarnsmit/Originate 175,00
Supb Total
Fa. residents add 6% Fa. Sales Tax Fa. Tax
Total
Terms - Cash with order
Name Telephone #{) -
Address Citey 51 ZIF

HOWARD ROSEN, INC.
FO EBox 434
Huntimedon Valley, Fa. 12006

Signature (please sign order)

27

Colorcue

A bi-monthly publication by and for
Intecolor and Compucolor Users

Editors:
October/November 1981 Ben Barlow
Volume 4, Humber 2 David B. Suits

3 Editors' HNotes
4 1ISC Product Review

6 Assembly Language Programming, by David B. Suits
Part II: Using the llachine Language Debug Package

15 Sphere Program, by Mark D. Fairbrother
Generate a 3-D sphere on your screen

17 Incremental Plot Table, by Bob V. Smith
Find those incremental plot numbers the easy way

18 Lissajous Figures, by Trevor Taylor
Mimicking oscilloscope graphics

20 Ask Mr. C. O. Lorcue

21 CALLable Sort Routine, by Alan D. Matzger
Ultra fast sorting for your BASIC programs

Advertisers: You will find our advertising policies attractive. Write for
details.

Authors: This 1s a user-oriented and supported publication. Your arti-
cles/tips/hints are required to make it go. Send your articles or write
for information.

Colorcue is published bi-monthly by Intelligent Systems Corporation, with
editorial offices in Rochester, New York. Editorial and subscription
correspondence should be addressed to the Editors, Colorcue, 161 Brookside
Dr., Rochester, NY 14618. Product related correspondence should be
addressed to ISC, 225 Technology Park, Norcross, GA 30092, ATTIN: Susan
Sheridan. Opinions expressed in by~line articles are mnot necessarily those
of the editors or of ISC. Hardware/software items are checked to the best
of our abilities but are NOT guaranteed.

Editors’
Notes ...

The last issue of Colorcue
carried an article by Tom Devlin
about an elegant, inexpensive solu-
tion to the lower case y problem
that has bugged Compucolor owners
for so 1long. As it frequently
happens, inventors seem to come up
with mnearly the same ideas at
nearly the same time. Ken Orford,
a member of Forum, the Canadian
users group, hit upon the same fix
for the problem several months
before Tom and published it in the
July/August issue of the Forum
newsletter., Since by that time we
had already received Tom's article,
we ran it in our August/September
issue. But we neglected to mention
Ven's article, so we want to take
this opportunity to acknowledge
len's efforts and Forum magazine.
It is a fine newsletter published
six times per year. Subscription
is $15. By the way, our User Group
Dulletin Roard in the last issue
of Colorcue was out of date for
Canada. Forum 1is the only wuser
group. For information, write to
Forum, 21 Dersingham Crescent,
Thornanill, Ontario, Canada L3T 4P5,

DEBUG BUG DEBUGGED —~ Dave Suits

There is a fatal bug in at
least some versions of the [lachine
Language Debug Package program. In
order to see if your version has
a bug, and to correct it if it
does, read on,

The MLDP disk comes with two
versions of the Debug program. On
the disk they are named ILDP.PRG;1
and MLDP.PRG;2. Only version one
has the bug. If you've a 32K
machine, you probably won't notice
it. (Besides, you'll wusually be

‘\
I

using version two.) But if you have
a 16K machine, you must use version
one (since version two loads into
very high memory——which would be
non—existent on a 16K machine).
Enter FCS with ESC D and then run
MLDP;1. You should be greeted with
a heading and the DBG> prompt. Type
in this: @AO3A and hit RETURN.
There should be a yellow AO3A on
the left. (If it's not there, try
again.) Off to the right, and in
white, you will see H,0E000H. If
that's mot there (for example, if
you have H,0AQ00H), then your HLDP
program is OK. But if it is there,
then so is the bug. To correct 1it,
type in: LXI H,A000 and hit RETURN.
You should now be shown, on the
left, a yellow AO03D. (If that's
not there, go back to the first
step by typing @AO3A and try a-—
gain.)

You have now altered the IMLDP
program, and you should save this
corrected version on disk. To do
that, first hit CPU RESET and ESC
D. If you have single density disks
(i.e. Compucolors) then you’ll
have to mount a fresh disk: there’s
no room on the original disk to
save the corrected program. Now
type: SAVE HMLDP AOO0-BF00. This
new version of ILDP will now run
correctly on ©both 16K and 32X
machines,.

The bug, in case you're inter-
ested, was the program’s initializ~—
ing the pseudo stack pointer to
EOO0H. That will work with 32X
machines, but on 16X machines,
EQOOOH 1is a non—existent RAM ad-
dress. The alternative to the per—
manent correction is to correct
the error each time the !NLDP pro-
gram is restarted (either run from
FCS or else entered with (ESC)
(USER)). In this case, you will
have to re—initialize the pseudo
stack pointer by typing %SP=A000.

EPSON NOTES — Ben Barlow

Those of you with Epson print-
ers have no doubt seen the advertise—
ments for GRAFTRAX 80, the Dbit
graphics package for the MX-80. I
got mine in the mail the other day,
and what I read sent me scurrying
for the Aug./Sept. issue of Color—
cee in which I had written: "The
Epson must be ordered with the
RS/232 interface (Cat. no. 8141)".
Then back to the front page of the
GRAFTRAX 80 documentation: '"Note:
GRAFTRAX 80 will not function with
the Epson 8141 serial interface'.
Curses! Not only can I not try
GRAFTRAX 80, since I've got an 8141
interface, but I've possibly misled
some readers into buying into the
same dilemma,

If so, I offer apologies. If
not, I can think of two solutions.
One, purchase the 8150 version
serial interface port (it costs
about twice the 8141), or, two,
build a serial to parallel inter—
face and connect it to the MX-80's
parallel connector. Always looking
for the cheap solution, I'm opting
for the second method. I hope to

have an articlie apout the paraiiel
interface and GRAFTRAX 80 in the
next Coloxcue.

Having heard rumors of printer
malfunctions when using GRAFTRAX-
80, and seeing a prominent warranty
disclaimer in the documentation,
I called Epson America to inguire.
I was told that there were mno
problems using GRAFTRAX~-80. It can
cause no problems with the hardware
because it is simply a replacement
program for the printer. The war-—
ranty disclaimer is there to pro-
tect against claims due to customer
mis—installation or claims arising
from applications of the printer
(for example, a bug in the program
using a printer connected to an
EKG machine, causing the death of
three patients). I was advised of
a problem with a kit for a friction
feed roller to add to the MX-80.
The kit apparently causes the step-—
per motor, which advances the pa-
per, to burn out. Its installation
will void the Epson warranty. (Ep-
son has no modification or plans
for one to add friction feed. They
advise the wuse of the MX-80FT
printer.) @&

INTELLIGENT SYSTEMS CORPORATION

PRODUCT LINE REVIEW

Intelligent Systems designs, manufactures, markets and supports several

different types of color graphic microcomputers. These products are used

in varied applications such as process control, energy management, and

network monitoring. There are tens of thousands of units in use in over

40 countries.

Currently, the product line consists of three different computer types,

each of which can be ordered with various options such as different screen

sizes, different memory amounts, printers, software, etc.

The "workhorse" of the Intecolor product line is the 8000 series. This

series includes terminals, desktops, and complete computer systems. These

4

computers are in industrial cabinets and have card cages for adding features
as required. All prices quoted below are for single quantity.

8001G terminal $2560
Includes refresh RAM, terminal control software, 72-key keyboard,
19" CRT, RS-232C, 8 foreground 8 background colors, graphics

software and editing features, 160 x 192 resolution,

80011 terminal $4460

Same as 8001G, but with graphics resolution of 480 x 384. Each
dot on the screen is addressable to any of eight colors. Includes
dot, arc, vector, and incremental vector generators. 4 by 4 dot

super-pixel yields 4913 individual lines.

8051 desktop $4265
Complete desktop computer with color graphics, 19" CRT, Disk
BASIC, lower case ASCII, operating system, 48 1lines by 80

characters, 80K mini~disk and 8K of user RAM,

When the setting requires a contemporary cabinet, Intelligent Systems
has the 8300 and 8900 product series, with 13" and 19" CRTs respectively,
These fit well in business environments, where they are used for MIS,
communications, and word processing. FEach of the following pairs has
features comparable to the corresponding industrial units described above.

8301G $3560
8901G terminal $2760
83011 terminal $5460
89011 terminal $4660
8351 desktop $5265
8951 desktop 54465

Many users do net require the high density of information that can be
displayed in the 80 character by 48 line format of the 8000 series. For
these wusers, Intelligent Systems manufactures a liline of single-board
computers whose less dense (and less expensive) displays show 64 characters
by 32 lines. These computers have fewer available coptions than the 8000

series products, but their low price makes them very attractive., They are

(Continued on page 13.)

5

Assembly Language Programming

PART II: USING THE MACHINE LANGUAGE DEBUG PACKAGE
by David B. Suits

I mentioned last time that instructions .o the 8080 are always eight
binary digits (one byte). This is misleading. With one byte there are 256
possible numbers (0-255), but the 8080 does not understand 256 different
instructions. The number 237, for example, is undefined: what the 8080
will do, if anything, with that number is unpredictable.

There is another sense in which it is misleading to say that the 8080
instructions are one byte numbers. Sometimes (I should say "often") the
8080 will know what to do, in response to an instruction code, but it will
have to be given certain data to do it with, or else it will have to be
told where to get that data. Let me explain.

In response to the number 71 (=01000111 binary) the 8080 will copy
the contents of the A register (the Accumulator) into the B register.
That's simple and straightforward. The 8080 doesn't care what is in either
register. It just blindly copies A into B. (Consequently, whatever used
to be in register B will no longer exist.) Suppose A contains 0001100 and
B contains 11010110.

Before executing 91909111 After executing glggglll
A 909111060 A 00011100
B 11910118 B 00011100

For each possible register copy instruction (not counting PC, SP and FLAGS
registers) there is some unique number which tells the 8080 to do that
copying. In assembly language you specify the copy instruction by using
some mneumonic. The standard set of mneumonics was defined by Intel
Corporation (the inventors of the 8080) some years ago. Unfortunately,
instead of something obvious, like COPY A TO B, they chose the more cryptic
MOV B,A. 'MOV' stands for 'move', but what it means is simply copy. After
the MOV, the destination register is specified, and then the source
register. The general format for a MOV instruction is therefore MOV <dst.
reg.>,<src. reg.>. Don't forget the comma between the two registers' names.
The assembler translates such MOV instructions into their appropriate
binary codes.

Some other 8080 instructions, however, need more than one byte to

operate. Jor example, the number 00001110 (=0E hex) iustructs tne 3080 to
put the following number into the C register. But what is "the following
number"? It 1is the byte which immediately follows the 00001110 itself.

lfence, thnls 1s called an immediate type of instruction.

00001110 0P0000A1 put 1 into the C register.
30001119 81099601 put 65 into the C register.

And so on. In assembly language, this is a move immediate instruction,
whose mneumonic is MVI. The general format is MVI <reg.>,<number>. Some

exanples:

MVI A,0 put 8 into the accumulator
MVI C,25 put 25 into the C register
MVI L,15 put 15 into the I register

Note that the number to be placed into a register must be between 0 and
255 -- i.,e., one byte. The instruction MVI A,1024 is an impossible
instruction (and your assembler will give you an error message), since
the number 1024 1s 00000100 00000000 binary and occupies two bytes, not
one. (Ky the way, negative numbers are allowed, but that's a topic for a
future installment.)

Register pairs may also be loaded with immediate data (two bytes, this

time), but we'll save discussion of that for another time.

Using the HMLDP

iSC's Machine Language Debug Package is a warvelous tool for debugging
machine language programs. It is not an assembler, altliough it can do some
of the same things that an assembler will do. And 1t can be used by us to

learn avout 5080 instructions and what they can be made to do.

Beiore we jump in for some hands-on experience, please read the section
in this issue's Editors' HNotes dealing with a bug in the MLDP program.
When you're ready to zo, enter FCS with ESC D and run MLDP;1 {(if you have
a 16K machine) or MLDP;2 (if you have a 32k machine). The program will
srint a heading and then give you a DBG» prompt. There are & number of
commands you can now give it. For example, it will translate a number from

"= command. (The

irtexadecimal 1nto aecimal or wvice~versa if we give it the
couputer's output 1s in bold face in tne following examples; my 1nput is

in regular type and is followea by a RETURN.)

DBG>=10
=9010 $#16

The number typed in after the "="

1s assumed to be a hexadecimal number,
but if it is preceded by "#", then it 1is taken to be decimal. So DBG
understood my command to be: "Translate the hexadecimal number 10 into
decimal'. This is did; it printed out hexadecimal 10 and then the decimal

equivalent, 16 (preceded by "#" to indicate decimal). Similarly,

DBG>=42-%#13
=@@35 #53

tells me that subtracting decimal 13 from hex 42 yields hex 35 (=decimal
53). You now have a convenient hex/dec calculator-converter. You don't
really need binary output as well, since you can easily read off the binary
equivalent from the hex number. (See the previous article in this series.)

The MLDP can also set up a series of machine language instructions
and then execute them. (Furthermore, we can choose two modes of execution,
as I'll explain below.) The command "@" followed by a number tells the
program to point to the address in the computer's memory specified by the

number. For example,

DBG>@82049
8200 ES5 'Ef PUSH H
MEM>

Just above the MEM> there is a line of information consisting of four
fields. The first (at the left of the screen) tells you the memory location
(in hex, always). In our case it is 8200. To the right of that is a two
digit hex number, or else two two digit hex numbers, or else three two
digit hex numbers. Whether there is one, two, or three numbers depends
upon what information is presently found at memory location 8200H. We'll
come back to this later. To the right of the numbers is one (or two, or
three) characters within single quotes. Let's ignore that for the moment.
And finally, there are two more columns; together they comprise the assembly
language mneumonics corresponding to the information stored at 8200H. More
on that later.

Notice that the DBG> prompt has been changed to HMEM>. This means we
are in the so-called "memory mode" rather than the debug mode. In the MEM
mode we can put a byte of data--for example, 3EH--into the present memory
location by entering

MEM>=3E

sfter pressing RETURN, the 3EH (=62 decimal) was stored in 8200H ana now
anctner line of display tells us what is at the next location, 8201H.
Let's enter 41H there:

MEM>=41

(Remember that whatever is typed in is assumed to be in hex unless preceded
by "#' to indicate decimal.) Now enter these three bytes: CD, 33 and 00.
MEM>=CD
MEM>=33
MEM>=00
ow let's go back where we started and see what has been accomplished.

Go back to location 8200H by entering:

MEM>@8200

You should zet this result:

8288 3B 41 7.4 HVI A,41H

This says that we are at memory location 8200H and that the bytes 3EH and
4111 are found there. Well.... There can be only one byte per memory
location. That's the 3EH. The 41H is evidently in the next memory location,
namely, 8201H. Why are we shown two bytes at omnce? The answer 1s more
easily seen from the information at the right: MYI A,4lH. This means, in
assembly language mneumonics, "Put the number 41H into the Accumulator."
The "MVI A..." is the assembly language equivalent of 3EH (=001111i0),
which 1s what is stored at 8200H. That is, the MLDP program has translated
the numbers at 8200H and 8201H iunto assembly language mneumonics for us.
It has dome just the reverse of what an assembler does, and so we say that
it has disassembled some machine language instructions. Instead of telling
us that "MYI A" was stored at 8200H, it tells us something more useful,
namely, "MVI A,41H".

fiow press the "+" key and RETURN. You will be shown the contents of

the next location in memory, namely,

8261 41 % MOV B,C

Oops! What 1s that "MOV B,C" doing there? That is an instruction to copy
the contents of register C into register B. But the MOV B,C instruction
apparently overlaps the MVI A,418 instruction. What's going on?

The 8080 understands numbers held in memory locatioms in two ways:
(1) as a number, such as 41H, or (2) as an instruction, such as ... er

-.. 41H! How does the 8080 know that 41H is on one occasion merely a number

to do something with and on another cccasion an instruction? Well, that

9

depends. If the 808C starts executing at 2u0Ch, 1t will iina 3o (or, 1u
assembly language, MVI A). But the instruction is incomplete: move what
into the accumulator? Why, the next number, of course: 41lil. So in this
case 41H is understood as a mere byte of data to be used somehow. On the
other hand, 1if execution were to begin at 8201, then 41H would be
interpreted as MOV B,C. So if we ask the MLDP to tell us what is at
location 8201H, it will oblige by displaying 4lH and then telling us that
41H is equivalent to MOV B,C. After all, the MLDP doesn't know where we
plan to begin execution.

The "+" key moved us forward one byte in memory. The "-'" key will move
us backward one byte. Try it. You should be back at 8200H.

Now press RETURN without entering anything. This will move you ahead

not just one byte, but rather to the next instruction, even if, as in the
case of 3EH 41H, the instruction takes up more than one byte. Now you
should see:

8282 CD 33 99 - 'M3e° CALL 8@833H

The CDH (that's a hex number, by the way, and not some kind of mneumonic)
is a CALL (like GOSUB in BASIC) instruction. But CALL what (or where)? In
BASIC, a GOSUB must have a line number to GOSUB to. When you're talking
directly to the 8080, you will have to give it an address. Remember that
memory addresses are two bytes long, and so an address can be anywhere
from 0 decimal to 65535 decimal. So 33H 00H following the CDi represent
(in hex) the address of the subroutine. But notice that out to the right
it says CALL 0033H, whereas to the left it says €D 33 00. Vhy have the
"33" and the "00" been reversed? The 8080 always assumes that the low byte
(i.e. the right-most, or least significant eight bits) of the address
comes first, then the high byte. Some people feel that this is backwards,
but I have found it quite natural. Just remember low byte first in memory,
eventhough we write it with the high byte first.

When the 8080 performs a CDHI (=CALL) 1instruction, it goes off to
execute some subroutine until it encounters C9H (=201 decimal, or RET in
assembly language), in which event it will return to where it was before
and continue. How does it know where it was before? When CDH (=CALL) 1is
encountered, the 8080 will store the address of the next instruction after
the CALL instruction. When it returns from the subroutine it can retrieve
that address and continue. Since our CALL instruction is located at
addresses 8202H, 8203H and 8204H, the address of the instruction after
the CALL 1s address 8205H. Where 1s this address saved during a CALL? It
is saved 1n a reserved area of memcry called the STACK. Ve'll talk more

10

about that 1n a later installment.

The display is still in MEM mode. Let's go back to the DBG mode. We
do that by entering "/' and RETURN. (Be careful not to enter / when in
the DBG mode, because that is a command to exit the MLDP altogether and
return control to the machine's CRT mode.)

How we're going to set a BREAKPOIRT. A breakpoint 1s a location in
memory that will halt execution of a machine language program and return
control to DRG, sort of like putting an END statement into a BASIC program
to halt execution and return control to BASIC. A breakpoint is set by
entering AT <address>. Thus,

DBG>AT 8285

will set a breakpoint at 8205. You can put in a number of breakpoints
throughout a program for debugging purposes. To list all the breakpoints,

fype in L. In our case, there is only one breakpoint, so we'll see:

DBG>L
8285: C3

This tells us that a breakpoint is set at &205H, and that the contents of

8205H 1is C3H. (Your memory might have something else there.) We don't care

what's there; we only want to make sure that the program will stop there

and not continue on trying to execute whatever random assortment of numbers

might be in memory. If we wanted to clear a breakpoint, we would type in
DBG>C 8285

But don't do that, because we want the breakpoint there.

Believe it or net, we now have a program to execute. There are two
ways or execuling a program: B <address> and I <address>. The R command
will transfer control to the B0OB), which will bDegin executing at the
address specified. It will run at top speed until 1t bumps up against a
breakpoint, in which case control will return to DBEG. The I command will
execute much slower and in this case execution may also be interrupted by
pressing the ATTN/BREAK key. Sometimes the I command is helpful because
you will want to see things happen in slow motion.

Let's execute the machine language instructions beginuning at 8200H.
DBG>R 82060 or else DBG>I 3289
In this case it won't matter whether you use R or I, because the program

is so short.
What will be the result?

i

DBG>R 8200

A

BREAKPOINT AT 8285

A BC DE HL M SW:(SZXpPC) PC SP (SP+@,SP+2,SP+4,SP+6)
41 0000 0000 0600 C3 62 00066808 8285 EGGA 3C3A FEF9 CAFl EEMGE
8285 C3 33 @84 'C3@’ JMP 8033H

DBG>

(Some of the values on your display will differ from mine.) The first
thing to notice is the A on the second line. Our program was a simple one:
it put 41H (=65 dec., which is the ASCII code for "A") into the accumulator
and then CALLed a subroutine in ROM (located at 33H). That subroutine
takes whatever 1is in the accumulator and puts 1t on the screen. The
subroutine was RETurned back to our program, where it 1immediately
encountered a breakpoint. The rest of the display shows the resulting
contents of the 8080's registers (A, B, C, D, E, H, L), the contents of
the Status Word (i.e. the FLAGS), the Program Counter, the Stack Pointer,
and the contents of part of the stack. On the last line of the display,
we are shown the contents of memory location 8205H, where the breakpoint
was encountered.

For now, nevermind all that information. The interesting thing is that
we have written a program to put something onto the screen. It works just
like the PLOT statement in BASIC: PLOT 65 would put an "A'" on the screen
at the present cursor location. The rule is, each time you want to put a
character onto the screen (or change colors, or draw vectors, or do anything
else you do with BASIC'S PLOT statement), just put the appropriate number
into the accumulator and then CALL 33H. Try this:

DBG>C 8285 (clear the breakpoint)
DBG>@8200

8209 3E 41 '>A' MVI A,41H
MEM>

Now type in each of the following 40 two digit hex numbers, preceding each
with "=" and following each with the RETURN key.

BASIC equivalent

3E 6C CD 33 89 PLOT 12

3E 82 CD 33 068 PLOT 2 -- general plot mode
3E 68 CD 33 @@ PLOT @

3E 6A CD 33 068 PLOT 140

3E F2 CD 33 09 PLOT 242 -~ vector plot

3E 64 CD 33 @@ PLOT 140

3E 7F CD 33 d@ PLOT 127

3E FF CD 33 48 PLOT 255 —-- plot mode exit

12

You should now be pointing to location 8228H. (If not, go back to 8200H
and check your entries.) Return to the DBG mode with "/". Set a breakpoint
at 8228H and then execute the program beginning at 8200H. (Use either R
8200 or I 8200.) Notice how fast the 8080 executes when allowed full speed.
The I command 1s interesting, since the machine language program will then
be interpreted, and the results will be much slower—-slower, sometimes,
than even BASIC. For example, the PLOT 12 instruction evidently first
homes the cursor and then erases each line of the screen from the bottom
up. Did you know that?

NEXT TIME we'll learn more about the 8080 instruction set, and we'll
explore some much easier methods of putting stuff onto the screen. Until
then, fiddle around with the present method. Have fun! @&

{Continued from page 5.)

especially well-suited to small businesses, persconal use, and MIS
environments.

3651 desktop $2945

Complete desktop computer with color graphics, 13" CRT, 72-key
keyboard, RS~232C, selectable baud rate, disk BASIC, internal
mini-disk drive with 92K bytes storage, 16K user RAM. Graphics
resolution: 128 x 128,

9651 desktop $3345
As above, but with 19" CRT.

3654 desktop $5445

Same as 3651 but with 1182K dual 8" double~headed floppy disk
drive.

9654 desktop $5854

Same as above but with 19" CRT. &

13

LOOKING FOR CUSTOM KEYCAPS

for your
COMPUCOLOR Il or INTECOLOR COMPUTER?

We stock blank keycaps that match the
original keycaps supplied on ISC’s keyboards

1 X1 size in 16 colors
1 X 2 size in 14 colors
Single quantity prices for one line engraved keycaps start at:

$1.17 for 1 x 1 size with 5 characters
$1.95 for 1 x 2 size with 10 characters

Other sizes and specific colors are available on special order.
Custom molded keytops available for high volume users.

For order form call or write:

Arkay Engravers

2073 Newbridge Road
Bellmore, NY 11710

516-781-9859

14

Sphere Program

By Mark D. Fairbrother
Carriage House East, Ab
Rt, 11

Kirkwood, NY 13795

This program will generate a 3-D line drawing of a sphere on a 128x128
screen using routines from "Mathematical Elements of Computer Graphics."

Note

that lines 2000 and up are for use with the MX~80 screen dump routine

if you wish to add it. (See Aug./Sept. Colorcue.) And in that case you
ought to add line 10 DIM MS(7) and line 20 FOR I=0 to 7:MS(I)=INT(2"1):NEXT.

100
119
128
138
140
158
160
179
186
190
200
210
1980
1090
1100
11198
1120
1138
1140
1150
1160
1176
1188
1190
1200
1219

REM GENERATE A SPHERE USING THE SPHERICAL COORDINATE SYSTEM =
DIM X(190),Y(109),Z(100)

RO=30:I=1

FOR TH=p TO 2.51327 STEP .628317

FOR PH=f TO 6.28319 STEP .330694

X (I}=RO*COS(TH) *SIN(PH)

Y (I)=RO*SIN(TH)*SIN(FPH)

2(I)=RO*COS (PH)

I=I+1

REM DIMETRIC PRQJECTION ROUTINE

REM FROM 'MATHEMATICAL ELEMENTS FOR (OMPUTER GRAPHICS'
REM P = NUMBER OF X,Y,Z TRIPLETS

REM X() = ARRAY (ONTAINING X—COOORDINATES

REM Y() = ARRAY QONTAINING Y-COORDINATES

REM Z{) = ARRAY QONTAINING Z-COORDINATES

DIM U(100,4),v(100,4),T(4,4)

FOR I=1 -TO P:FOR J=1 TO 4:0(I,J)=B:V(I,J)=0:NEXT J:NEXT I
FOR I=1 TO P

U(I,1)=X(I):U(I,2)=Y(I):U(I,3)=2(I):U(I,4)=1

NEXT I

FOR I=1 TO 4:FOR J=1 TO 4:T(I,J)=0:NEXT J:NEXT I
T(1,1)=.92582:17(1,2)=,133631:T(1,3)=-,353553
T(2,2)=.935414:T(2,3)=.353553

1228 T(3,1)=.377964:T(3,2)=-.327327:T(3,3)=.866025

1230 T(4,4)=1.0

1246 FOR I=1 TO P:FOR J=1 TO 4:FOR K=1 TO 4
125¢ v(I,J)=U(I,K)*T(K,J)+V(I,J)

1268 NEXT K:NEXT J:NEXT I

1270 FOR I=l TO P

1288 X(I)=V(I,1):Y(I)=V(I,2):Z2(I)=V(I,3)

1299 NEXT I

1300 N=3

1310 REM AXONOMETRIC PROJECTION ROUTINE

1320 REM FROM 'MATHEMATICAL ELEMENTS FOR COMPUTER GRAPHICS'
1330 REM P = NUMBER OF X,Y,Z TRIPLETS

1340 REM X() = ARRAY (ONTAINING X~COORDINATES

1350 REM Y() = ARRAY CONTAINING Y—COORDINATES

1368 REM Z{) = ARRAY (ONTAINING 2Z—-COCRDINATES

1370 REM N = NUMBER INDICATING THE PERPENDICULAR AXIS

1380
1390
1400
1410
1420

REM N=1 X-AXIS, N=2 Y-AXIS, N=3 Z-AXIS

FOR I=l TO P:FOR J=1 TO 4:U(I,J)=8:V(I,J)=f:NEXT J:NEXT I
FOR I=sl1 TO P

U(I,1)=X(I):U(I,2)=Y(I):0(I,3)=Z(I):U(I,4)=1

NEXT I

i5

143¢ FOR I=1 TO 4:FOR J=1 TO 4:T(I,J)=0:NEXT J:NEXT I
1446 T(1,1)=1:T(2,2)=1:T(3,3)=1:T(4,4)=1

1458 IF N=3 THEN 1499

1460 IF N=2 THEN 1480

1478 T(1,1)=9:GOTO 15090

1489 T(2,2)=8:GOTO 1500

1499 T(3,3)=0

1596 FOR I=1 TO P:FOR J=1 TO 4:FOR K=1 TO 4

1516 V(I,J)=U(I,K)*T(K,J)+V(I,J)

1520 NEXT K:NEXT J:NEXT I

1539 FOR I=s1 TO P

1540 HX=X (1) :LX=X (1) :HY=Y (1) :LY=Y (1}

1556 FOR I =2 TO P

1566 IF X(I)>HX THEN HX=X(I):GOTO 1588

1579 IF X(I)<LX THEN LX=X(I)

1588 IF Y(I)>HY THEN HY=Y(I):GOTO 1600

1599 IF Y(I)<LY THEN LY=Y(I)

1600 NEXT I

1618 DX=HX~LX:DY=HY-LY :MX=127/DX:MY=127/DY

1620 PLOT 12,6,6,2,1NT(@.5+MX*(X(l)—LX)),IN'I‘(@.5+MY*(Y(1)—LY))
1630 PLOT 242

1648 FOR I=1 TO P

1650 X (I)=INT(8.5+MX* (X(I)-LX))

1660 Y (I)=INT(8.5+MY* (Y (I)-LY))

16780 PLOT X(I),Y(I)

1680 NEXT I

1699 PLOT 255

2000 REM 2X¢X LINES ADDED TO RUN SCREEN-PRINT IF WANTED.
2018 PLOT 15:INPUT "HARDCQOPY (Y/N)";AS

2020 IF AS="N" THEN END

2030 PLOT 3,8,0:INPUT "HIT RETURN TO START";AS -
2049 GOSUB 9000 |“---.- .-'-
2050 END . i
I .I .-l
L
I ')
l .I
I g -
- . .l.
1l--.---l.. I f I..- -.
. [- |
-I. -l.- ! l-.. I'
. g-.'-. &
L = '
-.l---JJ.ll l-1! --I Il
-- IlI-Ii l -.-l '
o 3 i ua, IIl e, t
! & I k- .
' e 1" -
l .I I --- ..II
. ..-
l'. 3 I I'l S,
" 1 [} “®an
.ll‘ | -
1L-I-I ll "
| T LW Y
----. '
I t
| L
l -
. L] --
1 .!1"
I .-.. L}

. In l -l"“ 'l
Inage is 5% - — [
of original size, """"""Il;' :,:

1, A
.I- ..'--.

16

Incremental Plot Table

by Bob V. Smith
498 Brown Street
Hapa, CA 94558

This table allows you to discover the proper plot number for iucremental
point and bar graph plotting. In the general plot wmode, PLOT 251 enters
the incremental point plot submode. The next number specifies the placement
of two more plot blocks out from the first, and this number can be found
in the table. For example, 1f you want to move northeast and tnen southeast
for the two 1incremented blocks, then PLOT 169 1is the correct number. If

the original bplock is at, say, ¥=63,Y=63, then the instruction:
PLOT 2,63,63,251,169,255
will plot the original block and the two incremented blocks.
The table also applies to incremental bar graph plotting, where the

increment nunber will move the end point of the bar graph in the specifiea

direction(s). @

First Block

N HE E SE S SWw W N¥

N |34 162 130 146 18 82 66 983

ME |42 170 13& 154 26 9L 74 106

E |40 16& 136 152 24 88 72 104

Second SE|41 169 137 153 25 89 73 145
Block & {33 161 129 145 17 81 &5 ©57
SW{37 165 133 14¢ 21 85 69 161

W |36 164 132 148 20 84 68 104

WWi3c 166 134 150 22 86 70 102

17

Lissajous Figures

by Trevor Taylor
36 Tarm St.
Wavell Heights
Brisbane 4012
Australia

Lissajous figures are drawn by applyling sine waves to the horizontal
(x) and vertical (y) deflection plates of an oscilloscope. The two variables
that determine the shape of the figure are the ratio of the frequencies
of the two sine waves and the phase angle between them.

When the frequency ratio is an integer, 1t will be the number of lobes
(loops in the figure) if the phase angle is 90 degrees. If you consider
the figure to be three dimensional, the phase angle (which 1s how much
one sine wave is shifted with respect to the other) determines how much
it is rotated. A frequency ratio of ome and a phase angle of zero will
draw a straight line, i.e. a circle turned on edge!

In the program, line 30 determines the foreground and background
colors. The step size (degrees) used in the calculations is set in line
70. This is a compromise between speed and accuracy. Note that line 1050
and 2010 convert from degrees to radians as required for the SIN function,
In lines 2040 and 2050 the sine waves are scaled for the screen and the
aspect ratio is taken care of so that a circle will appear round.

Lines 2085 and 2087 take care of the case when you want only cne figure
drawn, which you specify by giving an increment of zero. Eemoving the 172
in line 1060 stops the program from erasing the screen between figures,
and can give some pretty patterns. You could also modify the program to
run through a range of frequency ratios.

A good example is: Frequency ratio = 3, Starting Phase angle = 90,
Ending Phase angle = 90, and Increment = 30.

Try to visualize the figure rotating as the program draws successive
pictures., Taking the reciprocal of the frequency ratio {for example,
0.33333) will turn the figure sideways, i.e., interchange x and y on the
screen. Experiment and have fun! Try to understand the math if you can.

Note: The Australian Broadcasting Commission used this particular
Lissajous figure as its symbol for a number of years. Of course, on TV it
was done using an oscilloscope and rotated much faster than is possible

on your computer. @&

i8

1665
1010
1920
1530
10545
1050
1965
1570
1380
20043
2015
2020
2030
2040
20507
2060
2078
2080
2085
2037
2090
2100
2110
2120
2130
2500

4 PEy LISSAJOUS PIGURES

DT

JRSart
REL BY TREVOR TAYLOR

fatmi
FaeuTy

P1=3.14159
PLOT 6,2
PLOT 12
=360

GO=1

0 85=189

RET OJHIDPOINT X,Y OF SCRFAN
Xi=G4:RET FOR DITECOLOR 8081 USE X1=30
Yil=64:RE1 FOR INTTCOLOR 8081 USE YH—96
REIM SCALTG FACICRS
XE=,75*% (X +=1)

YE=YIi-1

IIPUT "FREQUENCY RATIO (0.1-10): ";E
LIPUT "STARTIIIG PHASE ANGLE (5—300) "
TNPUT "ENDING PHASE ANGLD (0-360): ";PE

TNPUT "INCREMENT: ";IC
PLorT 12

IC=ABS(IC)

H=PS

IF E>10 THEY B=10

IF B<2.1 T™E 2=0.1

IF B<1 THEN 2=360/T%

1F PO THE Pl=-P1

Ii Pi»36L THEN PH=PH-360
A=PII*PI/180

PLOT 12:RFN THIS [AY RE OIITTED
ST=YiHYF*S3TII(A)

PLOT 2,253,014, 8T,242
FOR I=S5 TC 7 STEP S3
T=I*PI/180
X=8ST1I(T)

Y=STIi (E*THA)
X=X HRE*E
Y=YIHYE*Y
PLOT X, Y
EXT I
PLOT 255
IF IC=0 THEIl 2500
IF GOOT THEN 2104
IF Pii=PE THEW 2533
PI=PH+IC

FOR I=1 0 50:UEXT
GO=

COTO 1385

D

[¥s]

19

Ask Mr.C.0O. Lorcue ...

Dear Mr. Lorcue,
Strange things happen when I press the INSERT LINE key on my extended
keyboard when I'm in BASIC. Can you explain what is going on? Cr is my

machine defective? Signed: Keyed Up

Dear Keyed Up,

The explanation 1is not hard to find. Each key on the keyboard 1is
translated into a number from 0-255. The 'A' key, for example, translates
as 65 (the ASCII code for '"A'); the ERASE PAGE key translates as 12; and
so on. These numbers are PLOTted by BASIC. So PLOT 65 produces an 'A' on
the screen, and PLOT 12 erases the screen. The INSERT LINE key, just like
CONTROL C, translates as 3. Now, what is PLOT 3? Cursor control! The next
two keys you press would ordinarily determine the X,Y coordinates of the
cursor on the basis of those keys' ASCII values. Unfortunately, BASIC
doesn't know enough to stay in control, and it will go away after such
key presses, You can get 1t back with ESC E. Unlike many keyboard controls,
the INSERT LINE cannot be embedded within quotes in BASIC statements. So
it looks like the only obvious use of this is for one method of cursor
control in the CRT mode. For example, go into CRT mode and try these:

Keystrokes Comment
INSERT LINE (or CONTROL C) =3
SPACE =32 = PLOT 3,32,0

CONTROL @ =0

INSERT LINE (or CONTROL C) =3
A7 ON =14
BL/A7 OFF =15

PLOT 3,14,15

(If you have questions for Mr. Lorcue, send them in and we'll pass them
on. -Eds.) @&

Cueties . ..

PLOT 12,3,64,0,2,63,63,251:FOR ¥=0 TO 1000:PRIMNT -ATH(X);:
PLOT 255,6,% AD 7,2,251:MEXT:PLOT 255,6,2 @&

20

CALLable Sort Routine

by Alan D. Matzger
960 Guerrero St.
San Francisco, CA 94110

A few issues of Colorcue ago, Myron Steffy had an article introducing
the CALL statement. I came upon its utility first when I was writing a
text editor for Assembler source code. Like Mr. Steffy, I wanted to move
large blocks of memory from one place to another and BASIC's PEEKing and
POKEing was unconscionably slow. Having solved the memory moving with an
assembly language routine, I went on to use the CALLed routine to list
text, edit individual lines, search for particular strings, and insert,
replace, delete, move, and copy one or more lines.

Which function was performed depended only on the particular X in
A=CALL(X). I have since used the CALL statement in the screen editor, in
a "stolen" HP-85 Cribbage game to draw cards and evaluate hands and, as
illustrated below, to sort any one of BASIC's string arrays.

The January 1981 Colorcue listed the labels for scratchpad addresses
in alphabetical order. I wanted the listing in ascending order of the hex
addresses. First, I copied each entry, interchanging the label with the
hex location, and saved them in a .RND file with 137 records, each 50
bytes long. Using a simple program which read the records into a string
array and then CALLed the sort routine, I was able to sort the 137 records
in about 3 seconds.

The algorithm for the routine is the Shell-Metzner sort, modified to
leave the array in place and exchange the entries' index numbers in a
"pointer array" if the lower entry is '"higher" than the higher one in the
ASCII collating sequence. An explanation of the Shell-Metzner algorithm
may be found in any of several computer science texts, and in articles in
computer magazines, such as BYTE. My intent here is to demonstrate another
way of using the CALL statement. A short explanation of the assembly
language routine is in order, however.

When RUN through FCS, the routine is entered at the label START, where
it sets up the CALL vector and adjusts BASIC's end of memory pointer to
just in front of START itself, to avoid having the routine overwritten.
Doing this within the routine itself cleans up the BASIC program, leaving
only a mandatory CLEAR statement to be done there.

When CALLed, the routine is entered at the label MAIN with the value
of X in A=CALL(X) converted into two bytes and received in the DE register

21

(with the high byte inr). The HL rejiscer contains 5HaS51C's return aculons
and it must be restorec to HL upon RETurning. Tue two bytes 1a OF cpon
RETurn are converted to a decimal number wiilch is the value oi A. It wmay
or may not be useful to the CALLing program; in thls case 1t 15 used to
pass back the address of the pointer array. Strictly speakiug then, only
one parameter may be passed and returned by the CALL statement. But as
demonstrated by the BASIC demonstration program below, the CALLing program
can have access to any amount of data calculated by the assembly language
coded routine.

(At the start of the routine, the pointer array INDX0 1s set up 1in
1,2,3,... order. At the end, the index number of the "least-valued" string
will be in the first slot of this pointer array. The demo program reads
this array sequentially, converting the two bytes to a decimal number
which is the index of the next higher string and prints it. Similarly,
more than one value can be passed to the routine by POKEing into appropriate
locations within the assembled code. Oune must be careful to note the
addresses of wanted data areas from the listing by the assembler, convert
them into decimal numbers, and then insert these numbers into the BASIC
program.)

FNDAR finds the array name passed to it in BASIC's array table, and
saves the number of entries and the address of the first string for the
sort routine.

Finally, the CALLed routine need not have 1its own stack; I have
consistently used whichever one BASIC uses and have never run out of
PUSHing room. The CALL statement, thus, is not nearly as restrictive as
suggested in the Programming Manual. BASIC is fast enough for most
input—-output operations, and the use of assembly language routines inserted
via CALLs greatly enhances its usefulness by adding speed when needed.
CALLing machine language routines has made my machine even more enjoyable,
fast and powerful. @&

22

tT

CALLable shell-Metzner Sort PAGE 1

PAGE 50
ASSEMBLY LANGUAGE SORT ROUTINE CALLABLE FROM BASIC

Alan D, Matzger
940 Guerrero St.
San Francisco, CA 94110

Establish run-time linkages
START is entered when the PRG file is RUN by FCS

ENTRY START
START:
PUSH PSSl ;save regs at entry
PUSH 31
LXI H,MAIN ;set up CALL vector with address,
SHLD 33283
MVI A, (JMP) ; and JMP op-code
STA 33282
LXI H, START-1
SHLD 32940 ;set top limit of BASIC to below us
POP H ;restore regs
MVT B,0 ; (except B, a 0 in which indicates OK to FCS
POP PSW
RET ;and leave,
; Shell sort of BASIC's string arrays
H MAIN is entered when BASIC program executes a CALL
MATN: PUSH H ;5ave BASIC address
CALL FNDAR :Subrtn to find list to sort
CALL MINDX ;Initialize pointer array
CALL SHSRT ;The actual sort
LXI D, INDX0 ;Return the address of ptr. array
EXIT: POP H ;Retrieve return address
RET ;Back to BASIC
VA78 FQU 1 ;Select version by setting aprop. V to 1
VR79 EQU 0 ; and others to 0
Vosy EQU 0
BGARR EQU 32984 ;POINTER to start of arrays
NDARR EQU 32986 ;Pointer to end of arrays

)

CALLable Shell-Metzner Sort PAGE

1F V879 OR vo8y)
OSTR EQU 182AH ;Puts out string to screen

NEGH EQU 195AH ;Negates HL
ENDIF
IF V678
0OSTR EQU 33F4H
NEGH EQU 3524H
ENDIF
PAGE

FNDAR - Find array subroutine

e.g. if array name is AL$, then D = x'41', C = x'CC'

~o wa ms we

H on exit, NAMEQ --> ARRAY
H NELEM has # elements

FNDAR:
LHLD BGARR ;HL points to first array
MOV B,D ;Keep name in BC
MOV C,E
PUSH H
FNDR1: POP H
MOV A,M ;look at first byte
INX H ;point to second
CMP C ;lobytes the same?
JNZ FNDR?2 H IF NOT, look at next entry
MOV A,M ;look at second
cMp B ;hibytes the same?
Jz FOUND ;yes.
FNDR2: INX H ;point to next byte
MOV F,M ;these contain offset to next entry
INX H
MOV D,M
INX H
DAD D ;add offset
PUSH H
XCHG ;but maybe we're
nCX D
LHLD NDARR ;beyond last entry
MOV Ny H
CMP D
™ FNDER ;we are - show error
INZ FNDR1 ;we're not - look at next
MOV A,L ;compare lobytes
CMp E
JNC FNDR1 ;we're not = look again

DE contain array name as 254*first ch + second ch + 128

vz

CALLable Shell-Metzner Sort PAGE
FNDER: LXI H, FNEMG

CALL OSTR ;display error msqg

POP H

POP H

JMp EXIT ;nothing more to do
FOUND: LXI B,4 ;in a one dimension list,

DAD B ; ¥ elements is 4 bytes away

MOV E,M

INX H :get that number

MOV D,M

XCHG

SHLD NELEM ;and store it away

XCHG

INX H snext byte is first for #0

SHLD NAMEQ ;save that away

RET

PAGE
: MKNDX - Make index array subroutine
H During the sort, the strings themselves are not
: changed; their indices in a pointer array (INDX0)
H are switched, This subrtn initializes that array.
MKNDX:

LXI H, INDX0O ;addr of (th element

LXI D,V ;index and value start the same

LXI B,1280 ;there are 640 entries MAX
MKNX1: MOV M,E ; 2 bytes each

INX H

MOV “,D ;value stashed

TNX H sprepare for next

INX D : value is one more

DCX B ;are we all done?

MOV A,C ; we'll see

ORA B ;not if result is <0

JNZ MKNX1 ; nope

RET - yup

PAGE
: SHSRT - The actual sort routine
H INNOL & TNNO2 are the pointer array indices
: NSTRi & NSTR2 are the values in the index
: and are themselves the indices to the two
H strings in their own array.
SHERT:

LHLD NELFM ;the number of strings
35LP1: ANA A ;clear array

MOV A,H

3 CALLable Shell-Metzner Sort PAGE
RAR ;we are dividing by two
MOV H,A ;to get the partition factor
MOV AL
RAR
MOV L,A
ORA H ;if it is zero
RZ ; we're all done
SHLD PARTN ;but we aren't
CALL NEGH ;this # is used
SHLD NGPTN ; in many subtractions
XCHG
LHLD NELEM ;as here
DAD D .
SHLD LPLIM ;this is loop limit
LXI D,0 ;start with first string
SSLP2: INX D :get next index
XCHG
SHLD TNND1 ;store it
XCHG
LHLD LPLIM sis it > 1limit?
CALL NEGH
DAD D ;compare them
LHLD PARTN ;but load this before the test
Jc SSLPL :it is greater, goto loopl
GSLP3: DAD D ;it's not, add partition factor
SHLD INNO2 ; to get second imdex
CALL DTSTR ;sr to get string indexes
CALL GT2ST ;this gets their len and address
CALL CMPR ;sr to compare two strings
LULD INNOL ;load first index in case
XCHG
CpPI DOSWT ; the two must be switched
JNZ SSLP2 sthey don't, go back for more
CALL SWTCH sthey do
LHLD INND1
XCUG sTNNQL1 now in DF
LHLD NGPTN ;1st str of next comparison is
DAD D ;INND — PARTN, if that's
MOV AH H not zero or less
ANA A
M SSLP2?
Jz MRTST
Jp RTTO3
MRTST: ORA L ;1s L zero too?
JIN7Z. RTTO3 ;if not, goto LP3
LILD PARTN ; 1if so, goto LP2
JMp S5LP2

- 4

CALLable Shell-Metzner Sort PAGE

RTTO3:

DTSTR:

NFRTN:

GT2ST:

GLNAD:

SHLD
XCHG
LHLD
JMP

DTSTR -

LXI
LHLD
LXT
CALL
LHLD
LXT
CALL
RET

DAD
DAD
MOV
STAX
INX
INX
MOV
STAX
RET
PAGE
GT2ST -

LHLD
XCHG
LHLD
CALL
MoV

SHLD
LHLD
CALL
SHLD
RET

DAD
DAD
DAD
PUSH
MOV
INX
INX
MOV

INNOL

PARTN
SSLP3

;stash new strl index
;put in DE

Obtain NSTR's from INNO's

D, INDXO
INNO1
B,NSTR1
NFRIN
INND2
B,NSTR2
NFRIN

;start of index
;address, not the value

;this gets and inserts the value
;repeat for second

;HL*2, each entry is 2 bytes
;points to value in index

;store lobyte

;store hibyte

Get length and starting addresses of the 2 strings

NAMED

NSTR1
GLNAD
B,C

ASTR1
NSTR2
GLNAD
ASTR2

mT o oD@

M

;addr of ptr to string ¥ 0O
;put in DE

;this gets 'em
;len]l now in B, len? will be in C
;addr returned in HL

;do same for 2nd str

;each entry is 4 bytes

; somult nstr by 4

;add to NAMEQ

;this byte is len of str

:this one is filler

;lobyte of addr in string space

5 CALlLable shell-Metzner Sort PAGE
TNX H ;stash this addr in DE
MOV D,M
XCHG ;put it in HL
POP D ;retrieve NAMEQ
RET
: COMPR ~ The comparison routine
H 1f 1st <= second, A returns FFH, else OOH
COMPR ¢
LHLD ASTR2 ;Point to its first byte
XCHG ;In DE
LHLD ASTR1 ;addr of 1st string
COMP1: LDAX D ;jget the byte
cMP M ;is str2 > strl?
JM OGT?2 ino, it's less
JzZ OEQ2 :no, it's equal
OLT2: XRA A ;yes —— put 00 in A
RET
OGT2: MVI A,OFFH ;tell caller to switch
RET
OEQ?2: DCR B ;end of strl?
Jz OLT?2 ;yes, so 2nd > 1st
PCR C ;end of str2?
JZ OGT2 ;yes, 1st > 2nd
TNX D ;point to next byte
INX H ; ditto
JMp COo1pl
PAGE
H SWTCH ~ Switch values in index array
’
SWTCH:
LXI D, INDX0
LHLD NSTR2 sthis value will go
PUSH H : where NSTR] was
LHLD INNO1 : but we have to find
DAD H ; original address
DAD D shere it is
pOP B ; now the value is in BC
MOV M,C
INX H
MOV M,B ;all moved, now for other
LHLD NSTR1
PUSH H
LHLD INNO2
DAD H
DAD D shere's the address
POP B

PRINT SORTED ARRAY, USING POINTERS AT LNC. B

EACH 2 BYTFES LONG

CALLable Shell-Metzner Sort PAGE 7 5 REM
CALL IN ASSEMBLY LANGUAGE SORT ROUTINE
MOV M,C
INX H
MOV M,B ;switch completed 10 PLOT 27,4:PRINT "RUN SMSORT" :PLOT 27,27
RET 20 CLEAR 20000
26 R4
; VARIABLES
; SET UP TEXT ARRAY TO BE SORTED
NELEM: DS 2
INNUl: DS 2
INNO2: . DS 2 30 DIM AS(100)
NSTR1: DS 2 40 FOR X= 1TO 100
NSTR2: DS 2 45 s%= ""
ASTR1: DS 2 50 FOR L= 1TO RND (3)* 20:REM LENGTH OF AN TTEM
ASTR2: [S 2 AD S$= SS$+ CHRS (55+ 2h* (RND (2)))
PARTN: [6 2 70 NEXT
NGPTN: DS 2 76 AS(X)= S$
LPLIM: DS 2 80 NEXT
NAMED: TS 2 85 REM
DOSWT EQU OFFH
FNEMG: DB 5,1,3,20,5,237,50 CALL SORT ROUTINE TO SORT AS
DB 'LIST NOT FOUND',11,23%,239
TNDXD: DS 1280 ;s THERE ARE &20 2-BYTE
END START ENTRTES |90 X= 128+ 256% ASC ("A")
95 PRINT "GOING TO SORT"
100 B= CALL (X)
105 REM
110 DEF FN [(Z)= PEEK (Z)+ 25Ah* PEFK (Z+ 1)
125 REM STEP THRU POINTER ARRAY,
130 FOR I= 2TO 2* 1OUSTEP 2
140 IX= FN I(I+ B)
150 PRINT AS(IX):NEXT

Copyright (c) 1981 by David B. Suits

Fast, machine language invaders arcade game
with color graphics and four levels of difficulty
from "not-too-difficult" to "what-the-2!§*22",
Runs on V6.78 and V8.79 software with standard
keyboard.

of LIFE.

lazy, so I'm making

sound effects 1if you

no

Also included: fast, machine language version

Special bonus: V2.8 of Alien Invasion (if I
ever get around to writing it; I'm basically

promises) will have

have Cap Electronics

Soundware or an eguivalent device, and it will
be free to all purchasers of V1.8.

David B.

Rochester,

26

Suits
49 Karenlee Dr.

NY 14618

ALIEDN INVASION Si5

{no sound)

(Us funds)

HOWARD ROSEN, INC.

~

Put the finishing touches to your Compucolor II or ISC computer.

Come up to the world of word processing.
Extend the vutilization of yYowur computer to the other members of sour
X Letters
X School reports
=2 PBusiness reports
* If you now type-write it, Comp-U-Write it for a better product.

Bssic requirements for CCII or 34651/96518

16K RAM.

117key heyboard.

FPrinter.

Comp—-U-Hriter software and instruction manual,
For maximum caepabilityg?

Full 32k RAM.

Lower case characters,
Talk to other computers:! Add a MODEM to yYour system.

family.,

We carry the entire CCII & ISC line of harduware/software, including spares.
Send for our 4-page order form for harduare/softuare. KRequest separately

by item your spare parts needs,

Send your order now. We pays the shipping.
Allow 5 weeks for deliverwy.

CCII 36508/92650 Description Quantity Cost Amount
010857 010033 Upgrade 72/101 keys 150.00
010858 010054 Uparade 72/117 keys 250,00
010639 - 010035 - Upgrade 10i/117 keys 100.60
010044 Z24in, RS 232C Cable 45,00
HR1001 HR1002 16k RAM Add-on 185.00
010051 Switchable Lower Case 150,00
0cCe3LC 32 Lower Case Characters : 100.00
990081 990030 5in. Formastted Twin Fack ?.95
200041 8in, - 10 One Side Format 75,00
200044 8in, - 10 Two Side Format 100,00
HR000&6 HROEO0GS Sin. Exec, Comp—-U-Hriter 299.00
HR0B07 HRO0O7 Sin. Mail-Merge C-U-HWriter 349.00
991509 991532 FORTRAN 75.00
Epson MX80 Serizl printer 665.00
Base-2, Inc. B850 Impact printer 750.00
CAT Novation MODEM Transmit/Originate 175.00
Sub Total
Fa3. residents add 6% Pa. Sales Tax Fa. Tax
Total
Terms - Cash with order
Name Telephone #() -
Address City St ZIP
HOWARD ROSEN, INC.
FO Box 434
Huntingdon Valley, Pa., 192006
(215)-464-7145 Signature (please sign order)

27

Colorcue

A bi-monthly publication by and for
Intecolor and Compucolor Users

Editors:
December 1981/January 1982 Ben Barlow
Vvolume 4, Number 3 David B. Suits

3 Editors' Notes

5 Protected Fields, by Bernie Raffee
Control keyboard input with a machine language patch

13 Serial to Parallel Interface, by Ben Barlow
A simple but useful project for your peripherals

19 Assembly Language Programming, by David B. Suits
Part III: More on the 8080 instruction set

25 'The' BASIC Editor, reviewed by David B. Suits
A powerful new utility for BASIC programmers

Advertisers: You will find our advertising policies attractive. Write for
details.,

Authors: This is a user-oriented and supported publication. Your arti-
cles/tips/hints are required to make it go. Send your articles or write
for information,

Colorcue is published bi-monthly by Intelligent Systems Corporation, with
editorial offices in Rochester, New York. Editorial and subscription
correspondence should be addressed to the Editors, Colorcue, 161 Brookside
Dr., Rochester, NY 14618. Product related correspondence should be
addressed to ISC, 225 Technology Park, Norcross, GA 30092, ATIN: Susan
Sheridan. Opinions expressed in by-line articles are not necessarily those
of the editors or of ISC. Hardware/software items are checked to the best
of our abilities but are NOT guaranteed.

Editors’
Notes ...

Notes on Assemblers

The Macro Assembler
powerful tool when working with
assembly language programs, It is,
however, different from and a little
more difficult to use than the old
original Assembler program. The dif-
ferences caused some trouble to a
few of our readers who keyed in the
Assembly Language Sort subroutine
in the last issue, and then tried
to "Assemble" it (rather than "Macro
Assemble" it). We appologize to
those readers we misled, Although
the Macro Assembler rates its own
set of tutorial articles, the fol-
lowing brief notes will tell you
what is needed to '"translate'" be-—
tween the two versions of assembly
language. Coloxcue will often pub-
lish programs in the Macro version,
since one of its editors threw away
his old Assembler. [Tsk, tsk. ——Oth—
er Ed.]

is a very

The most powerful feature of
the Macro Assembler (hereafter known
affectionately as Mac) is its sup—
port of relocatable, modular code.
Instead of one mammoth source pro-—
gram, the Mac¢c user can develop small
modules, assemble them individually
(faster editing, faster assembly,
faster debug) and then "1ink" them
together using the L80 linker. Mac
doesn’'t know (generally) where the
final PRG program will reside; the
linker is told that., Mac tells the
linker which labels must be known
outside the current module by making
available ENTRY and EXTRN commands.
An ENTRY point is a name in a module
that may be referenced by another
module; an EXTRN is a name in another
module that the current module
wishes to reference. In our subrou-
ines, replace an ENIRY START 1line
with an appropriate ORG statement.

The Sort
OF000H.
Another one of Mac’s features
is that of "conditional assembly".
It's possible to define conditions
within a source file, and then
select one of several options with
assembly—time "switches". This fea—
ture can be seen in the Sort routine
where different EQUs are generated
based on the setting of the version

routine needed an ORG

variables, V879, V980 or V678. To
use with the regular Assembler,
simply delete the statements for

the version in which you're not
interested, as well as any IF, FLSE,
and ENDIF commands you may find.

Mac’'s third major feature is
the ability to define and use mac-
ros, Since these are just notes,
and macros haven’t been used in any
Colorcue programs to date, we won't
discuss them now, but save them for
the later article they deserve,

Busses

We know that several hardware-—
oriented readers have developed per—
ipheral devices and busses for the
50 pin bus. It would be advantageous
to all of us——developers, users,
would-be consumers——if we had a
standard for an external bus inter-
face. Colorcue (and some of its
corresponding electrical engineers)
will be happy to coordinate a stan-—
dard-setting activity. Just send a
definition of your bus to our edi-
tors, and we'll chair a remote
committee of respondents. We'll also
be happy to publish a dialog on the
matter, Send us your comments,
notes, articles,

Back Issues

Please note that Colorcme back
issues are for sale., See inside of
this issue’s back cover. g

Protected Fields

by BERNIE RAFFEE
31 Malvern Avenue
South Harrow, Middlesex
England HAU 9EU

Although the common method of input to a BASIC program (prompted INPUT)
is adequate for most applications, there are times when it is not so
suitable. Consider, for example, a data entry application where unskilled
users must enter names, addresses, and numbers from forms through a screen
for a program to write to a disk file. It would be nice if INPUT would
allow the programmer to exclude all the undesirable keys (the menu, escape,
blinks, erases, home, or down arrow) that can cause such harm if pressed.
Programmers themselves can press those keys by mistake, and trying to get
new users to realize the importance of NOT striking the wrong key is
sometimes a tough job. (And understandable, from their point of view. If
the computer doesn't want to see a menu key in the middle of typing in an
address, why doesn't it just ignore it?) Another drawback to INPUT is that
the user can type in 26 characters for a 25 character field. Nothing stops
them. The program can generate an error message after the fact, but it
would be much neater to inhibit input after the 25th character.

This article describes a CALLable assembly language subroutine that
does just that. In addition, it can disallow entry of alpha data in fields
defined as numeric, and has editing features such as the use of the
insert/delete character and delete field (line) keys. There are two programs
presented in this article. One of them, the assembly language subroutine,
will not be described. If you're interested, it makes interesting reading;
if not, just type it in and assemble it. The second program is a BASIC
program that illustrates the use of the CALLable "FIELDS" assembly language
routine. The assembly language program can be assembled by either assembler
(see the Editors' Notes in this issue about the differences between the
macro and regular assemblers), and that when RUN from FCS, it establishes
all necessary linkages, and adjusts for different software versionms.

The major divisions in the BASIC program should be evident. Lines
550-870 display the initial screen. Each input field is shown as a blue
rectangle of appropriate size. For example, the first field - NAME - is
displayed on line 10. The title of the field, NAME, identifying the data
item, is displayed followed by a blue rectangle 12 bytes long. (Lines 630,
680.) Lines 880-1080 are the main body of the code, where each field is
"read" from the screen. Lines 880-920 read the first field, NAME. Variables
X and Y are set to the first position of the blue rectangle for NAME, ML
is set to 12, the maximum field length, NAS$ is set to "A" indicating an

5

alphanumeric field, and the CCI set to white on blue. The control subroutine
at line 100 (through 195) is called to interface to the machine language
subroutine. The 100 subroutine POKEs parameter values for the assembly
language routine into a known common location (right after the end of
BASIC RAM), and CALLs the routine. On return, FIS$ is comnstructed from the
field, byte by byte, and control returned to line 910. The variable KB is
used to return the ending character of the field, and if a TAB key was
pressed, the program "backs up" a field. Lines 1210-1220 are where the
main field processing program would be. In this demo program, the entered
field is simply written back on the same line along with its length.

When the assembly language program gets control after the CALL, it
takes over all keyboard input and disallows any control characters and any
"undesired" characters. It processes editing keys, such as cursor controls
and character insert keys. The delete line key causes the field to be
cleared from the cursor to the end of the rectangle. When the return key
signifies the end of field entry, what is shown in the field will be what
the program gets, unlike INPUT, which inputs only to the cursor. (In the
assembly language program, changing the value of ALPHMAX to 126 will permit
lower case letters.) '

Although the routines here may be a little long, I'm sure you'll find
them to be quite useful. They can greatly extend the use of your computer
by making the "feeding" of it more friendly. @&

(Program listings begin on next page.)

CALL FOR ARTICLES

Colorcue gets its material from those who write it. It don't grow on no
trees. Nevermind your bad sppeling or badly grammar: that's the job of
the Editors. You come up with the ideas, splash them onto paper (or disk),
and we'll wrestle them into an intelligible form for publication. We can't
pay you for your time--you won't become rich. But, since Colorcue is read
all over the world (well, not all over, exactly), then maybe you'll become
world famous.... We're looking for ideas, programs, reviews of books
and/or software and/or hardware applicable to ISC machines, hardware/soft-
ware modifications, user group news, and.... Well, you get the idea.

FOR SALE. 32K Compucolor II with 117 key keyboard and lower case. Version
8.79. Centronics 779-2 dot matrix printer with lower case and inter-
face/cable. Novation CAT modem with cable and Com~Tronics TERMII communi-
cations software. Disks: Sampler, Basic Editing, Assembler, Text Editor,
Star Trek, Personal Data Base, Blackjack, Cubic Tic-tac-toe, plus 25
additional disks. Compucolor Programming Manual. $2200.00. Contact: Don
Miller, 112 Marble Drive, Rochester, NY 14615 (716) 663-1175.

6

Listing 1. Assembly language listing for the
protected fields routine.

i

H
COUNT:
Nf:
CHARIN:
FLDADR:

HAXBAS
VCALL

'
1

i
START:

1FIELD HANDLING ROUTINE ®HICH
;ENABLES BASIC TG CREATE
;7PROTECTED” & “UNPROTECTED’ FIELDS
;0N THE SCREEN.

L

+AUTHOR. BERNIE RAFFE
; HARROW

: ENGLAND
:FEBRUARY 1981

3

DATA AREA USED TO PASS PARAMETERS

0B 0 +CHARACTER COUNT

Ik i ;NUMERIC OR ALPHA;SET BY BASIC
DS 1 ; TEMPORARY CHARACTER STORE

DS 1 ;START OF FIELD;SET BY BASIC

Eau 32940 ;POINTER 70 END OF BASIC RAM
EQu 33282 ;CALL VECTOR

SUBROUTINE TO SET UP LINKAGES WHEN RUN FROM FCS

PUSH H +SAVE SOME REGS

PUSH D

PUSH PSH

LI H, COUNT-1 ;SET END OF BASIC RAM POINTER

SHLD MAXBAS ;TO 1 BYTE IN FRONT OF PGM

M1 A, (JHP) ;SET UP JUMP TO OUR RTN IN CALL VECT.
L] H,CTINIT ;50 CALL WILL 60 TQ CIINIT

§TA VCALL

SHLD VCALL+1 ;STORE ADDRESS

LXI H,1C78H ;ASSUME LO ADDRESS IS IN V879

LDA
CF1
JNz
L1
STUFF: GHLD
Pop
iy
pap
vl
RET

0001H
5CH
STUFF
H, 33924
LO+
PSH

)

H

B,0

; LD LINKAGE
VERSIONIZED BY START ROUTINE

La: JHP

Ck Eal
DELINE EBU
INSERT EBY
DELETE EQY
HT Eau
RIGHT EBU
LEFT EBU
SPACE EABU
SLASH EBU
INPCRT EQY
KBDFL EQU
KBRDY EQU

NUMNIN EQU
NUMMAX QU
ALPHMIN EOU
ALPHNAX EOU

QFFFFH

13
04
03
127

2
&

26

T
Y]

37

81CH
810FH
81FFH

43
38
32

9

; CHECK

18 177

1 YES

;NO, CHANGE 7D V678 ADDRESS

;PUT PROPER ADDR. INTO INSTRUCTION
;PREPARE TO EXIT

{CLEAR B TQ INDIC. NO ERR. 70 FCS
+RETURN TO FCS

;oUNP TG LO ROUTINE IN HONITOR
sACTUAL ADDRESS FILLED IN BY START

:CARRIAGE RETURN
sDELETE LINE KEY

+ INSERT KEY

s DELETE KEY
sHORIZONTAL TAB
sMOVE CURSOR RIGHT
;MOVE CURSOR LEFT
s SPACE CHRACTER

s JUMP VECTOR 31
sHOLD NO. OF JuMp
;KEYBOARD READY FLAG
sVECTOR FOR KEYBOARD

$NUMERIC MINIMUNM
{NUMERIC mMAXINUM
sALPHANUMERIC MINIHUM
1ALPHANUMERIC HAXTMUM

CIINIT:

CHRINT:

PUSH
PUSH
LDA
PUSH
VI
STA
Myl
STA
L1l
SHLD
1RA
Hov
5TA
5TA
§TA
JHP

;CHRINT

Ll

iRA
CHP
NI
noy
ANI
Hov

; THIS CHARACTER INPUT INITIALISATIOR
;ROUTINE SETS UP THE PARAMETERS
sNECESSARY FOR THE *CHRINT® AND
;'C1” ROUTINES.

PSH :GAVE REGISTERS REQ’STD BY BASIC

#

KBDFL sSAVE BASIC’S JUMP VECTCR 4

PSH

A,31 sSETUP NEW JUMP VECTOR #

KEDFL

A,0C3H sPLACE *JNP” AT VECTOR LOCATION

INPCRT

H,CHRINT :GET ADDRESS OF ’CHRINT’ ROUTN

INPCRT+1 sPLACE ADDRESS AFTER *JHP’

A

B,A

KBRDY

CHARIN

COUNT ;RESET CHARACTER COUNT

BETNXT

- THIS CHARACTER INPUT ROUTINE IS

sVECTORED TO FROM THE KEYBOARD INPUT
sROUTINE THROUGH THE JUMP VECTOR (#31).
- THE CHARACTER FROM THE KEYBOARD
sROUTINE IS IN REGISTER ’E’.

H, CHARIN :GET ADDRESS OF TEMP
s CHARACTER STORAGE.

A sCLEAR ACCUMULATOR

N +TEST FOR *CHARIN’ FOR ZERQ

CFIN ;IF NOT ZERO THEN IGNORE INPUT
A E ;GET CHAR FROM 'E°

127 :STRIP UPPER BIT FOR ASCII

M4 ;PUT CHAR IN ’CHARIN’

CFIN:

Cl:
CI19:

GETNXT:

El
RET

El

LA

£rl
di
PusH
1RA
§TA
5TA
iy
RET

CALL
HOV
el
J1
CPI
i1
CPI
i1
Pl
11
CP1
11
CPI

;ENABLE INTERRUPTS
sRETURN FROK INTERRURT

THIS CHARACTER INPUT ROGUTINE GEYS A CHARACTER
FROM THE TEMPORARY STORAGE LOCATION °CHARIN’
CLEARS THE KEYBOARD READY FLAG

AND RETURNS WITH THE CHARACTER IH 74",

IF THERE IS NO CHARACTER ['CHARIN’,

THEN "CI7 WILL HANG AMD WAIT FOR OME.

;ENABLE INTERRUPTS

CHARIN ;BET CHARACTER
0 sHAVE & CHAR?
CI10 ;IF NOT,HANG F2° ONE
PSN ;60T ONE,NOW SAVE IT

A
¥BRDY ;CLEAR KEYBOUARD READY FLAG
CHARIN ;CLEAR TEMP STORAGE FOR MEXT CHAR

PSH ;RESTORE CHAR

c1 ;6ET NEXT KEYROARD CHARACTER
D,A ;STORE IN 'O

LEFT ;BACKSPACE?

LEFTKEY ;JUMP TO BACKSPACE ROUTINE
KT aTAR?

NAINFIN jYES-JUMP TO END ROUTINE
cR s RETURN?

MAINFIN jYES - JUNP TO END ROUTIHE
RIGHT ;CURSOR RIGHT

RGHTKEY ;PUT IT ON SCREEN

INSERT ;INSERT A NEW CHARACTER
IN510

DELETE ;DELETE A CHARACTER

1
CP1
31
nov
cHp
J1
LDA
el
i

NUMERIC:MOV
cel
INC
CPI
JC
CP1
11
JHp

ALPHA: MOV
CP1
JNC
ceP1
i€

KEYOK: CALL
INR
JHp

MAINFIN:
CALL
WVl
CALL
XRA
CALL
CALL

DEL10
DELINE ;DELETE LINE CHAR

DLINLO

A8 FIELD FULL?

E

BETNXT ;YES SO IGNORE

NA sNUNERIC CR ALPHANUMERIC FIELD
85 s A=ALPHA

ALPHA

A,0 ;NUMERIC VALIDATION
NUMMAY ;RANGE TEST-MAXINUM VALUE
BETNXT ; IGNORE

NUMNIN MINIMUM VALUE
BETNXT 5 IGNORE
SLASH 3=/

BETNXT ; IGNORE
KEYOK ;ACCEPT KEY

A0 ; ALPHANUMERIC VALIDATION
ALPHMAX ;RANGE TEST - MAXINUM VALUE
BETNXT ; IGNORE

ALPHMIN § MINIMUM VALUE
BETNXT ;IGNORE

Lo +PUT 1T ON SCREEN
B ; INCREMENT FINAL COUNT
BETNXT 3BET NEXT CHAR

WL A3
L0

A, 64

Lo

A

LD

CNT10 ;SETUP FIELD COUNT FOR BASIC

+PUT CURSOR OFF SCREEN

LEFTKEY:

REHTKEY:

INS10:

5TA COUNT

MOV E,D ;PUT LAST CHAR IN E’
A A
MV DA
PP PSW ;RSTORE BASIC JUMP VECTOR #
STA KBDFL
PP H sRESTORE USED REGISTERS
PP PSH
RET
MV AR ;BACKSPACE SUBROUTINE
Pl 0 sIF ON FIRST CHAR
hji BETNXT ;THEN IGNORE
DR B s DECREMENT CHAR COUNT
WI A,LEFT ;BACKSPACE CURSOR
CALL LD
P BETNAT
MOV A,B ;RIGHT CURSOR FUNCTION
P E sCHECK IF FIELD FULL
MOV A,D sRESTORE CHARACTER

JINL KEYOK 3NO S0 0.k.
i GETNXT ;IGNORE

; INSERT A CHARACTER ROUTINE....
;REGISTER USAGE:-

; A=ND OF CHARS ALREADY IN FIELD
; B=POSITION WITHIN FIELD

; C=NO OF CHARS TO SHUFFLE

7 E=NAY ND OF CHARS IN FIELD

CALL CNT10 ;DETERMINE SIZE OF FIELD RTN

CP1 0 ; [GNORE IF NO CHARS IN FIELD
i1 GETNXT
PUSH D

(V) 8

INS20:

INS30:

ING40:

ING50:

INS33:

LHLD
DCX
nex
SuB
I
1
"oy
ADD
CHp
NI
DCx
0cx
ICR
11
L
Hov
DAD
DAD
LXI

Moy
INX
INX
Hov

NICR
1

DAD
JHP

DeX
0CX
iyl

pop
Jup

FLDADR

INSS5
D,0
E,A

D

D

:SET UP HL

;CALCULATE NO OF CHARS
;RETURN IF PAST LAST CHAR (NAUGHTY!)

;PUT INC

+RESTORE A

;15 FIELD FULL

;NO

;YES - 50 ARRANGE FOR LAST CHAR
;TO DISAPPEAR FROM FACE OF EARTH

1 IGNORE IF SITTING ON LAST CHAR
;POSITION HL TO LAST CHAR

D,OFFFCH ;70 SUBTRACT 4 LATER ONM

INS50

D
ING30

H
H

M,SPACE

]
GETRXT

sBET CHAR FROM FIELD
+AND SHIFT UP
sANY MORE?

il
;YES POINT TO PREVIOUS CHAR

+PUT A SPACE AT CURSOR POSITION

s RETURN

DEL10:

DEL20:

DEL25:

DEL30:

DEL40:

;DELETE A CHARACTER ROUTINE.....

+REGISTER USAGE:-

; A=NO OF CHARACTERS ALREADY IN FIELD (AFTER CKT10 CALL)
; B=POSITION WITHIN FIELD

; C=NO OF CHARACTERS TO SHUFFLE

CALL CNT10 ;DETERMINE SIZE OF FIELD
I 0 1 IGNORE IF NOTHING IN IT
A} BETNXT

PUSH D

LHLD FLDADR 3;SETUP HL

NN H

N0 H

S8 B ;CALCULATE NG OF CHARS
MOV C,A ;D SHUFFLE & PUT IN C
MOV E,B ;POSITION HL TO FIRST CHAR TO SHUFFLE
WL D,0

DAD D

0D D

LXT D,4 ;70 ADD 4 LATER ON

KR C

I DELSS ;RETURN IF PAST LAST CHAR
JINL DEL30 ;SPECIAL TEST FOR LAST CHAR
DCX H

X K

P DELS3

MV A, ;GET CHAR FROM FIELD
X H

DX H

MOV M,A ;AND SHIFT UP

Bk C sANY MORE?

T DELSO ;N0

IT

DEL30:

DELS3:

DELSS:

DLINO:

DLINZO:

DLIN3O:

DAD
JHP

INX
INY
HVI

pap
JHP

D sYES - POINT TO NEXT ONE
DEL30

H sPUT A SPACE AT LAST

H sCHARACTER POSITION

M, SPACE

D

BETNXT sRETURN

;ROUTINE TC DELETE ALL THE REMAINING
;CHARACTERS IN THE FIELD

CALL
PUSH
LHLD
SuB
JH
J1
MOV

vl
Hov
DAD
DAD
KVl

Hov
OCR
41

INX
INX
JHP

CNT10 ;BET NO OF CHARS IN FIELD
]
FLOADR ;START OF FIELD

B ;CALCULATE NO.OF CHARS TO DELETE

DLINAO ;IGNORE IF AT END
DLIN4O
C,A

D,0 ;SET HLL TO 15T CHAR TO DELETE
E,B

D

)]

A, SPACE

M,A ;DELETE CHARS
c sANY MORE?
OLINAO ;NO

H

H

DLIN30

DLIN4O:

CNT10:

CNT203

CNT30:

CNT40:

pop D
JHp BETNXT

;ROUTINE TO DETERMINE THE EXACT LENGTH
;0F A FIELD ON THE SCREEN.
{FINAL COUNT IS PUT IN *A°,

PUSH B sSAVE T
LHLD FLDADR ;START OF FIELD
KX H

X H

Wl 8,0

Kl £,0 ;C WILL CONTAIN NO OF SPACES
‘ ;PAST THE END OF THE FIELD
HOY f,B ;B CONTAINS THE FIELD COUNT

P E sARE KE AT MAXINUM
i CNTA0 5YES - FINISHED
N K ;BET TO NEXT CHAR
INN H

IR B 1ADD 1 TO COUNT
MOV AN

CP1 SPACE ;IS IT A SPACE

JINI CNTZ0 ;NOPE

INR L ; INCREMENT SPACE COUNT
JHP CNT30 ;BACK & SHUFFLE NEXT ONE

HOV f,B CALCULATE EXACT COUNT
5uB L

pep B ;RESTORE USED REBISTER
RET
END START

I

HEEE,.

Listing 2. A BASIC program which demonstrates the
fields machine language patch. Note: numbers in
brackets are contrcl codes entered from the
keyboard. Thus, [16] is black; [17] is red; [29]
is foreground on; etc.

GU 508

REM [18] [1]FIELD HANDLING SUBROUTINE[18] [10]

REM [22]X = X CO-CRDINATE(18]

REM [2]Y = Y QO~CRDINATE[18]

REM [22]ML = MAXTMUM INPUT LENGTH(18]

128 REM [22]NAS= 'N' FOR NOMERIC OR 'A' FOR ALPHANUMERIC{18]

125 REM [22]KB = KEYBOMRD CHARACTER(18]

130 REM [22]FIS=FINAL STRING[18]

135 KM [22]SA = SCREEN ADDRESS OF FIELD(18]

148 PO=DEEK (32940) +PEEK (32941) *256+1:REM POINT TO PARAMETER PASS AREA

145 SAm28672+128*T+X+X:REM SCREEN ADDRESS

158 3Z=INT (SA/256) :POKE BO+3,SA-256*ZZ:POKE FO+4,ZZ

155 Sh=SA-2

160 FORE BO+1,ASC(NAS):REM ALPHANUMERIC OR NUMERIC

165 PIS=""

178 PLOT 3,X,Y

175 KB=CALL (ML)

188 IF KB=9 OR PEEK(PO)=f THEN RETURN

185 FOR I=2 TO PEER(FO)*2 STEP 2

199 FI$=PI$+CHRS (PEEK(SA+I)) :NEXT I

195 RETURN

508 REM [10] [16]PROGRAM INITIALTZATION(10] [10]

528 CLEAR 100

539 BLOT 27,4

548 DRINT "RUN FIFLOS®

545 REM [18]SET UP SCREEN[18]

558 DLOT 27,27,27,24

568 PLOT 12,3,5,1,14

570 FRINT ~[29] [22]SAMPLE PROGRAM TO DEMONSTRATE THE USE OF ' ([17]FIELDS[22]*[1
8"

589 m.OT 3,d,5,11,3,5,5,15

596 INFUT "[19]ENTER *‘[22]I[19]' TO INSERT OR '([22]U[19]' 1O UPDATE [22];A$

606 IF ASO"I" AND ASOU"GOTO 580

616 DPRINT "[17]

_f1g]*®
628 FOR I=]l TO 20:PLOT 18,11:NEXT I
639 PLOT 3,1,10:PRINT “[3]NAME[18]*
649 FLOT 3,1,13:PRINT *[23)ADDRESS[18]"
659 PLOT 3,1,16:PRINT " [23]MONEY GWING([18]"

668 PLOT 3,1,19:PRINT " [23]DESCRIPTION([18]
670 IP AS«"U"GOTO 730

680 PLOT 3,14,10:PRINT "([30] [29] [15]"
699 PLOT 3,14,13:PRINT “[28] [16]"
78 PLOT 3,14,16:PRINT "[26] [16]®

716 PLOT 3,14,19:PRINT *[20] [16] (291"

7280 QUIO 778

730 PLOT 3,14,10:PRINT "[29][22] [36) [20) BERNIE RAFFE[16]"
748 PLOT 3,14,13:PRINT " [20]HARRON , ENGLAND [16]"

758 PLOT 3,14,16:PRINT “[20]534.43-[16]"

760 PLOT 3,14,19:PRINT " [20]AVERAGE[16] [29]"

770 PLOT 3.8.22

788 PRINT °[22]SUMMARY OF FACILITIES:-[18]"

799 PLOT 3,0,24

809 PRINT "[19] 1) CONTROL CHARACTERS & CURSCR FOSITIONING KEYS (EXCEPT'[18]°

818 PRINT "(19] LEFT & RIGHT CURSCR) ARE DISABLED. [18]"

820 PRINT "[19] 2) CURSOR WILL NOT TRAVEL OUT OF A FIFLD[18]*

830 PRINT "[19] 3) FINAL FIELD VALUE DEPENDS ON CONTENT OF FIELD ON THE([18]-

840 PRINT "(19] SCREEN & NOT ON THE ACIUAL KEY DEPRESSIONS[18]"

850 PRINT " [19]4) 'DELETE/INSERT CHAR' & 'DELETE LINE' WORK WITHIN AFTELD[18

860 PRINT "[19] 5) ALPHABETIC CHARACTERS ARE DISABLED IN NUMERIC FIH.IE[].B]'

§70 PRINT "[19] 6) THE "TAB’ KEY RETURNS CURSCR 1O '.IHE FREVICUS FIELD[18]"
§75 REM [19] (19)GET EACH FIELD([14] [19]
880 X=14:Y=10:M[=12:NAS="A"
89¢ PLOT 6,38
998 GOSUB 100
910 IF KB=9GOTO 908
920 GOsUB 1280
930 Xm=l4:Y=13:Mi=]7:NAS="A'
940 PLOT 6,38
958 GOsUB 164
960 IP RB-9G710 888
970 B 1200
980 X-14.Y-16 tML=T: NAS-'N'
998 PLOT 6,38
1098 GOsUB 100
1618 IF KB=SGUTO 930
1026 GOsUB 1268
1030 X=14:Y=19:ML=7:NAS="A"
1646 PLOT 6,38
1050 100
1260 IF KB=9GOIO 980
1876 GOsUB 1200
1084 PLOT 3,15,21:INPUT "[17]HIT RETURN FOR ANOTHER GO [18]";A$
1685 REM [1P]CLEAR SCREEN AND DO IT AGAIN([10]
1099 PLOT 3,2,8:FCR I=1 TO 23:PLOT 18,l11:NEXT I
1188 GOTO 588
1299 REM [10] [18]FIELD PROCESSING ROUTINE. THIS JUST PRINTS VALUE; [18]REAL FRO
GRAM WCULD PROCESS FIELD HERE
1218 iLB?E‘ 512,3533,1" "[29] [17] ";FI$;" ([29][22])";LEN(FIS);"™[29](17])[29](
’
1229 RETURN

The converter is a low cost device based on a 5V UART which accepts
data at 9600 BPS (Bits Per Second)from the computer, turns them into a
parallel byte, and strobes them into the Epson's parallel interface. It
accepts the BUSY signal from the printer and passes that back to the
computer as not clear—to-send to control data flow. It's constructed with
only four IC chips and a handful of other parts, and with judicious shopping
and no junk box to pull from, it can be built for about $45. With any kind
of parts box to paw through, the cost can go down significantly,
Construction is relatively simple, and the converter can be a rewarding
project for the winter months.

Looking in more detail at the operation of the converter, it may help
to look at the schematic. The AY-3~1014A UART is omne of several chips
which are adequate; choosing one that operates on a single 5 volt supply
simplifies the process, though those chips are more expensive than the +5
and +12 ones. The 1014 is set up with its selectable options determined
by connecting option selecting pins 34, 35, 36, 37 to +5V. Pin 21 must be
grounded, and pin 4 must be low to place received data on the output lines.
Bits of a byte a clocked into the 1014 under the control of the Receiver
Clock (RCP = pin 17). When a serial byte has been completely received,
the 1014 puts it onto the output lines RD1 through RD8, and raises the
DAV signal on pin 19 to indicate that a byte is ready. DAV is used to
generate a short duration pulse which strobes the data on the output lines
into the printer's data buffer. The 74123 chip (a 74121 would have been
more appropriate, but I didn't have one) provides this pulse, which is
about 500 nanoseconds long.

The printer returns the ACKNLG* ("*" indicates active low) signal
which is routed to the 1014 on pin 18, RDAV*, The 555 timer chip provides
the clock for the 1014, which must be at 16 times the baud rate, or 153.6K
(9600 x 16). Although this is outside the 555's specification (100K is
its published limit), it seems to produce an adequate (though not quite
square) pulse train. (I experimented with CMOS oscillators with no luck.
A baud rate generator chip, which would be the professonal way to get a
clock, would have added about another $15-$20 to the low-cost project.)
An adjustable potentiometer adjacent to the 555 provides the necessary
degree of adjustment of clock frequency to compensate for temperature or
burn-in., (My clock seemed to drift for a couple of days until the capacitor
apparently stabilized., Since then it's been fine, and unadjusted.) The
1489 chip accepts RS232C signal levels, converting them to TTL levels and
inverting them. Serial data comes from the computer at an RS232C level,
and is routed through the 1489 before feeding to the 1014. The BUSY signal
from the printer also is routed through the 1489, but only for its inverter
function. (The BUSY* signal thus supplied works with ISC computers and
Compucolors containing the ECN 002137 published in the Aug/Sept Colorcue.)

14

Once built, you'll want to check the wiring (and, if you're like me,
recheck it). An easy way to do this is to check (with no chips in the
sockets) each pin, each wire, with a voltmeter set to measure resistance--
make a series of continuity checks. If all the wiring checks out, check
the power supply wiring, and if it looks all right, plug it in and hope
for 5V. Check power and ground pins on each socket on the board, check
the cable, and with the power off, plug in the chips. If it seems to be
working (as opposed to smoking), check +the 555's output with an
oscilloscope. (If you don't have one, don't worry. The following procedure
works as well.) Set the pot so that the 555's pulse width is 6.5
microseconds., Or, write a small BASIC program, such as:

10 PLOT 27,13

20 PRINT "ABRCDEFGHIJKLMNOPORSTUVWXYZ//////TEST....TEST.
== TEST———TEST———-TEST"

20 GOTO 20

Connect the computer's RS232 cable to the interface, connect the printer,
power everything on (all the connections were made with power off, right?),
and RUN the program, Adjust the pot until the printer prints text, not
garbage. Find the middle of the "print" range, in between garbage settings,
and leave it there. You may have to adjust it again, but if it acts like
mine, it will settle in like a rock after a day or two.

In summary, if you are willing to trade a little time for money, and
enjoy (or want to experiment with) the hardware side of the business,
you'll find this project appealing, It's a simple, low cost, safe interface.

Parts List
Small box 1 50K multi-turn pot.
2.5" x 5" Vector board 1 DB-25 female soldertail connector
1 8 pin WW socket misc. wire (stranded 22 ga. & WW)
1 14 pin WW socket .025" square post terminals
2 16 pin WW socket = —ommmmeoe—me———o
1 40 pin WW socket 1 Amphenoi 36 pin connector for
1 1LM555 IC Centronics—-type printers
1 MC1489 IC 1 1length 12 conductor cable (or
1 74123 substitute)
1 AY-3-1014-A 1 16 pin DIP header
2 50 pF capacitor =0 e
2 .1 mF capacitor 5V power supply or:
1 10 mF capacitor 6 or 9V DC transformer
1 1K Ohm resistor 78M05 regulator
1 20K Ohm resistor 1000mF 35V capacitor «
1 56K Ohm resistor

16

+5Y

8
- v+
N 3lpur T (]
555 SeK
&4
GNP 50K
) oo
PARALLEL
R5232 CONNECTDR
CABLE CABLE
oy HE {2
‘L Rep Roz [~ >3
z 4
2 [
= >6
z 7
L3 o8l S »
36l rsa
s RoAv |18 <] 1o
3138 varvez gy 42 Ackwio
35! vr
WK SwE GUD
+5y 1| 16 E]
SV 20K fa’F
+5v I:; lu
lct:::lr'/ ICEXT 4
o 18>
3
+5¢ ek 74123 PATA
'L_'_/A' 4
6 4
n <y ﬁ') 14895 <1l
TS 8usy
10— > 16
3!
INIT
55
+5

Serial to Parallel

Converter

17

RENATISSANCE MARKETING AKNOUNCES

Low Cost Business Programs
for your Compucolor model 4, model 5
and Intecolor 3600 series Computers

(1) ACCOUNT PROGRAM: Display account data, 1list all accounts,
add account, delete account, change account data.

(2) JOURNAL PROGRAM: Enter journal data, display journal data
by entry number, charige account data.

(3) PROOF PROGRAM: Display or print journal entry proof sheets
with titles.

(4) POST PROGRAM: Applies journal entries to accounts.

(5) REPORT PROGRAM: Print balance sheet, print income
statement with titles.

Gives the following reports:

(1) Display item data by quantity.
) Print or display all items on file.
) Display item data by class code.
Yy Print or display item data by vendor.
) Updating section:

a. add new item

b. update item quantity

¢. change item data

d. delete item

(6) Display item data by item number.
Provides quantities and data for 750 items or models.

MAXELL MINI DISK for Compucolor. Box of 10 $ 34.95

- v a8 e e T Em T G e e v R e e M M e S S M K e e e e e e e Cn e M M e R e e e S e e e — i —

30% OFF all Compucolor Corp. software in stock. CALL

RENAISSANCE MKT. In N.J. add 5% sales tax
7 So. Pierson Rd.
Maplewood, NJ 07040 Ship to:

201-762-0585
[] General Ledger $59.95
[1 Inventory Control $34.95
[1 Maxell Disk Box Qty.

erms: payment with order Freight: Prepaid in USA
Available for Intecolor Feb., Mar. 1982 Taking orders now.

18

Assembly Language Programming

PART IIT: MORE ON THE 8989 INSTRUCTION SET
by DAVID B. SUITS

Last time we used ICS's Machine Language Debug Package in order to
learn about a few of the 8080 machine language instructions (or "operation
codes", or just "op codes", as they are often called). We saw how to put
an eight bit number into the accumulator and then CALL a certain subroutine
contained in your computer's ROM in order to put something onto the screen.
This was just like BASIC's PLOT statement. In BASIC, you can specify a
whole string of PLOT numbers just by separating them with commas. For
example, PLOT 2,0,0,242,127,0,127,127,0,127,0,0,255 will draw a line around
the screen. Being able to separate the numbers with commas makes things
a lot easier than having to say PLOT for each number: PLOT 2: PLOT 0: PLOT
0: PLOT 242 ... etc. Can we do something like that in assembly language
so that we don't have to load the accumulator each time with the next byte
and CALL the subroutine? Yes. We will investigate a method which works
something like BASIC's DATA and READ statements,

As we learned last time, the MOV instruction tells the 8080 to move
(or, really, copy) the contents of one register into another. The
destination register is specified first, and then the source register.
For example, MOV A,E will copy the contents of the E register into the A
register (the Accumulator). The diagram shows the registers. But there is

REGISTER PAIR

REGISTER NAME
PC PC (program Caunter)
| SP SP (stack Pointer)
FLAGS A PSW (Program Status word)
B C B
D E D
H L H

ONE BYTE OME BYTE

a register (well, sort of a register) which is not shown: register M. 'M'
stands for Memory. Although memory locations are surely not registers in
the 8080 chip itself, the 8080 is cleverly designed so that we can sometimes
treat them as if they were. But certain conditions must be fulfilled.
Specifically, we can call that memory location whose address is contained
in the HL register pair a register. Thus, MOV A,M is an instruction to
copy the contents of the memory location into the accumulator. Which memory
location? Why, the one whose address is contained in the HL register pair.

19

For example, if the HL pair contained the 16 bit address 00111111 00001110
(which is 3FOE in hex), then MOV A,M would copy the contents of memory
location 3FOEH into the accumulator. The instruction MOV M,E would copy
the contents of register E into memory location 3FQEH. And so on. There
are other ways of getting data to and from memory, but this is a handy
one which will suit our present purposes.

How do we set up the HL pair so that it contains the address of the
memory location we want? We can use the MVI instruction which we dealt
with last time. Remember, MVI <reg>, <num> will put <num> into <reg>. If
we want 3FOEH in the HL pair, then we could write:

MVI H,3FH o, MVI L,0EH
MVI L,0EH MVI H,3FH

(Note that I have explicitly specifed that each of the numbers is hex by
using the capital 'H', Although the MLDP assumes that all numbers are in
hex, your assembler doesn't: it assumes that everything is in decimal
unless followed by 'H' for hex. Since we will be dealing with the assembler
eventually, we might as well get used to this way of doing things. Besides,
specifying 'H' when hex is meant will help avoid confusion. Of course,
for numbers less than OAH, it won't matter: 1 decimal = 1 hex, 2 decimal
= 2 hex, and so on up through 9.) But there is a more convenient method
of loading a register pair with two bytes, and that is: LXI <reg pair>,
<pum>, The 'LXI' stands for Load eXtended Immediate. 'Load' in this case
is the same as 'move'. So this is just like the MVI (MoVe Immdiate)
instruction, except that 'extended' refers to a register pair instead of
just one register. The number which is to be loaded into the specified
register pair will be interpreted as two bytes. Thus, LXI H,3FOEH is an
instruction to load the register pair HL with the two bytes of immediate
data, 3FOEH. And LXI H,2 will load 0002H into the HL pair.(The 'H' in the
LXI H,... instruction will not be confused with the single register H,
because the LXI instruction requires reference to a register pair. 'H' in
this case stands for 'HL'. 'B' would stand for 'BC', and 'D' would stand
for 'DE'. 'SP' would stand for 'Stack Pointer'. The Accumulator and FLAGS
together constitute a register pair only in certain circumstances, and
this is not one of them.)

That's fine, but we need some more tools in order to do what I want
us to be able to do. Enter the increment command. Any register, or register
pair, may be incremented by one by the use of a single command. To increment
a single register, INR <reg> will do. For example, if register B contains
4, then after INR B it will contain 5. If the Accumulator contains 11111111B
(=0FFH, =255 decimal), then what will be in the Accumulator after INR A?
OFFH+1=100H, which is 100000000 binary. But that's 9 bits long, and the

20

Accumulator, like all the other single registers, can hold only 8 bits,
As a result, the left-most bit is lost; the Accumulator will now have zero
in it.

If we wish to increment a register pair, the INR instruction just
won't do. Suppose the HL pair contains QO0FFH, that is, H holds 00 and L
contains OFFH. Then INR L will result in H=00 and L=00. But if we want to
increment the HL register pair, then we want GQFFH+l1 to yield 0100H; that
ig, H should contain 01 and L should centain 00. In this case we use the
INX instruction: INcrement eXtended. Thus, INX Hwill increment the register
pair HL; INX B will increment the register pair BC; and so om.
(Corresponding to the increment and increment extended instructions, there
are the decrement and decrement extended instructions. DCR A will subtract
one from the Accumulator, DCX D will subtract omne from the register pair
DE. And so on.)

Where does all this get us? Well, now we can store all our PLOT numbers
in a section of memcry. Then we can load the HL register pair with the
address of the start of that section of memory. That is, the HL pair will
act as a pointer. Fach time we wish to read a number from memory into the
Accumulator, we use the MOV A,M instruction. Remember, that instruction
gets the contents of the memory location which is pointed to by (i.e.,
whose address is in) the HL register pair. And then to output what is in
the accumulator to the screen, we do what we did last time: CALL 33H. To
get the next number, we simply make HL point to the next memory location
by using the INX H instruction. Then we loop back to the MOV A,M. And so
on. Something like this:

MOV AM ;Get the number from memory.
CALL 33H ;Put it onto the screen.
INX H ;Point to next location in memory.

7 (Now loop back to the MOV A,M instruction,)

(Notice, by the way, that your assembler will treat a semicolon just as
BASIC treats "REM".)

0f course, we need something more. We need a LOOP. We want to execute
those three instructions a certain number of times. How do we make a loop?
We need a counter to keep track of the number of times we have gone through
the loop. And we need a conditioral branch instruction to go back to the
start of the loop in case the counter hasn't yet finished counting. In
BASIC, the locp is handled' in the familiar way using a FOR-NEXT structure.
Unfortunately, the 8080 doesn't understand either 'FOR' or 'NEXT'. How
could we make a loop in BASIC if we didn't have the FOR-NEXT structure?
Perhaps like this:

21

19 QOUNT=1 ¢tREM INITIALIZE COUNTER.

20 blah :REM HERE'RE THE STATEMENTS
30 blah :REM WHICH OCCUR INSIDE
40 blah :REM THE LOOP.

50 COUNT=COUNT+1 :REM INCREMENT COUNTER.

60 IF COUNT<8 THEN 20

In that example, we repeated a loop 7 times. Alternatively, we could count
down instead of up:

10 COUNT=7

20 blah

30 blah

40 blah

50 COUNT=QOUNT-1

60 IF QOUNT>@ THEN 20

As it happens, this is a perfectly natural and easy way for the 8080 to
handle a loop. For the counter, we could use, say, register C. We initialize
register C to 7 with MVI C,7. And we decrement the counter each time
through the loop with DCR C. But how do we test for zero and go back to
the beginning of the loop? In BASIC, you jump around with GOTO statements.
If you want to GOTO some place unconditionmally, you simply write GOTO
XxxxX, But if you want to GOTIO some place only when a certain condition is
satisfied, you have to put in a test: IF such—-and-such THEN GOTO xxxx.
The 8080 has its unconditionmal GOTO imstructiomn, too, only it's called a
JuMP instruction. JMP xxxx will cause the program to go to (jump) to
address xxxx. (It jumps to an address in memory, rather than to a line
number.) But in addition, the 8080 has quite a few conditional jump
instructions, all of which take place automatically by testing the status
of one or another of the bits held in the FLAGS register. One of those
bits is called the zero bit, and that is set (=1) whenever the result of
certain operations end up as zero. Some operations affect that flag bit,
and some do not. (The DCR instruction does.) The conditional jump
instruction we want is: JNZ <adr>, or Jump if Not Zero to address <adr>.

Now we are ready to put together a program. Just as an example, let's
erase the page and then plot a line around the screen. That will require
13 plot numbers, just as in BASIC: 12, 2, 0, 0, 127, 0, 127, 127, 0, 127,
0, 0, 255. Let's put these numbers (the data) at some convenient but out

of the way location in memory; say, at 9000H. Get out your MLDP program
and type

DBG>@9000

22

and then enter those 13 numbers in this fashion:

MEMD=412
MEM>=2
MEM>={

etc,

NOTE: If you have a 16K machine, your MLDP program may have a bug in
it. Please read last issue's Editors' Notes ahd make the necessary
correction, otherwise your efforts here will be in vain.

SECOND NOTE: Remember that you place numbers into memory using the
"=" command. Whatever number you type in will be assumed to be hexadecimal
unless preceded by "#". Since the numbers 0-9 decimal equal the numbers
0-9 hex, the "#" won't be necessary in such cases. That's why I didn't
bother with it in the example above.

And now for the program to transfer those 13 bytes onto the screen.
We can put the program anywhere (but not, of course, where it would
interfere with the data). Let's put it at 8200H.

Address Contents Assembly Language Comments

8200H 21H LXI H,9000H ;Point to start of data.
8201H 0gH

8202H 90H

820@3H @EH MVI C,0DH :Initialize counter.
8204H gDH

8205H 7EH - MOV AM ;Get next byte of data.
8206H ACDH CALL 33H ;'Plot' it.

8207H 33H

8208H 0oH

8209H 23H INX H ;Point to next byte of data.
820AH PDH DCR C ;Done with all bytes?
820BH @C2H JNZ 82@5H ;Not yet.

820CH @5H

820DH 82H

820EH ;Yes. All done!

Notice that two byte numbers are always stored low byte first, then
high byte. That's why the contents of locations 8201H-8202H, 8207H~8208H

and 820CH-820DH are the way they are.
There are two ways of entering this program into memory using the

MLDP. You can load each memory location with the necessary hex values.

For example:

23

MEM>@8200
MEMD>=21
MEM>=00
MEMD>=90
MEM>=0E

etc.,
Or you can just type in the assembly language mneumonics (but not the
comments) :

MEM>@8200
MEMDLXTI H,9000
MEM>MVI C,#13
MEMDMOV A,M

etc.

That is, the MLDP will act as a mini-assembler and tramslate the assembly
language code into the required hex values for you.
Don't forget to put a BREAKPOINT right after the program:

MEM>/
DGB>AT 820E

And now you can execute the program, either full speed with
IBG>R 8200

or else in the interpreted mode with

DBG>I 8200

NEXT TIME: Some more 8080 instructions, a look at the Status Flags, and
still more ways of putting data onto the screen. In the meantime, have
you been reading anything and everything you can get your hands on regarding
8080 programming? That's the way to learn. Our sessions here cannot hope
to cover everything; I expect you to be doing some homework. @&

24

‘THE' BASIC Editor

Reviewed by DAVID B. SUITS

The BASIC in ROM in your machine
has some rudimentary editing capabil-—-
ities: if you wish to make some
changes to your BASIC program, you
needn’'t write the entire program
over again, But s more sophisticated
editor would be a grest boon to
BASIC programmers. That's why I was

S0 excited when ISC released
'FREDI’, their BASIC editor, some
time ago.

But now a mnewer, even more

powerful editor is available, writ—
ten by M. A, E. Linden and distrib-
uted by Quality Software Associates,
It is called 'The’' BASIC Editor. It
does all that FREDI does and much,
much more besides. Like FREDI, ’‘The'
Editor 1lives in the top of your
computer's memcry; it takes up only
slightly more room than FREDI. Un-
like FREDI, 'The’ Editor is a screen
editor: instead of editing one line
(shown at the top of the screen) as
FREDI does, 'The’ Editor allows you
to move a cursor up and down the
screen and then move into a line in
order to edit it. You can copy one
line or a block of lines into a
different part of the program. You
can delete a line or a block of
lines; scroll the screen up or down;
insert one or more lines (with auto
line numbering); and search for a
specified string,

The good mnews does mnot stop
there. 'The’ Editor will also renum—
ber your program. And it will re-
store a lost program., (Ever hit ESC
W and RETURN and then regret it?
Not to worry!) It keeps you informed
about the amount of memory you have
left. Tt will LOAD a BASIC file for
you. 'The' Editor will also politely
disappear in case you don’t want it
around any longer.

But perhaps the most spectacular
feature of this spectacular editor

is its ability to append & program

on disk to the omne you have in
memory{ What's more, it will put
the appended program starting at

any line number you wish, resolving
all the GOTOs and GOSUBs. This means
that you can have a 1library of
rontines on disk and use 'The’
Editor to append any one or more of
them as and where you need them.

The version we received was an
early one. Although the upgraded
version was not available at press
time, it should be available as
you read this. The upgrade will have
typomatic, it will 1list the pro-
gram's variables (including ar-—
rays), and it will have a few other
esoteric goodies which will boggle
your mind.

'The’' Editor is priced at $49.95
(US), and, in my opinion, it is well
worth every cent of that, It comes
with an extensive manual, and if
future changes are made, purchasers
receive a free upgrade. If you are
more than a very casual BASIC pro-
grammer, this is one software tool
you will be overjoyed with. 'The'
Editor works with V6.78, V8.79 and
V9.80 systems, either 16K or 32K.
(It will even be available very soon
in a ROM version,) Contact:

Quality Software Associates
21 Dersingham Crescent
Thornhill, Ontario,
Canada, L3T 4P5. @«

25

HOWARD ROSEMNM, ITNC.

Fut the finishirme touches to your Compucolor II or ISC computer.

» Come wp to the world of word processing.
o Ertend the utilizstionm of =our computer Lo the other members of your
® (etters
*¥ School reports
3 Business reports
¥ If you now type-write it, COMF-U-write it for a better product.

= Basic requirements for CCITI or 3651/7651%

16K RAM.

117kew keghoard.

Frirter.

COMP~-tJ-writer software and instruction manual,
» For mawimum oapability!

Full 32k RAM.

Lower case characters.
 Talk to other computersi Add a8 MODEM to wour system.

family.

We carry the entire CCIT & ISC line of hardware/software, including spares,
Serd for our 4-paaqe order form for barduware/software. Reqitest separatelws
by item yYyour spare parts needs. Cz3ll wus for computer servicimg and uparadineg

Send Wour order rows We pay the shipping.
Allow 5 weeks for delivery,

We are an authorized ISC dealer ...

CCIT 3650/9650 Description Quantity Cost Amount
0100357 010052 Uparade 72/101 hkeys _ 150.00)
010058 010054 Uparade 72/117 hkeys 250,00
010059 010055 Uparade 101/117 keus 100.00
010044 24in., RS 232C Cable - 45.00
HR1001 HR1002 14k RAM Add-on 185,00
HR1003 Switehable Lower Case 122.530
0CozLC 32 Lower Case Charzscters 100,06
390001 920030 Sin. Formatted Twin Fack ?.95
200041 8in. = 10 Ome Side Format 75.00
200044 Bin. - 10 Two Side Format 108.00
HRO00& HROO0é& Sins Exec. COMF~-U-writer 299,00
HRO0O07 HROOO7 S5in. Mail-Merge C-U-Writer 349,00
991309 92991532 FORTRAN 75.00
CAT Novation MODEM Transmit/Originate _ 175.00
Sub Total
Fz. residents add 4% Fs, Sales Tax Fa, Tax
Total
Terms - Cash with order
Name Telephone ¢)] -
Address City St ZIF
HOWARD ROSEN, INC.
FO Eox 434
Huntingdon Valley, Fa. 192006
(215)~-4464~714%5 Sigqnature (please siqgn arder)

26

Back Issues Sale

Back issues of Colorcue are an excellent source of information about
Compucolor computers, ISC computers, and programming in general. Inter-
views, interesting articles, and programs are all there with a touch of
history.

The list below includes every Colorcue ever published. If it's not on the
list, then there wasn't one.

RETROVIEW: Vol. 3, #1 (Dec 79/Jan 80) includes: an interview with Bill
Greene; Compucolor-~teletype interface; user group hotline; introduction
to the Screen Editor; PEEKing at BASIC programs; talking to other computers;
making programs compatible with V6.78 and V7.89 software; software
modifications,

MULTI-ISSUES at $3.50 each

__ Oct, Nov, Dec 1978 __ Apr, May/June 1979
__ Jan, Feb, Mar 1979 ___ Aug, Sept/Oct 1979
INDIVIDUAL ISSUES at $1.50 each
__ Dec 1979/Jan 1980 ___ Feb 1980 ___ Mar 1980
__ Apr 1980 __ May 1980 __ Jun/Jul 1980
INDIVIDUAL ISSUES at $2.50 each
__ Dec 1980/Jan 1981 __ Aug/Sep 1981 ___ Oct/Nov 1981
POSTAGE
US and Canada -- First Class postage included.
Europe, S. America -— add $1.00 per item for air, or
$.40 per item for surface.
Asia, Africa, Middle East -- add $1.40 per item for air, or

$.60 per item for surface.

DISCOUNT
For orders of 10 or more items, subtract 25% from
total after postage.

ORDER FROM: Colorcue
Editorial Offices
161 Brookside Dr.
Rochester, NY 14623

Colorcue

ﬂ”ll'

—

3D Graphics

CRT Mode Plotting
Business Software Reviews

LY
]
-..

"
—r

e
-
ol
—
\\r~\'~~
.-
b
Sty
]
Ry

]
LS
S —
——

x
A
.

S

o el e

Assembly Language
Programming

/!
L] \N
¥
) o
! o 1 V
\“ 11
il i
« m ...n.w.\s
L gsr g
AR A \
L
i
A
N~
-
o

More

$2.

Feb/Mar 1982

Colorcue

Editors:
A Bi-monthly Publication by and for Ben Barlow
Intecolor and Compucolor Users David B. Suits

February/March, 1982
Volume 4, Number 4

Editors' Notes
Compuworld Business Software
Frepost Computers, Inc. ROM Board

Cueties

~N 0w W

3-D Graphics, by Doug Van Putte
Reflection, shear, rotation and scaling

15 Compuwriter Word Processor, by Howard Rosen
Software review

16 Classified Advertising

17 CRT Mode Plotting, by Bob V. Smith
Keyboard tables to make graphics easier

19 Assembly Language Programming, by David B. Suits
Part IV: The Status Flags and the Stack

Advertisers: You will find our advertising policies attractive. Write for
details.

Authors: This is a user—oriented and supported publication. Your arti-
cles/tips/hints are required to make it go. Send your articles or write
for information.

Colorcue is published bi-monthly by Intelligent Systems Corporation, with
editorial offices in Rochester, New York. Editorial and subscription
correspondence should be addressed to the Editors, Colorcue, 161 Brookside
Dr., Rochester, NY 14618. Product related correspondence should be
addressed to ISC, 225 Technology Park, Norcross, GA 30092, ATIN: Susan
Sheridan. Opinions expressed in by-line articles are not necessarily those
of the editors or of ISC. Hardware/software items are checked to the best
of our abilities but are NOT guaranteed.

Editors’
Notes

Dial Up Colorcue

Some of our subscribers have ac-
counts with the Source, Compuserve (Mic-
ronet), or other system. We'd like to
publish a directory of such persons so
that Compucolor/Intecolor users can con—
tact each other to exchange ideas, chew
the fat, and otherwise pursue the hobby.
If you would like your name included in
the directory, send us your name, the
name of the dial-up facility, and your
ID number. Better yet, if you're already
dealing with Micronet, leave the message
for us there: Colorcue's editors (yours
truly) are now on Micronet at account
number 70045,1062.

By the way, it's easy to get onto
Micronet. Drop by your local Radio Shack
store and purchase the "Dumb Terminal"
information package (Cat. No. 26-2224),
This gives you an account number and
password for Compuserve's Micronet in-
formation facility and one hour of free
connect time. There is also an applica-
tion for permanent status which you must
fill out and send in. You will also need
a simple program to make your machine
into a "dumb terminal". Finally, you
will need a modem., If you're already
dealing with Micronet, the Source, etc.,
why not tell us all about it via an
article for these pages?

Corrections

It's just not true that there's
always an error in Colorcue. Who said
that?! Well, there's the occasional
oversight.... Dave's Assembly Language
Programming had a small omission last
issue which is corrected in Part IV this
month. And Ben's article on the serial
to parallel interface ought to have
indicated, on the schematic on page 17
of last issue, that pins 2 and 6 of the
555 should be connected. Please draw
that in so you won't forget.

Doings Down Under

Ralphe Neill of the Victorian (Aus-
tralia, not B.C.) Users' Group writes
a '"Coripucolor Column" in Australian
Personal Computer magazine, His column
is an unexpected bright spot in these
non-Compucolor days. It almost seems as
though, now that the Compucolor II is
out of production, support is starting
to emerge. Witness also Tony Watson and
John Newman's book Programming Colour
Graphics for Compucolor/Intecolor Compu-—
ters. The book takes you from initial
power on through BASIC programming to
color (and colour!) graphics, random
files and even a driver program for the
HIPAD digitizer, Bernie Muldowney, also
of the Victorian Users' Group, is sell-
ing an assembly language tutorial series
on disk. We have seen part of it, and
it 1looks very good. $50 (Australian)
plus postage. Contact Bernie at 5 Dixomn
Street, Wangaratta, Victoria, 3677, Aus-
tralia, And there are two active users'
groups with growing program libraries.
The Victorian Group can be contacted
through its Secretary-Treasurer, Keith
Ochiltree, P.0. Box 420, Camberwell,
Victoria, 3124. The Western Australian
group's librarian is Tony Lee, 52 Cowan
Rd., St. Ives, NSW, 2075. &

COMPUWORLD BUSINESS SOFTWARE

Compuworld, Inc. has announced a
line of business software for the Compu~
color II/ISC 3600 series computers, All
programs require 32K user memory, one
disk drive and a minimal (i.e. regular)
keyboard.

ColorCalc
(CCII/ISC 3600 series, $199.00)
ColorGraph
(ISC 3600 series only, $150.00)
The so-called spread sheet is a

traditional managerial tool which aids
in the analysis of financial informa-
tion. Data 1s presented in rows and
columns and may represent sales informa-

3

tion, inventory, etc. As a company's
budget changes, the data in the rows
and columns are changed accordingly,
and the entire array can be re—examined.
ColorCalc is a computerized spread sheet
which automatically totals the informa-
tion you are after. The results can be

handed over to another program, Color—

Graph, which will then provide color
graphic displays. Both programs are
written in assembly language.

ColorCalc has 12 single~key com-—

such as "L" to load data files
for data entry. As many as 51
columns and 52 rows of data may be
entered. A formula may be entered on
the basis of which the data will then
automatically be analyzed. Such a for-
mula may operate omn any column or row
any number of times., And up to ten
formulas may be saved. (24 formulas on
3600 machines.) ColorCalc operates with
a triple-precision math package which
is accurate to the penny up to five
billion dollars. Hard copy print out is
supported,

ColoxrGraph takes data from ColorCalc
and draws graphs of any section of the

mands ,
or IIDII

spread sheet. You «can re-scale the
graphs, re-color them, re-label then,
and print them -- in black and white on

an Epson, for example, or in color using
the PrintaColor inkjet printer.

Inventory Control
(CCII/ISC 3600 series,
Among this
package is the ability to keep track of
distributor's name, quantity on hand,
quantity on order, re-order level, last
re-order date, late received date, whole-
sale/retail pricing, and current order
price. Reports may be generated by
different parameters, including re-or-
dering, on order, and total retail and
wholesale stock value at any time.

$150.00)
the many features of

Accounts Receivable

(CCII/ISC 3600 series, $150.00)
Designed with the average operator

in mind, this package can keep track of

credit ratings and credit limits. Also

included are aged account status, his-

4

tory of total business done with any
account, total monies owed at any time
by all accounts, statements as often as
required, and mailing labels by two

parameters., On the 3600 version, this
program has linkage to the General
Ledger.

Accounts Payable

(CCII/ISC 3600 series, $150.00)

This package supports invoice aging,
with account status reporting, total
monies owed, and a history of total
business done with each vendor. Partial
payments are supported, as well as
manual and automatic check writing and
check registers and mailing labels. On
the 3600 series, this program has link-
age to the Gemeral Ledger.

General Ledger
(CCII/ISC 3600 series, $299.00)

This package is menu driven with 10
levels of account totals, account balan-
ces for current month, quarter, previous
three quarters, year to date and pre-
vious year. It generates trial balance
and income statements, balance sheets,
special reports and account status re-—
ports. A triple precision math package
is incorporated and hard copy print out
is supported. (This also creates data
files for ColorCalc. And for 3600 series
machines, there is linkage to Accounts
Receivable, Accounts Payable, and, in
the near future, Inventory Control.)

Mailing List
(CCII/ISC 3600 series, $100.00)

The Mailing List system stores data
for personal and business mailing:
names, addresses, phone numbers and
comments. The program provides for search-
ing on one or more of eight fields,
alphabetical storage of names, support
of printing one, two or three labels
across a page, sorted in alphabetical
or zip code order.

Contact Compuworld, Inc.,, 125 White
Spruce Blvd., Rochester, NY, 14623 (716)
424-6260. &

FREPOST COMPUTERS, INC.
ROM BOARD

Add-on ROM Board

Most ISC computers have a slot for
additional ROM (Read Only Memory). In
the Compucolor II, the area in memory
from 4000 hex to S5FFF hex is reserved
as a user ROM area. Therefore, if you
have software you wish to be available
at any time, it can go into this area.

Frepost Computers, Inc. will supply
a plug in ROM board for your ISC
computer. The board is ready for you to
plug in EPROMs of your own, or pre-pro-
grammed EPROMs available from several
sources. Since the Compucolor V6.78
system allows only one user jump vector
(ESC ~), your EPROMs can be accessed
from a jump instruction poked at 33215.
As an added enhancement, Frepost Compu-
ters has available a replacement system
EPROM to replace one of the original
V6.78 system chips. This allows four
software or keyboard jumps to the PROM
board and adds two more .user program-
mable jumps (like having three ESC *).
And as an added feature, you can custom—
ize your system to your requirements.
Frepost Computers will even burn your
program into EPROM for you.

Bank Selectable EPROM Controller

We also have a device that will plug
into the Compucolor CPU board in the
Add-on ROM connector just like the small
board mentioned above. This device ac-
cepts commands from a program or from
the keyboard and selects up to seven

more banks of ROM, all occupying the
same memory addresses, 4000-5FFF. The
EPROM bank selector module adds 56K of
additional ROM that is software select-
able in 8K byte segments. It uses 2532
type chips which are the same as your
system ROMs. If you already have an add
on ROM board in your machine, it can be
pulled out of its sockets on the logic
or CPU board. The EPROM bank select
board plugs into these sockets and your
present ROM board plugs into the bank
selector board. There is a 50 pin bus
connector that plugs into the back of
the logic board. If you're already using
the 50 pin bus connector for something
else, we supply you with all instruc-
tions on how to solder the appropriate
leads to your computer, eliminating the
need for our 50 pin bus connector. (If
you order it that way, you save $10.)
The Add-on ROM board is available
for $49.95, assembled and tested, or in
kit form for $39.95, complete with
sockets, capacitors and connectors. The
EPROM bank selector board is $249.95
assembled and tested. In kit form, with
all sockets, capacitors and chip select
parts, it is $199.95. (Either version
with 50 pin bus connector is $10 more.)
The Frepost V6.78 enhanced system PROM
is available for $29.95. Orders less
than $100, please include $5.00 shipping
and insurance., All orders include com~
plete instructions and documentation.
Write or call Frepost Computers, Inc.,
431 East 20th Street 10D, New York, NY
10010. Phone: (212) 673-6476. The
Source: TCI251. Micromet: 70210,374., @&

Cueties

PLOT 12:
INT (RND (

N X

Z=@ TO 5000 :X=X+2~INT(RND(3) *5) : Y=Y+2-
' X, Y, 255 :NEXT

o

HOWaAaRD FROSEN, Ino.

fAuthorized ISC dealer

T A L KE T 0 Y 0Oukr COMPUTE

DXID I T a6 L K [T

N O W T CaNT v

with the Amazing

TY PP E - N - T @f L ¥
8 Tuyupe & hear the written word spo

8 Simply comnect to the REZ320C por

To order sernd check for $362.00 with
astate, & zip. (Fa, resident please
We pay the shiipping ocharQes.

SOUT 1am
add &4 s

e We carry the word processor for the COXYX,
Your computer isn’t the same, once you’'ve
Processor.
tresrees letlters -~ reporlts forms are
Wwith the aid of the word processor.

= Servicing available for wour CCIT

= New hardware & softwsre list with itemized

= Send for new list and order form X

= Never a shipping charae for softuware & hsrd

HOWARD ROSEN, Inc.
Faolle Box 434
Hontingdon Valley, Fa.
(215 464 7145

19006

¥ Trauire sbhoult our free proarams

R

ke

t

address, cily
).

oy
ales

3621,
added

3650,
the wordg

easlly prepared

description

WETE PUrChnases.

#

3D Graphics

by
Doug Van Putte
18 Cross Bow Dr,
Rochester, NY 14624

Graphic displays on the computer are enhanced by giving depth and
motion to objects. The world of animinated graphics using matrix mathematics
to present objects with simulated depth and motion will be introduced. I
will cover the basic concepts and then describe the elementary motions
that can be attained. These motions will be illustrated by a program that
can be applied to any object by the reader. Those of you who find the
technical treatment too superficial are referred to the references.

First, you will be given a review of the Cartesian coordinate system,
followed by the object matrix which is used to define the coordinates of
a point on the object. This will be followed by an introduction to the
transform matrix which contains the elements of motion that can be applied
to the object (matrix). The multiplication of the object matrix and the
transformation matrix will then be shown to yield a new, transformed
coordinate matrix from which the object can be drawn in its new position.
I hope you can visualize now that a previously defined object can be moved
through a series of motions by successively applying the operations above

to each point on an object, followed by redrawing the object from its

new" points. The types of motion which include scaling, reflection,

translation, rotation, and shearing will be shown in simple matrix notation.

CARTESIAR COORDINATE SYSTEM. The Cartesian coordinate system used
exclusively here is the PLOT 2 coordinates familiar to ISC computer users,
While the origin is usually in the lower left hand corner of the screen,
the demo program uses an origin at the center. The X-axis is the horizontal
axis, the Y-axis is the vertical axis, and the Z-axis, by convention, is
perpendicular to the X and Y-axes and runs toward the viewer and into the
depth of the screen, Positive values are toward the right for X, up for

Y, and out of the screen for Z.

OBJECT MATRIX [P]. The object in all cases will be a series of coordinate
points which are connected by lines (PLOT 242). The individual X,Y,Z
coordinates for a point are stored in a column matrix P, which looks like
this:

(P is a matrix with X Points are stored in a
one column and Y 2 dimensional array, i.e.
three rows) Z X1=P(1,1):Y2=P(2,1):21=P(3,1).

If ten points are required to define the object, then ten column matrices,
each with one column and three rows, must be created. E.G., P(1,1), P(2,1),
P(3,1), ... P(1,10), P(2,10), P(3,10). The object is constructed by
connecting the coordinate points P by using PLOT 242 to drav lines between
each successive point.

TRARSFOBMATION MATRIX [Tj. This matrix is sometimes called the operator
matrix because each non—-zero element is a term which operates on or modifies
one of the coordinates, point by point, to transform the object. For now,
T will be defined as a 3*3 matrix as follows:

(T is a matrix with !A B C! Row 1l modifies X.
three columns and D E ¥ Row 2 modifies Y,
three rows.) iG H I Row 3 modifies Z.

The transform matrix T can be multiplied by the object matrix P to wield

a transformed object matrix P’ as follows:
P' =T * P
Upon expansion, the new coordinates of P' become:

xl

=X*A+Y*B+2%C,
Y =X *D+Y*E+Z*F, and
Z' =X * G+ Y *H+ Z %7,

Rules of matrix order and shape have to be observed in the multiplication
process. (See reference 3.) Using the (3*3) transformation matrix T,
operations of scaling, reflection, rotation, and shearing can be used to
manipulate the coordinates of a point P. Other operations, called
translation and overall scaling, will make use of an expanded (4%4)
transformation matrix. All the operations will be illustrated with a simple
cube in a BASIC program later on.

SCALING. For pure scaling, T becomes

A 0 O
T = 0 E O
0 0 I

And when T is multiplied by P, then

X' = A * X,
Y' = E*Y, and
VA I * Z,

Independently then X, Y, & Z coordinates can be scaled to produce a
reduction or a magnification of an object. The operation of reflection is

similar.

REFLECTION. To obtain the reflection of an object in a given direction,
all the signs of that coordinate direction must be reversed. For example,
to obtain the mirror image of an object through the plane of the screen
(X-Y), T becomes:

|_]

il
O O+
O = O
= OO

And when T * P then

X! X,
Y' = Y, and
zZ' -Z.

SHEAR. An object is sheared by modifying one or more coordinate values of
a point in a special manner. A coordinate's value is modified from the
original value by an amount computed from the point's position on one or
both of the other two coordinate axes. An object can be sheared in its

X-direction by:

H

]
OO
O =
— O O

And when T * P, then

10

X' =X +B %Y,
Y' = Y, and
Z' = Z.

On evaluation, this operation tilts an object by displacing the horizontal
(X) values an amount B*Y, Then as a point's vertical (Y) position increases,
the displacement of X increases and therefore the redrawn object will be
tilted. Note that the X value can be modified by both the Y & Z position
of the point at the same time by making the 'C' value non-zero. All three
coordinates of a point can be sheared simultaneously by the other
coordinates by making B, C, D, F, G, & H non-zero. This operation yields
interesting object motions, but the operation of rotation can produce the
most life-like movement.

ROTATIOR. An object can be rotated about any axis to produce a specific
orientation in space. The transform examples, however, are restricted to
the coordinate major axes. By specifying the rotation angle, an object
can be rotated in one of three planes about its origin by using one of

the following transformations:

X-Y PLANE (about the Z-axis):

|cos(a) -siN(a) 0
T = SIN(a) C0S(a) 0
0 0 1

And when T * P, then

X' =X % cos(a) + Y * SIN(a),
Y' = X ¥ SIN(a) + Y * €0S(a), and
z' = Z.

X-Z PLANE (about the Y-axis):

cos(a) 0 -SIN(a)
T = 0 1 0
SIN(a) 0 cos(a)

And when T * P, then

X! X % Cc0s(a) + 2 * -SIN(a),
Y' Y, and
Z' = X * SIN(a) + Z * CO0S(a).

]

Y-Z PLANE (about the X-axis):

1 0 0
T = 0 Ccos(a) -SIN(a)!
0 SIN(a) coS(a)]

And when T * P, then

X' =X,
Y' =Y * C0S(a) + Z * -SIN(a), and
Z' =Y % SIN(a) + Z * C0S(a).

Although not within the scope of this treatment of rotation, it can

be stated that:

1) The final positon of an object rotated sequentially about
different axes is a function of the order of applying the
transformations.

2) Anobject may berotated about any arbitrary point by translating
that point to the origin prior to rotation and subsequently
returning the point to its original position.

3) An object can be rotated about any arbitrary axis placed through
the object.

Now for the theory and transformations for operations of Translation
and Overall Scaling. This treatment will be followed by a demonstration

program.
In order to present the last two operations, both the P(Object) matrix

and the T(Transform) matrix must be expanded. They become:

P(X,Y,2,1) =

N
—H
]
(= Il = g
O H MO
mE < a

O m W

On multiplicatiom, T*P yields P'(X",Y",2",S). On expansion, the new

coordinates become:

XM =X*A+Y*B+Z*C+ U,
Y" =X *D+Y*E+ Z*F + V, and
Z" =X * G+ Y*H+Z*I+ W,

1X

The transformed coordinates are now 'normalized' by dividing them by S to
yield P'(X',Y',2',1) as follows:

X' = X"/s,
Y' = Y"/S, and
z' = z"/s.

In addition to all the operators described earlier, these new forms of
the P and T matrices can be used to move and scale an object. For example:

TRANSLATION. For translation only, T becomes

1 0 0 U

T = 0 1 0 v
0 0 1 Ww
0 0 0 1

And when T*P, then

X' =X+ U,

Y' =Y+ V, and

z' Z + W.

Thus it is seen that the first three elements (U,V,W) of the fourth column
are the elements of translation for each of the three coordinates (X,Y,Z),
respectively. This transformation, in conjunction with the others discussed

above, provide us with the means of giving realistic movement to an object.

OVERALL SCALING. For Overall Scaling only, T becomes

SO O+
oo =O
o= OO
nooo

And when T*P and the coordinates are normalized by dividing by S, then

X' = X/8,
Y' = Y/S, and
z' = z/s.

Thus, the fourth element of the last column can be used to scale the three

coordinates identically.

12

DEMONSTRATION PROGRAM.

A few comments about the demo program are in order.

1)

2)
3)

4)

5)

6)

All prompted inputs are numeric, but the values need to be
tailored for the type of operation. Values for each input which
cause no operation are given with each prompt. The rotation
angles are interpreted as degrees. Start at values close to
the no-op values given to begin experimentation.

There is no internal check for exceeding the screen limits.
The program produces a composite transform matrix before the
object is operated upon. To test the effect of each operation
on the object, the user can change the program, or simply use
the no-op values for the other operatiomns.

The user can input his own object. Follow the program comments
and don't forget to change the 'NR' value for the number of
object points and the matrix dimensions.

The program is unfortunately slow. What is needed to make the
program swifter is an 8080 subprogram which can be called to
multiply matrices. Does anyone have one? If not, why don't one
of you 8080 Wizards write one and share it.

All the lines, including the hidden lines, are drawn by the
Plot subroutine. Can anyone add a hidden line subroutine?

7) Undoubtedly, there are the inevitable bugs. Please pass any
you find along to me. @&
Ay
X)‘
Object in demo program
v
REFERENCES:

1. J. Posdamer, "The Mathematics of Computer Graphics", BYTE, Sept., 1978,

PP.
2. 7J.

3. D,

22-39.

Hungerford, "Graphic Manipulations Using Matrices'", BYTE, Sept.,
1978, pp. 156-165.

Rogers and J. Adams, Mathematical Elements for Computer Graphics

(McGraw Hill, 1976).

13

14

100

130
140
150

160
170
188

199
260
219
220
230
240

250
260
279
280

290
308
318

320
338
348
358

360
378
383
39¢
408
410
420
43e

458
460
479
480
459
580

518

520
538

548
558
560
570
584
599
608

619
620
630
640
659
666

REM *kkkikikd®® 3-D GRAPHICS DEMD PROGRAM A*#ddkdkdddiiiiiis

REM **addadiikdd BY D. A, VAN PUTTE KRR RRRATRAT"AES

PLOT 12,15:DIM G(4,30) ,P(4,30) ,S1(4,4) ,S2(4,4) ,T(4,4) :NR=24
11(1)=1:12(1)=2:11(2)=1:12(2)=3:11(3)=2:I2(3) =3:DX=45:DY=45:DZ%=45

REM * READ OBJECT PFOINTS FROM ARRAY (LINE 9000)

RESTORE :FOR C=1 TO NR:P(4,C)=1:FOR R=l1 TO 3:READ P(R,C):NEXT :NEXT

GOSUB 530:GOSUB 600:GOSUB 500

REM * SCALE CPERATION-REQUIRES INPUT OF 3 NOS.

INPUT "SCALE X,Y,Z (1,1,1)? ";A,E,I1:51(1,1)=A:81(2,2)=E:51(3,3)=I:IF A=l
AND E=1 AND I=1 'IEBJ 218

GOSUB 450

REM * QVERALL SCALE OFPERATICN-REQUIRES INPUT OF 1 NO.

INPUT "OVERALL SCALE FACTOR S (1)? ";S:IF S=1 (R S=¢ THEN 249

S1(4,4)=S:GOSUB 450

REM * SHEAR CPERATION-RBEQUIRES INPUT OF & NOS.

INFUT "SHEAR X(B&C),Y(D&F) ,Z(GsH) (4,0,9,8,9,0)2";B,C,D,F,G,H:IF B=@ AND
C=g BND D=0 AND F= AND G=6 AND H=0 THEN 280

S1(1,2)=B:S1(1,3)=C:S1(2,1)=D:51(2,3)=E:81(3,1)=G:81(3,2)=H

GOSUB 456

REM #* ROTATION CPERATION-REQUIRES INPUT OF 3 NOS.

INFOT “ROTATION ANGLE IN X-Y,X-Z,Y-Z PLANES (0.8,8)? ";A(l) ,A(2),A(3):IF

A(l)=8 AND A(2)=0 AND A(3)==G THEN 316

GOSUB 558:GUSUB 450

REM * REFLECTION OPERATION-REQUIRES INFUT OF 3 NOS.

INPOUT "REFLECTTON X,Y,2 (1.1,1)? '°A,E,I IF &=l AND E=1 AND I=] THEN
358

Si(1,1)=A:581(2,2)=E:81(3,3) =1

GOSUR 450

REM # TRANSLATION @ERATJWMREUEES VT OP 3 NOS,

INGIT STRANSLATION X, Y,Z2 (6,2,8)7 ":U,V.W:DD=246/ (248-W):IF U=0 AND V=j
AND W= THEW 389

51(1,4)=0:81(2,4)=V:81(3,4)=¢:GOSUB 4508

FOR C=1 TO FR:P(1l,C)=P(1,C)*CD:P(2,0)=p(2,()*ID:NEXT

GOSUB 418:PLOT 12:GOSUB 5068

INPJT "HIT RETURN TO RESTART®;ZZ:PLOT 12:GOTO 158

REM * SUB TO MULTIPLY T MATRIX * P MATRIX

FOR I=l TO 4:FPOR J=1 TO NR:SM=f:F0R K=1 TO 4

SM=CMHT (T, K) 7P (K, J) sNEXT K:G(I,J)=SM:NEXT J:NEXT I

FOR R=l 0O 4:FOR C=1 T NReP(R,C)=INT(G(R,C)+.5)/S:NEXT :NEXT :RFETUR

N

REM * SUB TO (ONSTRUCT OOMIOSITE TRANSFORM MATRIX (T)

FOR I=1 M0 4:sFOR J=1 710 4:SM=f:FCk R=1 10 4

M= SHHSL(I,RY*T (R, J) cNEXT R:IF SN 2<.B961 THEN S¥=f

S2({L:J)=SM:NEXT JNEXT I:FOR Rel TO 4

FOR C=1 TO 4:T(R,C)=S2{R,{):NELT C:NEJT R

REM ® SJB TO PLOT TREANEFORMED CRJIECT (PF)

Bor (1,1)+DX P{2,1)40%,242:FOR (=2 TO 18:PLOT P(L,C)+DX,P(2,C)+00Y
sMEXT PLOI‘

BLOT 2,P(1, 19)+DX P(2,19)+D¥,242:FOR C=20 TO 24:PLOT P(1,C)+DXY,P{2,C)

+DY:NEXT :PLOT 255 :RETURN

REM * SUB TO INITIALIZE T MATRIX

FOR Ral TO 4:FOR C=1 MO 4:T(R,C)=B:NEXT C:NEXT R:T(1,1)=1:T(2,2)=1:T

(3,3)=1:T(4,4)=1:RETURN .

REM * SUB TO CREATE ROTATION TRANSFURM MATRICES

FOR IL=1 TO 3:A=A(L)*3.14139/188:1F A(L)=# THEN 569
S1(I1(L),IX(L))=COS{A):S1{I1(L),I2(L})=-5IN(A)
S1(I2(L),I1(L))=SIN(A)sSL1(T2(L) ,I2(L))=C0S (A}

MEXT L:RETURN :

REM * SUB TO INITIALIZE GENERAL TRANOFCRM MATRIX (S1)

FOR Rel TO 4:FOR C=1 T0 4:S1(R,Ci=f:MEXT CsNEXT R:S1(1,1:=1:81(2,2)=
1:81(3,3)=1:51(4,4)=1:RETURN

REM * ENTER (DORDINATES (X,Y,Z} OF LA FOINT IN SED.
REM * EXAMPLE DATA IS A 3-D CUBE W/ LETI®! 'F' (N FRONT FACE
paTA 9,0,0,3¢,0,0,39,30,0,30,39,34,26,36,8,0,36,8,%,8,0
paTa 9,6,30,9,30,30.38,30,36,8,39,38,6,30,2,8,0,8

paTAr 9,8,30,36,0,39,3%,38,3%,38,0,30,38,3,0

pATA 14,13,30,14,17,.30,17,17,38,14,17,36,14,15,38,16,15,30

Compuwriter
Word Processor

by

Howard Rosen
P.O. Box 434

Huntington Valley, PA

Ten ways to use a word processor:
write a letter; build a form; write a
story; write a report; write a book;
write a note to 15 people; write an
article; write a research paper; write
mailing labels; prepare a sheet of
vertical and horizontal lines. The list
is not complete, and I'm open to sugges—
tions.

Do any of the above apply to you?
Read on and learn the workings of the
Comp—u-Writer word processor. How do
you use it? Do you have to know how to
program? No, you do not do any program—
ming. Let's examine how the word proces-
sor 1s actually used on a day—to-—day
basis.

While a typewriter can be used to
prepare a neat looking document, the
word processor does it better and easi-
er. Take, for example, centering the
first line of a letter. Just press the
key marked CENYER and tvpe. The text
magically starts at the very center of
: and moves left, then right,
wiile maintaining a perfect center. A
typist has to consider page width, line
ending, tab setting, and indentation.
All of these are child's play to the
word processor. Just press the PRINT
key and a2 menu with color squares
appears. Each color square is associated
with a setting: B*JE for lines per page;
YELLOW for characters per line; RED for
margin settings; and more. After the
page is typed in, if you wish to change
the number of characters per line,
return to the menu and change to a
different setting. The text will immedi-
ately shift to accomodate your wnew
choice,

e line

19006

Tabs are set by moving a little blue
square right or left along a scale at
the top of the screen and locking them
in place by depressing the RETURN key.
The TAB key is then exactly like your
typewriter, except you can change tabs
if you like right in the middle of a
letter to get a different effect. Sup-
pose you've finished typing and you've
found mistakes. Return to the scene of
the error, delete the word or character
ané make your correction. Perhaps you
should have made the first paragraph
the third one. Use the two keys labeled
MARK BEG and MARK END to place marks on
either end of the section in question-—-
watch it turn from green to red to
indicate that it's marked-—and then move
the cursor with the four arrow keys to
the exact spot where you want the
paragraph to be. Then simply press the
HOVE BLOCK key and watch how fast all
is forgiven. If the marked block is to
be repeated, press the COPY BLOCK key
for each copy desired. The ERASE BLOCK
key will totally remove the marked block
from your text.

To avoid typing long words used
repeatedly, you might use x or y or z
in substitution, then with the DEFIKE,
SEARCH, and REPLace keys you can
specifically or generally make your
replacements., Anything can be underlined
or made to be boldface by the press of
a key. Any character on the keyboard
will automatically repeat if held just
a little longer.

Now you're ready to print. You can
choose single sided, where each page is
sequentially printed, or double sided,
where the odd pages are printed, then

15

you reverse the paper for the even pages.
If you wish to do two column printing
then each consecutive pair of pages
becomes the left and the right columns,
respectively. This can be done for
double sided printing as well, with the
word processor keeping an eye on how
things are going. If only a part of what
was typed is to be printed, then use
the marking technique discussed earlier
and print only the marked part. Multiple
copies can be printed by responding to
the question "HOW MANY COPIES?" on the
print menu. Documents can be saved on
disk for future use. Either the whole
document or just the marked portion can
be saved,

The most recent version of Comp-u-
Writer is version 3.5. There are two
types available: the Executive and the

Mail Merge. The Mail Merge, while capa-
ble of printing personalized letters,
does not support the two sided printing.
Mail Merge is useful when a specific
letter is needed for a number of custo-
mers, each individually addressed,

Comp-u-Writer for the Compucolor
I1/3600 series computers requires the
117 key keyboard and a minimum of 16K
RAM. Tt 1is recommended that both 32K
RAM (to support long documents) and the
lower case letters (to allow normal
typing) be available.

As an authorized ISC dealer, we
carry the Comp-u~Writer and the entire
ISC hardware and software line. We may
be reached at HOWARD ROSEN, INC., P.O.
Box 434, Huntington Valley, PA 19006
or by phone at (215) 464~7145. @&

CALL FOR ARTICLES

world famous....

Colorcue gets its material from those who write it. It don't grow omn no
trees. Nevermind your bad sppeling or badly grammar:
the Editors. You come up with the ideas, splash them onto paper (or disk),
and we'll wrestle them into an intelligible form for publication. We can't
pay you for your time--you won't become rich. But, since Colorcue is read
all over the world (well, not all over, exactly), then maybe you'll become
We're looking for ideas,
and/or software and/or hardware applicable to ISC machines, hardware/soft-
ware modifications, user group news, and....

that's the job of

programs, reviews of books

Well, you get the idea.

CLASSIFIED ADVERTISING

WANTED: Compucolor II system. Purchase
or trade for TRS-80 Model 1. Mike
Charlton, (502) 926-3021.

FOR SALE: Compucolor II, V6.78, 24K,

non-working. Analog board problems. Com-
plete with manuals, programs, etc. Ben
Moser, Rt. 2, Box 550, Stanley, VA,
22851. (703) 778-2861.

FOR SALE: Heathkit microprocessor learn-—
ing system. M6800 based trainer, with
documentation., Excellent package for
introduction to hardware. Micheal Ezzo,
692 S. Drake Apt. 0-10, Kalamazoo, MI
49009.

16

FOR SALE: Compucolor II, extended key-
board, 16K, with diskettes, manual,
graphics., Can add modem, sound, and
memory. (716) 872-2322 (after 5).

FOR SALE: Intecolor 3651. 32K machine
with 5 1/4 inch disk, std keyboard.
Manufactured in mid 1981 . Asking $2000.
Jim Dantin, (502) 927-6921 x377 (days),
or (502) 926-8333 (nights).

FOR SALE: Intecolor 3651. New in origi-
nal carton. 32K, 5 1/4 inch disk. Asking
$2000. Gecrge Wilson, (404) 458-1431
(nights).

CRT Mode Plotting

by

Bob V.

Smith

498 Brown Street

Napa,

Using the deluxe keyboard, graphic
displays can be drawn in the CRT mode.
Control B enters the plot mode (just
like BASIC's PLOT 2.) From then on, the
ASCII values of each key press will
determine what is plotted. (See the
keyboard table on the next page.) The
special function keys F0-F15 are used
to enter the various plot submodes. In
order to simplify incremental plotting,
the table below can be of help.

For example, draw a triangle this
way: enter the CRT mode, Control B for
the plot mode, plot a point with two
appropriate key strokes, enter the vec-
tor plot submode with the F2 key, plot
the other end of the vector with two

ca

94559

more appropriate keys, and finally enter
the incremental vector plot submode with
the FO key:

ESC CRT
Control B
Control CRT
Shift ?

F2

CRT

Shift ?

FO

Now
end
the
the

form a triangle by holding the left
of the vector stationary and moving
right end up (North). According to
table, that is the 2 key. @&

Left side (A)

SHF = Shift
CTL = Control
COM = Command N NE| E SE| S SW W | NW| HOLD
(shift & N SHF | COM |COM | COM | CTL SHF
control) 2 2! B|/R|R|R|B| B2
NE | SHF|COM |COM|COM|CTL SHF
*x | x gl zlz |z |3gl a]|:
E SHF | COM |COM | COM | CTL SHF
8 | 8 | H| X | X X |H!| H| 8
g?ght SE | SHF |COM |COM|COM|CTL SHF
(;)e 9 |9 |1 ! Y| Y |lY |1! 119
s SHF | COM | COM | COM | CTL SHF
1|1/A]0]0 |0Q |A] A1l
SW | SHF |COM |COM | COM | CTL SHF
5 !5 |E|ul|lu |U|E| E/|S
W SHF | COM |COM | COM | CTL SHF
4 4 |p|T!T |7 |D| D 4
NW | SHF|COM |COM|COM CTL SHF
6 | 6 | F | v v v | FI|F|G6
For ¥ bar graphs, HOLD CTL |{COM|COM | CTL SHF
A is bottom of line. N /o O [CRT|CRT CRT| O | O

17

Keyboard Table. Each row lists ASCII values produced by the indicated

keys (plus Control, Command or Shift, if necessary).

= & O 2 a J = [O
S) =, = = Z O S) = =
& oM H E < < & & < H
e by I st P = = H H oo = s
g = O S = S S 8 8§ & S o
O n = =, %) O O O O o S =
ﬁl@ 32]0] 64!@ o6|e | 128|e | 160l@| | 192]F0@ 224|Fp
11a§33'1 |65a] 97/a129/Aa}161/1: |193/F1 225|F1
2/B|34/2 |66/B| 98B 13@[3 162 2 | 194 'F2 226|F2
3 c¢f353 |e67.c| 99/cl131icf163 3! |195 F3 227|F3
4pl364 |68D|108D]|132'D)|164 4 |196 F4 228| F4
5 E|375 |69 E|101 E|133 E|165 5 |197 F5 229|F5
6 F|386 |70 F|102 F|132/F|166 6 |198 Fé6 230 F6
761397 |71c6183/c|135 G167 7. |199 F7 231|F7
8'H |40 8 {72/ H|104/H|136 H|168 8! |200 F8 232|F8
o 1419 |73 1)1851|137 1|169 9 |201 F9 233|F9 |
19 3§42 * 1741371186 J{138/3 170 * | 202 F1p 234|F10
11 kK |43 + | 75/k | 107 K | 139 K | 171 + | 283 F1l 235(F11
12/ L {44 , |76 L |1@8 L {148 L 272 =, |204 FI2 236 F12
13/Mm 145 =77 M |109 M {141 M |173 = |285 F13 237 |F13
14/N f46 . j78'N 110 N)J142/N 174 . |206 Fl14 238 F14
150 {47 /}79. 0111 01430175 /|287 Fl5 239/F15
16 p {48 g 8¢ p|112/p 144 P 176 0 |208 ro | 240 Fo
179 149" 1}81/0|113/ 0145 0177 1209 F1 | 241 Fl
18R 156, 2182 R |114 R|146'R|178 21210 F2 | 242 F2
19/s |51 383 s|115 s {147 s}179 3 |211 F3 | 243 F3
20 /T |52 4184 T 116 T 148$T 180, 41212 Fa | 244 ' F4
21\u |53, 5185/ u|117/U 149 U [181 |5 213 F5 | 245! FS
22/v |54 6|86V |118/v {158 Vv |182, |6 |214 F6 | 246 F6
23w |55 (7|87 \w|119/w |151 w183 7 |215 F7 | 247 F7
24 x |56 (8188 x |120 X |152(x |184] (8 | 216 F8 | 248 F8
25|y 157 9189y |121(y {153 |y | 185 9 |217 F9 | 249 F9
26|z |58 |: |90z [122]z [154 2z | 186, |: | 218 F10 | 250 F10
27,1 |59] s |91l [123][f155 [{187 |: }219| F11| 251 F11
28|\ |68]<| 92|\ |124|\ {156\ 188J< 220 F12 | 252 F12
29|11 felj=| |931] |125/] |157|] | 189 =| |221 F13| 253 F13|
301° {62(>| {94|" {126|" 158/~ {190 > |222] F14 | 254 Fl4
31|_ |63|?| Jo95|_ 1127|_ {159 _ 191;? 223 F15| 255 F15

BUSINESS SOFTWARE FOR SALE

©1982 INCOME TAX PREPARER (for Federal and New York State).
@ COMPLETE CASH REGISTER PROGRAM (Includes invoice print, order, inventory count,
cash/credit total).

©PAYROLL SYSTEM.
®QSORT PROGRAM

®CCII INTERACTIVE OPERATING SYSTEM

18

MAU Corporation

5 Eldridge Street, Store North
New York, New York 10002

Tel. (212) 431-1277

Assembly Language
Programming

by

David B. Suits

PART IV: The Status Flags
and the Stack

Well, I goofed last time. Some of
you saw the mistake and made the approp-
riate corrections. The little program
I gave you last time to draw a line
around the screen will unfortunately
only plot four points at the corners of
the screen. That's because I left out
the incremental plot mode introduction
number, 242, which should be inserted
just after the 12,2,0,0 in the string
of bytes which the program used. In
addition, there will now be 14 bytes in
the string instead of 13, and so the
counter must be initialized to 14 (=0EH)
at address 8203H.

The Status Flags

Besides the normal 8080 registers
(Accumulator, B, C, etc.), there is an
eight bit group of Status Flags, each
of which can be set (or 'omn', =1) or
reset (or 'off', =0), according to the
operations of certain instructions., Al-
though the flag register is eight bits

wide, there are only five flags; the
other three bits are unused, The five
flags are the Sign, Zero, Auxiliary
Carry, Parity, and Carry Flags. Their

s saes (<5] [o] [¢]

settings are often used automatically
by other instructions. For example, the
DCR <reg> instruction which we examined
last time will affect all the flags
except the Carry flag. Probably the most
useful of the flags it affects is the
Zero flag, which will be set if the
result of DCR <reg> is zero, and reset
otherwise. Then a conditional instruc-
tion such as JNZ <addr> (Jump 1if Not

Zero) will automatically test the status
of the Zero flag. Thus, the sequence

DCR <reg>
JNZ <address>

is a very common one in 8080 programming,
There are other conditional jump instruc-

tions, each of which tests the status
of some flag:
Hex Instruction Meaning
DA JC <address> Jump if carry (carry flag=l)
FA JM <address> Jump if minus (sign flag=l)
D2 JNC <address> Jump if no carry (carry flag=0)
C2 JNZ <address> Jump if not zero (zero flag={)
F2 JP <address> Jump if plus (sign flag=9)
EA JPE <address> Jump if parity even (parity flag=l)
E2 JPO <address> Jump if parity odd (parity flag=8)
CA J7 <address> Jump if zero (zero flag=l)

In the previous installment we made use
of the CALL instruction. The CALL 1is
really a jump-to-subroutine instruc-
tion. You might expect, then, that there
would be a set of conditional jump-to-
subroutine instructions. And you would
be right:

fex Instruction Meaning

DC CC <address> Call if carry (carry flag=l)

FC MM <address> Call if minus (sign flag=l)

D4 NC <address»> Call if no carry (carry flag=0)

C4 (NZ <address> Call if not zero (zero flag=0)

F4 CP <address> Call if plus (sign flag=d)

EC CPE <address> Call if parity even (parity flag=l)

E4 CPO <address> Call if parity odd (parity flag=#)

cC Cz <address> Call if zero (zero flag=l)
Finally, there are corresponding RET

(return from subroutine) instructions
which are executed only if a flag is of
a certain value:

)
:

E@E%%%%%E

Meaning
Return i
Return if
Return if
Return if
Return if
Return if
Return if
Return if

carry (carry flag=l)

minus (sign flag=l)

no carry (carry flag=d)
not zero (zero flag=#)
plus (sign flag=@)

parity even (parity flag=l)
parity odd (parity flag=#)
zero (zero flag=l)

F8
DO
CcB
Fo
E8
ED

19

Notice that if a flag has been
affected (set or reset) by some instruc-—
tion, it will retain that value until
and unless some other instruction 1is
executed which affects it. For example,
the INX <reg pair> (increment a register
pair) instruction affects none of the
flags. So this sequence:

DCR C
INX H

INX H
JNZ <address>

would have exactly the same effect as

INK
INK
DCR
JINZ

AOQmT

address>

The Compare Instruction

The contents of the Accumulator may
be compared to the contents of another
register by means of the CMP <reg>
instruction. The CMP <reg> instruction
will not change the contents of either
the Accumulator or the other register,
but it will affect the statuses of all
the flags. However, we will usually be
concerned with only two of them: the
Zero flag and the Carry flag. The CMP
<reg> instruction will set the Zero flag
only if the two numbers (the contents
of the two registers) are equal. Other-
wise, the Zero flag will be reset, Thus,
a typical loop structure which we used
last time,

DR C

;Is C=0?
JNZ <address> ;Not Yet.
. ;Yes.

could alternatively be re-coded imn this
rather cumbersome form:

MVI A,0 ;Accumulator = 4.
DCR C ;Decrement counter.
P C ;Is C=Accumulator (=8)?
JNZ <address> ;Not yet.

;Yes.

« o e A

20

Obviously, such a program,
workable, is not very clever.
a clever use of CMP:

P A
This instruction compares register A to
itself. Thus, the Zero flag is necessar-—
ily set, since A is necessarily equal
to A. This might be a useful way of
setting the Zero flag unconditionally--—
in case you ever need to do that.

Not only can the contents of a
register be compared to A, but a byte
of immediate data may also be compared
to A. Remember that MOV A,<reg> will
move (i.e., copy) the contents of <reg>
into the Accumulator, whereas MVI A,
<num> will load the Accumulator with
the number specified, which is called
a byte of immediate data. Similarly,
the instruction CPI <num> will compare
<num> to the contents of the Accumula-
tor. So we could write the loop structure
above in still another (but equally
cumbersome) way:

although
Here 1is

DCR C ;Decrement counter.
MW A,C :Get counter value into A.
CPI 9 :Is it =67
JNZ <address> ;Not yet.
;Yes.

The CMP and CPI instructions affect
the Zero flag. But they affect another
flag as well, the Carry flag. The Carry
flag is used for many purposes, and many
instruction affect it. Just why and how
the Carry flag is affected by the compare
instructions is a more involved topic
than we have space for here. But we can
note one rule of thumb for making use
of the result: if the contents of the
register (or the byte of immediate data)
being compared to the contents of the
Accumulator are greater than the con-
tents of the Accumulator, then the Carry
flag is set (i.e., =1); otherwise the
Carry flag is reset (=0). Suppose, for
example, that the Accumulator contains
O0AH (=10 decimal):

Accum. Instruction Carry Flaj

BAH CPI 9 B {(no carvv)
BAH CPI @AH @ (no carry)
@AH CPI ©@BH 1 (carry)

Thus, the instruction CPI <num> (or CMP
<reg>) can be interpreted as a test for
greater than: is <num> greater than the
contents of the Accumulator? (Or, is
the number in <reg> greater than the
contents of the Accumulator?) If so,
the Carry flag is set. If not, then
there is no carry. There is no instruc-
tion which tests for a less tham rela-
tion, although we can do the same thing
by a series of conditional jumps. For
example:

P B ;Canpare contents of B

; with contents of A.
JC <address> ;Jump if B>A.
JzZ <address> ;Jump if B=A.
;At this point we know that B<A.

Another Way to Put
Stuff Onto the Screen

In the last installment we developed
a handy way of putting a lot of informa-
tion on the screen. We did this by
constructing a loop. Here it is again:

MVvI C,0DH ;Put count of bytes into C.

LXI H,9008H ;HL point to start of bytes,
LOOP: MOV AM ;Get a byte.

CALL 33H ; 'Plot' it.

INX H ;Point to next byte.

DCR C ;Done with all bytes?

JNZ LOQOP ;Not yet.

. ;Yes, All Done.

Notice that I have taken the liberty of
calling the address in the conditional
jump "LOQOP". If the MVI C,0DH imnstruc-
tion is at 8200H, then JNZ LOOP would
translate as JNZ 8205H. But I don't want
to have to figure out all those addresses
each time I give you an example program,
so I'll just label a certain spot in
the program and then you'll know what
I mean by JMP LABEL, or JNC LABEL, and
so on. This is the convenience that an
assembler allows you. (The MLDP does
not.) When you write something like
"LOOP:" out to the left (always followed
by a colon), the assembler understands
that it means whatever address that is.
Then, when you write something like JNZ

LOOP, it will translate "LOOP" into
whatever address the label "LOOP:" was
at, You can have as many labels as you
wish, but no two labels may be identical.

Anyway (I got off the track), by
using the compare instruction we can
now generalize things a bit. Notice
that, in order for the program above to
operate properly, you first have to load
the C register (or whatever register
you use for the counter) with the number
of bytes in the string. But suppose you
don't know (or are too lazy to count)
how many bytes there are? In that case,
you specify that a certain number will
represent the termination byte——it will
indicate the end of the string. For
example, let's pick the number 239 to
represent the end of the string of bytes.
Now our program doesn't have to know
how many bytes to print--it will just

keep CALLing 33H until it finds 239,
Thus:

LXI H,9000H ;HL point to start of string,
LOOP: MOV A,M ;Get a byte.

CPI 239 ;=239 (terminal byte)?

JZ EXIT ;Yes., Jump out of loop.

CALL 33H ;No. 'Plot' the byte.

INX H ;Point to next byte.

JMP LOOP ;Back for more.
EXIT: .

The data at address 9000H will be a
series of numbers to be plotted (just
as in BASIC's DATA statement), and will
end with the number 239. The disadvan-
tage of this scheme, however, is that
you cannot PLOT 239. Of course, if you
wanted, for some reason, to plot 239,
then you could pick some other number
to represent the terminal byte. Zero,
perhaps:

LXI H,9088H ;HL point to start of data.
LOOP: MOV AM ;Get a byte.
CPI 0 ;Is it =@ (terminal byte)?
Jz EXIT ;Yes. Jump out of loop.
CALL 33H ;No. 'Plot' the byte.
INX H ;Point to next byte.
JMP LOOP ;Back for more.
EXIT: .

But in this case you couldn't plot a
zero.,

21

In BASIC, the PLOT statement handles
not only graphics (point plot, bar
graphs, etc.), but also letters and
digits, You need an ASCII table to tell
you what number represents what charac-
ter. (An ASCII table is provided for
you in your Programming Manual. There
is also one included with the Machine
Language Debug Package Manual.) Thus,
PLOT 65 is the same as PRINT "A". And
s0

MVI A,65
CALL 33H

;Put decimal €5 into A,
;Print an 'A'.

will be the assembly language equiva-
lent. Since the letters, digits, punc-
tuation marks and special characters
printed on the screen range from ASCII
32 through 127, a number out of that
range, such as 239, can be used as a
terminal byte for a string of printable
characters. It so happens that there is
already such a routine in your compu-
ter's ROM, and it expects 239 as the
terminal byte (which is why I chose it
for my example). Get out your MLDP
program and examine the routine which
starts at address 33F4H (for V6.78
machines; 182AH for V8.79 and V9.80).
Let's name this routine OSTR (for Out
STRing). It is easy to use. Just set up
HL to point to the first byte of the
string of numbers to be plotted and then
CALL OSTR. Thus,

LXI H,9000H
CALL OSTR

If you have stored these bytes at 9000H,

Contents
Address (hex) (decimal)

9000 49 73
9891 54 84
9902 20 32
9393 57 87
9004 4F 79
90905 52 82
9906 4C 76
9397 53 83
9308 21 33
9009 ac 13
9g0A BA 18
990B EF 239

then the result will be
IT WORKS!

22

Try the program using the MLDP. (Remem-
ber to set a BREAKPOINT after the CALL
instruction so that the program will
stop and transfer control back to the
MLDP.)

CALL amd RETurm

We've had enough experience now with
the CALL instruction to feel comfortable
using it. But what does it do? It does
the very same thing as the JMP instruc-
tion, but with one clever addition: the
address of the next instruction after
the CALL will be saved in a reserved
area of memory called the stack. The
subroutine which is CALLed will be able
to return to the part of the program
which CALLed it by using the RET instruc-
tion, That instruction, too, does the
same thing as a JMP with a clever
addition., Unlike JMP or CALL, RET does
not specify an address to return to.
How does it know where to go? Simple:
it merely jumps to the address contained
in the stack area. Let's look at an
example.

ADRESS CONTENTS INSTRUCTION

8500 21 IXI H,70004
8501 00

8502 99

8503 OE MVI C,40H
8504 40

8505 3E MVI A,20H
8506 20

8507 6CcD CALL 8832H
8508 32

8509 88

850A 78 MV A,B
8832 77 MOV M,A
8833 23 INX H
8834 gD DR C
8835 6C2 JNZ 8832H
8836 32

8837 88

8838 aco RET

This little program has the effect of
storing 20H (=32 decimal) at 40H (=64
decimal) memory locations begining at
address 7000H. When the CALL 8832H
instruction is encountered at address
8507H, the address of the instruction
following the CALL 8832H is stored "on
the stack" (as they say). That address
is 850AH. Then a jump is made to address

8832H where the program continues. It
loops around until the contents of the
C register become zero, and then it
RETurns; that is, a jump is made to the
address contained on the stack, namely,
850AH. Pretty neat, eh?

The Stack and its Pointer

The stack itself is merely a desig-
nated section of memory. The programmer
may designate which section of memory
is to be used as the stack area. The
8080 has a number of instructions which,
either explicitly or implicitly, store
or retrieve data in that area. The CALL
and RET instructions, for examples (plus
all their conditional variations, such
as CNZ, CC, RZ, etc.) make implicit use
of the stack. On the other hand, some
instructions, such as PUSH <reg pair>
and POP <reg pair>, which I'll discuss
in a moment, make explicit use of the
stack.

The stack may hold lots of data at
once: it is not limited to storing only

one address (or, more generally, two
bytes). The stack 1is sometimes more
descriptively <called a ‘"push down

stack", or sometimes a "first—in, last-
out" stack., The common analogy is a
stack of plates in a cafeteria: the
cafeteria staff adds a clean plate to
the stack, which sinks down a bit on a
spring loaded holder. A customer comes
along and takes a plate (the top plate,
please; don't be difficult), and the
whole stack rises up a bit. Just how
many plates you can put on the stack
depends on the size of the holder. And
just how many plates can be taken off
the stack depends on how many plates
are on it. The nature of the physical
universe determines which plate is the
top one.

The analogy is not bad, but don't
get carried away by it. The computer's
stack doesn't move at all. Rather, there
is a pointer to the most recent addition

to it. And instead of rising up, like
the stack of plates, the computer's
stack grows downwards (where "down"
means toward lower addresses; so you

can't make the stack grow upwards by

turning your machine upside down). More
accurately, the stack pointer is adjust-

- ed downward when a new addition to the

stack is made, and it is adjusted upward

when something is retrieved from the
stack.

Now I'm going to confuse you. I have
been writing programs (such as the
example above) downwards toward the

bottom of the page; but the addresses
increase--they go upwards. That's quite
ordinary: you do the same when writing
a BASIC program:

18 REM

20 A=A+1
30

But now I want to illustrate a downward
growing stack, and I am tempted to make
the lower addresses actually be lower
on the printed page, like this:

9327

9326
9325

But I won't do that. So I'm going to
illustrate a downward growing stack by
a list of upward growing addresses which
go downward on the printed page. Got
that? Nevermind. You would probably have
been better off had I not mentioned this
at all, Just remember that up is down
and down is up, and that there is a
gross equivocation going on. [Ed note:
At this point the author succumbed to
a fit of conversion hysteria and had to
be locked up for two weeks inside a mass
storage drum filled with octal notation.
Fortunately, he recovered just before
this month's deadline and was able to
finish this article.]

Back to the stack pointer. Only two
bytes (which could represent data or an
address)--no more, no less—-are put onto
or taken off the stack during a stack
operation. That is, although the stack
area might be as big as you please, the
operation of adding something to or
retrieving something from the stack
always involves exactly two bytes. One
of the 8080's registers is called the
Stack Poimnter (SP). It is a two byte
register which always contains the ad-

23

dress of the most recent two byte
addition to the stack. Suppose, for
example, that the stack begins at 9327H
and grows down from there:

Stack Pointer Address Contents

9324
9325
9326
9327

9327

L]

If a CALL instruction is encountered in
a program, the address of the mnext
instruction is PUSHed onto the stack,
and the stack pointer is adjusted down
by two bytes. In the example program
given earlier, the CALL 8832H would have
this effect: decrement the SP; store
the high byte of the address of the next
instruction after the CALL in the memory
location addressed by the SP; decrement
the SP again; store the low byte of that
next instruction in the memory location
pointed to by the SP; then jump to the
address given in the CALL instruction.

Stack Pointer Address Contents

9324 X
9325 9325 2a
9326 85
9327 X

The RET instruction retrieves {(POPs) an
address from the stack: get the low byte
from the memory location addressed by
SP; increment the SP; get the high byte;
increment the SP; jump to the address
so retrieved.

Stack Pointer Address Contents

9324 X
9327 9325 2A
9326 85
9327 X

Notice that the contents of the stack
are not changed by the RET instruction,
Rather, the SP is merely repositioned,
i.e,, points to a new address,

PUSH and POP

Explicit (as opposed to implicit)
manipulation of the stack pointer and
the stack's contents is possible with

24

some of the 8080's instructions. The
two most common are PUSH <reg pair> and
POP <reg pair>. During a PUSH instruc-
tion the stack pointer is adjusted down
two bytes and the two byte register pair

is copied onto the stack. The contents
of the register pair are not changed.
During a POP operation, the two bytes
on the stack are copied into the speci-
fied register pair and the SP is adjusted
up two bytes. Thus,

LXI H,2395H
FUSH H

has the effect of storing 2395H on the
stack and adjusting the SP downward two
bytes. And

POP H
loads the register pair HL with the two
bytes on the stack and adjusts the stack
pointer back up two bytes. Notice that
the PUSH and POP instructions don't care
what is in a register pair or on the
stack, Moreover, there is no record kept
about where the information on the stack
came from. Thus,

LXI H,2395H

PUSH H
POP B

will (1) load HL with 2395H, (2) copy
the contents of HL onto the stack and
adjust SP down, and then (3) copy the
contents of the stack into BC and adjust
SP back up. The final result is that SP
will be where it was to start with and
both HL and BC will contain 2395H. If
you want to get two bytes off the stack
and still keep them on the stack, then
POP <reqg. pair>
PUSH <reg. pair>
can be used.

One of the main functions of PUSH
and POP 1is the temporary saving of
register contents. If you want to make
use of DE, for example, but you also do
not want to lose what's presently there,
then here's how to do it:

PUSH D ;Save DE on stack.
blah

blah

blah

POP D ;Retrieve DE.

Quite often a subroutine will make
extensive use of the registers, and in
order to avoid destroying important data
being held in those registers, the
subroutine might save some or all the
registers on the stack and retrieve them
just before RETurning:

SBROUT: PUSH PSW ;Save all registers.
PUSH B

PUSH D

PUSH H

blah sblah

blah
blah
POP
POP
POP
POP

sRestore all registers.

QWUE

(The PSW, remember, is the one byte
Flags register along with the Accumula-
tor.) Notice that the registers must be
restored in the opposite order they were
saved, otherwise the contents of some
of the registers would be interchanged.
(Sometimes that is done on purpose.)
Notice also that the number of POPs must
equal the number of PUSHes. Why? Because

when the subroutine is CALLed, a return
address 1s automatically PUSHed onto
the stack. Then the subroutine PUSHes
some registers onto the stack. In order
to get that return address back again,

all those two byte additions to the
stack must be cleared away first.
(That's why we call it a first-in

last-out stack.) If you POP too few, or
POP too many, what you get as the return
address with the RET instruction might
be very surprising.

POP QUIZ: What will this series of
instructions do?

IXI H,8A94H
PUSH H
RET

Answer: It will have the same effect as
JMP 8A94H.

NEXT TIME: Manipulating the stack point-
er; more ways of getting data to and
from memory; addition and subtraction;
getting data from the keyboard. @

8 K

RAM

BOARD

(For V6.78 Compucolors only. V8.79 available soon.)

This 8K of additional RAM

zpace unused by your Compucolor and available for

is addressed at 4000H-5FFFH,

the

PROM. Now you

can add additional RAM instead, allowing you to increase the maximum
RAM of your machine to 40K. Installation is easy, requiring a small

modification to the logic board.
Computers, Inc.

It is compatible with the Frepost
Bank Select ROM Board (see notice in this issue).

US$65.00 plus $2.50 postage and handling

Tom Devlin

3809 Airport Road

Waterford, MI

For more information or a copy of the installation
Also see the article in the next Colorcue.

send a SASE.

48095

instructions,

25

26

TO YOUR 16K COMPUCOLOR 11 (V6.78, v8.79 & 3621)

for

onl Yy fB 138 (uss

Completely assembled and tested.

% No so

® Full

ldering required. Just plug in.

installation instructions included.

® A1]l RAM chips are in sockets (8).

® Spare

RAM CHIP included.

90 Day warranty.

% Price

PP

includes air mail costs. (Aust.=$120, Canada =$158)

PROGRAM PACKAGE INSTALLERS,
8 Hitlcrest Drive,
DARLINGTON,

WESTERN AUSTRALIA 6070

TO YOUR COMPUCOLOR 11 (V6.78, v8.79 & 3621)

for only $40 (us,

Completely assemblied and tested.

No soldering required. Just plug in.

Full
Both
Switc
90 Da

Price

PP

installation instructions included.

2708 EPROMS are in sockets.

hable between Lower case and graphics. (switch incl.)
y warranty.

includes air mail costs. {(Aust.=$36, Canada=5$47)

PROGRAM PACKAGE INSTALLERS,
8 Hillcrest Drive,

DARLINGTON,
WESTERN AUSTRALIA 6070

Back Issues Sale

Back issues of Colorcue are an excellent source of information about
Compucolor computers, ISC computers, and programming in general. Inter-
views, interesting articles, and programs are all there with a touch of
history.

The list below includes every Colorcue ever published. If it's not on the
list, then there wasn't one.

RETROVIEW: Vol. 3, #1 (Dec 79/Jan 80) includes: an interview with Bill
Greene; Compucolor-teletype interface; user group hotline; introduction
to the Screen Editor; PEEKing at BASIC programs; talking to other computers;
making programs compatible with V6.78 and V7.89 software; software
modifications.

MULTI-ISSUES at $3.50 each

__ Oct, Nov, Dec 1978 __ Apr, May/June 1979

___ Jan, Feb, Mar 1979 __ Aug, Sept/Oct, Nov 1979

INDIVIDUAL ISSUES at $1.50 each

_ Dec 1979/Jan 1980 ___ Feb 1980 ___ Mar 1980

___ Apr 1980 ___ May 1980 __ Jun/Jul 1980

INDIVIDUAL ISSUES at $2.50 each
___ Dec 1980/Jan 1981 ___Aug/Sep 1981 ___ Oct/Nov 1981

___Dec 1981/Jan 1982

POSTAGE
US and Canada -- First Class postage included.
Europe, S. America ~- add $1.00 per item for air, or
$.40 per item for surface.
Asia, Africa, Middle East =-- add $1.40 per item for air, or
$.60 per item for surface.

DISCOUNT
For orders of 10 or more items, subtract 257 from

total after postage.

ORDER FROM: Colorcue
Editorial Offices
161 Brookside Dr.
Rochester, NY 14618

Colorcue

Editorial Offices

161 Brookside Dr.
Rochester, NY 14618

BULK RATE
U.S. POSTAGE

PAID

Rochester N. v.
Permit No. 415

Address Correction Requested

An m Publication

Colorcue

Editors:
A Bi-monthly Publication by and for Ben Barlow
Intecolor and Compucolor Users David B. Suits

. Compuserve: 70045,1062
April/May, 1982
Volume 4, Number 5

3 Editors' Notes

5 8K RAM Board for the Compucolor II, by Tom Devlin
Expand your machine to 48K

12 Classified Ads

13 In and Out of the Compucolor II, by Jane Devlin
How to take the back off--and put it on again

17 Combine Record Documentation with Record Access,
by Alan D. Matzger

Improve your random file routines

18 About Your Subscription
Keep COLORCUE alive!

19 Assembly Language Programming, by David B. Suits
Part V: Creating an INPUT routine

Advertisers: You will find our advertising policies attractive. Write for
details.

Authors: This is a user-oriented and supported publication. Your arti-
cles/tips/hints are required to make it go. Send your articles or write
for information.

Colorcue is published bi-monthly by Intelligent Systems Corporation, with
editorial offices in Rochester, New York. Editorial and subscription
correspondence should be addressed to the Editors, Colorcue, 161 Brookside
Dr., Rochester, NY 14618. Product related correspondence should be
addressed to ISC, 225 Technology Park, Norcross, GA 30092, ATIN: Susan
Sheridan. Opinions expressed in by~line articles are not necessarily those
of the editors or of ISC. Hardware/software items are checked to the best
of our abilities but are NOT guaranteed.

ng

Editors’
Notes

Aboard a Proud Ship

Some Compucolor/Intecolor owners,
for various reasons, have abandoned
their first machine and have struck
up friendships with the Atari 800 or
Apple II microcomputers. (I have yet
to hear of an ISC computer owner
switching to TRS-80, or even to the
Color Computer.) One may wonder about
the wisdom of such a switch: what
those other machines offer that the
Compucolor/Intecolor does not is, to
my mind, so miniscule as to not make
up for their serious deficiencies,
not the least of which is their little
toy keyboards. And I suspect that the
greater resolution avaiiable for graph-
ics on the Apple II 1is hardly a
sufficient motive for discarding the
otherwise superior display which the
ISC machines have. Nor is the 6502
microprocessor, which the Atari and
Apple II computers use, a step up from
the old klunker 8080.

No, it 1is not, I suspect, the
hardware which entices an ISC computer
owner to abandon ship; it is, rather,
the wealth of independent software
and hardware vendors who flood the
market with unimaginably diverse pro-
ducts for use with the Atari and Apple
IT computers. And if you're consider—
ing joining the ranks of the produc-
ers—sellers, the market for Atari and
Apple | II software 1is still very
strong. How can a budding author hope
to make that kind of money in the
restricted Compucolor/Intecolor mar-—
ket?

ISC fans have been tempted away
even wmore by the recent introduction
of the IBM Peysona. Cowputer., I admit
that the PC appears to be a very fine
machine. But does 1t really vepresent
very wmuch of a step up from the
Compucclor/intecclior? Sure, there's
an 8088, but it grinds along at a
blindingly slow pace. It 1s 1nstruc~
tive to read Vol I, No. 1 of PC
Magazine, a new publication dedicated
to the IBM PC. Its editor, Jim Edlin,

is pictured with two computers: the
new IBM PC is in the background, and
in the foreground is a ... a Compucolor
II! "I have", Jim says, "what I believe
was the best personal computer of the
pre-IBM era, though you've probably
never heard of it. It's called a
Compucolor II...." After expressing
some doubts about the PC in its present
form, Edlin says, "I'm not quite ready
to put my Compucolor II away. But I
can see it won't be long." He antici-
pates an evolution of the IBM PC, by
independent vendors if not by IBM
itself.

Still and all, I wonder 1if it
isn't mere hype to talk about "the
pre—~IBM era'", as though the IBM PC is
really a significant advance. For my
own part, I am not at all interested
in the new machines which—-good as
they surely are-—~offer not very much
more than popularity over the Compu-
color II. I will not be ready to put
away my Compucolor II until I finish
the design and counstruction of my own
"step up". Don't hold your breath; it
will be a 68000~based high resolution
color graphics system. The sheer size
of the thing boggles my mind: the
display refresh memory alone will
occupy 153K bytes.

No, it will be quite some time
before I find a better machine to move
up to. In the meantime, my Compucolor
IT, for all its foibles and follies,
does me right proud every time.

-=DBS

New Publication

The U.K. Compucolor Users' Group
has launched publication of their
newsletter, CompUKolour. April was
their first issue. It was 40 pages,
including: Bill Donkin's lengthy dis-
cussion of how the directory and BASIC
programs {or ‘“programmes", if you
prefer) are stored on digk; aotes on
programs in the group's library; notes
on disk drive speed and alignment
ad justments; an index to Colorcue from
Volume 1 through Volume 3; and Dale
Dewey's article on the TMS 5501. The
Secretary/Librarian is Bill Donkin.
Contact the group at 19 Harwood Ave-
nue, Bromley, Kent, BRl 3DX, England.
&

RENAISSANCE MARKETINGE G ANOUNCES
LOW COST BUSINESS PROGRAMS

FOR YOUR COMPUCOLOR MODEL 4, MODEL 5
* GENERAL LEDGER { 16KR,32K) % 385.835

(1) ~ ACCOUNT PROGRAM | DISPLAY ACCOUNT DATA . LIST ALL ACCOUNTS , ADD
ACCOUNT , DELETE ACCOUNT , CHANGE ACCOUNT DATA.

{ 2) - JOURNAL PROGRAM . ENTER JOURNAL DATA . DISPLAY JOURNAL DATA BY ENTRY #.
CHANGE ENTRY DATA.
3 - ??GDESPRDGRAM . DISPLAY OR PRINT JOURNAL ENTRY PROOF SHEETS WITH
TLES.
(4) - POST PROGRAM . AFPLIES JOURNAL ENTRIES TO ACCOUNTS.
(5} - REPORT PROGRAM . PRINTYT BALANCE SHEET , PRINT INCOME STATEMENT WITH

TITLES.

INCLUDES [EASY TO UNDERSTAND INSTRUCTIONS. SAMPLE ACCOUNTS. SAMPLE ENTRY
FORMS. SAMPLE PRINTOUTS.

INVENTORY CONTROL (1GK.32K)} % 34.35

GIVES THE FOLLOWING REPORTS.

DISPLAYS ITEM DATA BY GUANTITY

PRINT OR DISPLAY ALL ITEMS ON FILE.
DISPLAY ITEM DATA BY CLASS CODE.
PRINT GR DISPLAY ITEM DATA BY VENDOR.
UPDATING SECTION

(A} - ADD NEMW ITEM

(B) - UPDATE ITEM QUANTITY

(€ 1 - CHANGE ITEM DATA

{ D) - DELETE ITEM

(8 DISPLAY ITEM DATA BY ITEM #.

PROVIDES GQUANTITIES AND DATA FOR 730 ITEMS DR MODELS.

)
)
)
)

s
N Lard e

[A |

INVOICE CONTROL (1BK., 32K) % 49.95
INVDICE CONTROL PROGRAM PROVIDES DATA FOR 768 INVOICES PER DISK PER SIDE.
GIVES ON A DAILY BASIS MONTH-TO-DATE. YEAR-TO-DATE INVOICE INFORMATION ON TOTAL

235E3é09?$0UNT5 RECEIVABLE. AMOUNT PAID, TAX DUE, FREIGHT CHARGES. INVOICE COST

DISPLAYS = LIST ALL INVDICES. SEARCH BY CUSTOMER. INVOICE DATA, SEARCH BY P.O.
#, LIST OF TOTALS (TOTAL SALES, SALES TAX. FREIGHT AND COST 3.
PRINTS = ALL INVDICE DATA (MONTHLY, YEARLY). A/R DATA (BY CUSTOMER, OR ALL
INVOICES MONTH-TO-DATE., YEAR-TO-DATE), INVQOICE TOTALS (M-T-D. Y-T-D
AMOUNTS PER INVOICE AND TOTALS FOR SALES. TAX. FREIGHT., COST AND

FROFIT).
CALL OR WRITE FOR ADDITIONAL INFO.
OPTIONAL INVOICE PRINTING USES NEBS TRACTOR INYVOICE FORMS........ % 19.85
OPTIONAL INVENTORY CONTROL INTERACTIVE WITH INVOICE PRINTING...... $ 28.05
MAXELL MINI DISK FOR COMPUCOLOR. BOX OF 10% 34.93
3074 OFF ALL COMPUCOLOR CORP. SOFTHWARE IN STOCK. CALL
RENAISSANCE MKT. IN NJ. ADD 3% SALES TAX

7 0. PIERSON RD.
MAPLEWOOD . NJ. 07040
201-762-0385

{1 INVOICE CONTROL % 49.95
[GENERAL LEDGER % 585.85

[1 INVENTORY CONTROL % 34.85
[1 MAXELL DISK BOX BTY. o e

TERMS: PAYMENT WITH ORDER FREIGHT. PREPAID IN USA
* AVAIL. FOR INTERCOLOR MAY. JUNE 1982 TAKING ORDERS NOW.

SK RAM Board
for the Compucolor 11

by Tom Devlin
3849 Airport Road
Waterford, MI 48895

For some time I had been casting
a wistful eye at the 4000- 5FFF "Future
Space" section of the Compucolor II
memory map. ISC left this area open
to give us the option of installing
8K of EPROM for special programs, They
mounted connectors J9 on the logic
board to mate with an EPROM board and
programed PROM UB3 to supply chip
select signals to this board during
memory read cycles. Unfortunately very
little use has been made of this
feature.

My first thought upon discovering
this unused area was that it would be
a great spot for some RAM. This would
be far more flexible than EPROM in
that with RAM the program could be
changed at will or it could be be used
for temporary storage if the applica-
tion required it. One of the nicest
features of placing RAM in this area
would be that BASIC wouldn't know it
existed so you could (ESC)-W without
worring about your utility program.

My search for suitable RAM chips
turned up the TOSHIBA 20i6, a 2K x &8,
low power, static device., Four of
these provided the full 8K needed and
cccupled the same physical space as
the 2716 EPROMS used on the Compucolor
add=-on board.

The only problem was the address
decoding. ISC had intended this area
for EPROM and had made no provision
for accessing the chips during a write
cycle. Rather than replace the UF3
system decoder PROM and the UB3 chip
select PROM, I decided to disconnect
the appropriate outputs of the URB3

PROM and run the Al2-Al5 address lines
through the same J9 connector pins.
This was easy since Al2-Al4 were
already present on pins 11-13 of UB3
and Al5 was available on pin 36 of
the 8080 CPU just a short distance
away. These four lines and the A0-All
lines already present on J9 allowed
access anywhere in the 64K memory
range. While I was mainly interested
in the 4000-5FFF area 1 left the door
open for future expansion into the
screen memory area via pads O thru V
on the board. If all goes well this
will be a part of another Colorcue
article..

At this point I had almost every-
thing needed. The only thing left was
to pick up the active low memory read
(MRD) and write (MWR) strobes., Two
wires from convenient locations on
the logic board to the new RAM board
completed the modifications,

The schematic shows the final
circuit. I decided to make the board
accept single 5 wvolt supply (Intel
type) EPROMS as well as the 2016 RAM
chips. Fach board will accept 8K of
201é RAM or 2716 EPROM or 16K of 2732
EPROM in two switch selectable 8K
banks. The schematic shows the jumpex
and switch settings for each type of
memory chip. I also made provision
for stacking these cards and selecting
between them with a switch. Jumpers
A-B and C-D allow for easier stacking
by re-routing the MRD and MWR signals
from the lowest (bottom-most) board
to the wupper c¢ne through connector
pins 13 and 14. If vyou use this

option, you MUST cut off pins 13 and
14 on the bottom of the lower board
or serious damage to the computer may
result because the logic board uses
these pins for +12 and ~5 volt power.

Address decoding and chip selec~
tion are handled by IC-1 (74LS138),
a three line binary to 1 of 8 decoder.
Assuming that IC-1 1is enabled by a
logic zero (ground) through one of
the two diodes, one of its outputs
will be low through a 2K or 4K block
within the 4000-7FFF range. The size
of the block has to match the size of
the memory chip installed and is set
by jumpering M-L or M-N. (If IC-l is
not enabled, or we are outside the
4000-7FFF range, all eight outputs
will remain high.)

Pin 18 of any of the three types
of memory chips is the active low chip
enable (CE). If this pin is pulled
low, the chip "wakes up" and awaits
further orders. If pin 20, the active
low output enable (OE), is then pulled
low by MRD, the memory chip will output
a byte onto the data bus. In the case
of the 2016 RAM chip if pin 21, the
active low write input (W), is pulled
low by the MWR strobe, the enabled
chip will take the byte currently on
the bus and store it internally. If
CE goes low, but neither the MRD or
MWR follow (as might happen during an
I/0 cycle) the enabled chip will do
nothing.

Pin 21 has other functions on the
EPROM memories. The 2716 uses it for
the programming voltage (VPP). For
normal operation this pin must be held
at +5 volts, The 2732 uses pin 21 for
the All address line to double the
storage capacity to 4k bvtes.

Resistors Rl and R2 simply pull
the IC-1 inputs to a logic omne (+5
volts) when the switches are open.
The 1N270 diodes specified are german-
ium devices chosen for their lower
forward voltage drop compared to the
more common IN914 silicon types.
1N914s should work fine with the
switches (in fact D2 is not needed if
you use switches for control) but the
lower drop of the 1IN270s will give
some extra margin for possible future
card selection under software control.
The capacitors are for power supply
by~passing.

6

Installation on the V6.78 units is
straight-forward. Just follow the
REV.3 instructions. The situation is
a little more complex with the V8.79
types: the REV.3 logic board was
changed to a newer REV.4 board part
way through production. Also, the
initial run of V8.79 UA5 FCS ROMs must
have had a bug because Compucolor
patched around one section of this
ROM to an EPROM located on the add-on
EPROM board (the only time this board
was ever used) and changed the UB3
PROM to reflect the change. If you
have one of these units with the add-on
board installed you will have to
update to the later UA5 ROM (PN 100695)
and replace the UB3 PROM so you can
remove and discard this EPROM board
and use the J9 connectors for the RAM
card. I can supply a preprogrammed
2532 EPROM to replace the UA5 ROM and
the proper UB3 PROM if needed.

The REV.4 logic board used in the
final units is mostly the same as the
REV.3 board (a few changes to the
RS232 circuitry and the handshake mod
added), but for some reason ISC
switched from the 16 pin UB3 PROM used
on the older boards to a 20 pin part.
I have been unable to find a REV.4
board to make installation drawings
from, If anyone can supply a good
photograph or drawing of this board
I will try to get the information into
a future Colorcue.

If you elect to wire wrap a RAM
card, the PC layouts and assembly
drawing should, with the schematic,
give you all the information needed,.
The 14 pin header assemblies are a
little tough to find, but you can make
your own by cutting a 28 pin wire wrap
socket in half lengthwise. Just be
sure that the socket you pick has
large enough holes to allow you to
stack another board on top. Also, on
some sockets the pins are offset
slightly from the holes, If yours are
like this, make sure you keep the hole
center—-to-center spacing at 3.9" to
make stacking easier. (The Compucolor
J9 spacing varies a little from unit
to unit, The .65" pins on the headers
we use are long enough to flex slightly
to make up for this. I would recommend
using this length.)

If you do decide to roll your own,

4) Al r——————————
1) Ao)
(3 A9 >
&y A8
Z7 A7 »
(2z) AG) y
S AS
(24) A4
23y A3
@z) A2 >
2 Al
(20) A -9 4
AT795432/EJI) 5T71,54Jz_11_21__'q 5T7as¢.s t {24228 2| Ne|s|al |zl lzafze]o
ety + 3V >—I—'I9] AT AT AL A3 AR AS A A7 AS A7 AIG 26 AT AZ AT 44 A5 AL AT BB AT| R, [T AT AS A AS 4L 7 A5 A5 AD Re 47 AL AS MEAS Al MY 25 49 A0
+ +
. el cz 3 - . -
EXY] Px 5,,, 5 o u/ L; " o d/, -
TANT Cee vhe L |# P e V] _we | wr_
¢/5) GND - o ps oo o8 D¢ 25 e prE 40 Bl == |02 2/ 0203 0¢ DS DL D1 an 2L a0 212203 v a5 0 NS Lz o ;¥ 3D BT DI OF AN CE
T sl ula|a|sic] 78] 2 B _ala// R GRRE AL = Slolaa[m|is] x| 2 |78 A LD E AT
7)) OO0 > 4
c2) Dr >
) DZ)
72 L3 >
(o) LO¥)
r8) 25 »r
(c) D6 >
c5) L7)
A 8
3
FIRD O—a— R
MR O—e £o 0=
Loos @0
D C [
HEMORY TVFE JVHPER
COl6 F-E
27/ F >4
2732 > G
MEMORY AP L IMF 0
EO/ ML o7
7 /6 ML
2732 MaN A ¢ =
Ho—/ia 5|45 {JL
NG 7le P
() AR Zls ! -O
243 Patad
€199 A13 Sle 5[z T AR
Cle 99 v i
18 A% % 7L Os
12V S— ey THe——OT
o » ff————— OV
S, B ——< I oﬁV}:_@.‘ Fde2sN 5[5 oV
SA —< J O —*
oz £z
K (31 wenw 2 - x _
) — cxe) 47K SNNTCH A LA SN2 52T LoV 2. FIEST St (XYFETFS /#3) 732 © 1982 by Tom Devlin

NITCH 3 CHED LT EHYND S £ (SXFETSS L4 2732

would you please drop me a line and
tell me how you made out?

Installing the RAM Card
on Rev. 3 Logic Boards

A word of warming. STATIC CHARGES
KILL MOS ICs. Just walking across the
floor can produce enough of an elec-
trical buildup to totally destroy MOS
parts. The RAM chips are Just as
sensitive as other parts of vyour
machine, so remember this warning
whenever you work on your computer.
To avoid this potential problem touch
the metal frame of the disk drive to
neutralize any charge you may have
accumulated. Do this as soon as the
back is off.

(1) Disconect the A.C. power cora
and all connectors from the rear of
the computer,

{2) Remove the back (3 screws top,
1 bottom}. Be careful not to hit the
neck of the CRT during this step.

{(3) Being careful tc mark socket
placement, remove the three cable
connectors and the sixteen pin flat
cable for the disk drive from the left
side of the logic board (bottom cir-
cuit board). Remove the logic board.

(4) Locate and remcve PROM UB3
(828123). (Figure 1A.) Bend pins
1,2,3, and 4 out from the body of the
chip. Make sure that the pins don't
touch each other or anything else when
the chip is replaced in the socket.
If UB3 is not socketed you can cut
these pins off close to the board with
a sharp pair of wire cutters.

{5) Turn the 1logic becard upside
down and locate the socket pins for
UB3. Using four lengths of insulated
jumper wire, make the following connec~
tions (see Figure 2):

() pin 2 to pin 13

() pin 3 to pin 12

() pin 4 to pin 11

() pin 1 to UAZ socket pin 36

(8080, Al5 output).

(6) Turn the logic board rightside
up. Plug the RAM board into connectors
J9. The end with the small parts goes
to the rear (edge card connector end)
of the logic board. Support the logic
board from the bottom to keep it from
flexing during this step.

8

{7) Connect a wire from the MWR
pad on the RAM board to pin 8§ of J&
at the front end of the logic board.
You can connect directly to pin 8 of
the 16K add-on RAM card if you have
it, otherwise use a wire wrap pin.
See Figure 3.

(8) Locate the feed~thru pad shown
in Figure 1. Connect a wire from the
MRD pad on the RAM board to this point.

(9) Double check your work, Pay
close attention to the UB3 and UA2
chips to be sure that you have not
shorted two adjacent pins together
when vou soldered the wires tc them.

{10) Re—-assemble the computer.
Remember to reconnect all of the
cables removed during the disassembly.
The logic board is supported at fne
rear by twe tabs that fit into sl :ts
in the rear cover., Be sure to et
these in place,

With the power switch off recon-
nect the keyboard and power cords,
Take a deep breath and turn the power
on, If the computer does not act
nermally, turn the power off immedi-
ately. Otherwise relax and wait for
the screen to light up.

Problems can be localized by re-
moving the RAM card from the computer.
(You do not have to "unmodify" the
logic board.) If everything then works
normally, you either have a bad RAM
card or else you have connected the
MRD or MWR wires to the wrong places.

If the display "jitters" or the
colors don't quite 1line up don't
panic; you've probably just moved the
horizontal centering control. (The
small trim pot at the left rear edge
of the logic board.,) Re-adjust it with
a small screwdriver, (The display will
move in steps as the control is turned.
Set the control for the best picture
midway between two steps.)

If all is well so far, put a disk into
the drive, enter FCS, and

FCS>SAVE RTEST O-1FFF
to put 8K of fairly random data onto
the disk., Now try to load this data

into the RAM card with

FCS>LOAD RTEST.PRG;01 4000

If you don't get any EMEM error
messages, you are home free!

Software

Some software is already available
for the 4000H-5FFFH area. Quality
Sottware Associates (21 Dersingham
Cr., Thornhill, Ontario, Canada, L3T
4P5) has a greatly expanded version
of 'THE' BASIC EDITOR for use with
the RAM card. It uses the full 8K and
is a joy to work with. If you have
already purchased 'THE' editor, send
them your disk and $6.00 and they will
run you a copy. This program will be
included in all future disks sold.
You can also relocate the Compucolor
MONITOR or MLDP programs using the
MENUs supplied with them. (Line 710
of the MENU program prevents ORGing
below 8200H, so just deleteit.) I have
included a program to reORG version
3.20 of FREDI to 4000H.

The RAM card is compatible with
Frepost Computers' bank switching E-
PROM system. Frepost has instructions
available. If, however, you install
the RAM card and later decide to
install the Frepost system, you will
have to return the logic board to its
original condition before proceeding.

The RAM card may also be purchased
assembled and tested for $65.00 plus
$2.50 postage and handling. (US funds
drawn on a US bank. Make checks payable
to Tom Devlin.) All ICs are socketed,
the printed circuit board is tin-lead
plated epoxy-glass, and all parts are
of high quality. It is covered by a
90 day parts and labor warranty. It
is currently available for all V6.78
Compucolor IIs. Owners of V8.79 units
will have to look inside your machines
before ordering. If your logic board
has a 16 pin UB3 PROM, you have the
same Rev. 3 logic board as in V6.78

/ ™~
é (L ;r/-_/é, A
Z O\] NS /12,36’47.
/‘ : BENT OOT A
/ T2LSO* 4 321 o
A e L3N~ ') 20 Aeor voemL
B2 Si1e3 -
11RO
/ JUMPEF
7 7O 7#/SFPAD .

B
Ol 58228 (o€ 8238) X
UU0OU0UUU0UU0 000U UU
G ol ="
D) A3 -30 FIN BUS

(/7‘ CONNECTOR

l é Figure 1
|

systems. If you also have an EPROM
board with one EPROM on it, you will
have to replace the UA5 masked ROM
and UB3 PROM to let you remove and
discard this EPROM board to free up
the J9 connectors for the RAM card.
We have a UA5 EPROM and UB3 PROM
replacement kit for $15.00 additional
when ordered with the RAM card. V§.79
units with the Rev., 3 logic board and
no EPROM board already have the cor~

LA3

1000000000000

CYNAERENY %

Qo

——

rect UA5 and UB3 chips installed and
are ready for installation of the RAM
card. If your machine has a 20 pin
UB3 PROM, you have a Rev. 4 logic
board. These require no extra parts,
but we have been unable to find a Rev.
4 board to make the installation
drawings from. Perhaps we can make
this information available in a future
article. €&

Figure 2

BOTTOM
OF BOARD

UAZ

9000€000000000000008

/V\:_

=

~O LU

Vv

., J3-5D PIN BUS CONNECTOR

AAlT CARD

10

Figure 3

§omn 18

cpoooooobop0o00D0-

o

O
no

0

o) ©
*%ﬁﬁ?
$4 ‘;]Om

000000
o)
Noa>o p2

oo RI

"o SVRD

)

00000000000000%

}
3
j

V)

o
<° 1000000000003
)
000000000000
00000000000
0 .
{ﬁnnooouooon
O 00000000080
00000000000
-00000000000%
-0 30000000000
—
(0]
b4

O
w
O
H
y
o

© 1982 by Tom Devlin

REM 'REORG' BY TOM DEVLIN 1982

REM PROGRAM TO REORG 'FREDI'. REQUIRES 16K. WORKS FOR
REM V3.20. WILL HAVE TO BE MODIFIED FOR OTHER VERSIONS.
REM RESET TOP OF MEMORY WITH AN <ESC>-W WHEN DONE.

REM MOVE TOP OF MEMORY DOWN
POKE 32940,191:POKE 32941,158:CLEAR 50

PLOT 12,6,2,15

INPUT "“INSERT YOUR BASIC EDITING DISK AND HIT RETURN";AS
PRINT :PRINT "DO YOU HAVE AN <ESC> [P] JUMP TO 4090H?"
INPUT " (ALL V8.79 UNITS DO) ";AS:PRINT

PRINT "THIS WILL TAKE ABOUT TWO MINUTES"

REM GET BOTH VERSIONS INTO 16K AT THE SAME TIME
PLOT 27,4:PRINT "LOAD FRED16.PRG;@1":PLOT 27,27
PLOT 27,4:PRINT "LOAD FRED32.PRG;@1,9ECQ":PLOT 27,27

REM SPOT FCS ERROR VIA CCI CODE
IF (PEEK({33231) AND 7)=1 THEN 190

LO=44928:REM @AF80H, FIRST BYTE 16K VERSON
HI=40640:REM @9ECPH, FIRST BYTE 32K VERSON
RC=16768:REM @4180H, FIRST BYTE RAM CARD VERSION
S7Z=4189:REM @105DH, PROGRAM SIZE

REM MOVE 'FREDI' DOWN, CHANGING HIGH ADDRESS BYTES
FOR I=0 TO SZ
POKE RC+I,PEEK (LO+I)
IF PEEK (HI+I)-PEEK(LO+I)<>64 THEN 180
POKE R(+I,PEEK(LO+I)-110
NEXT

REM SEE IF WE NEED TO USE <ESC> ["]
IF ASC(AS)<>89 THEN 250:REM YES

REM DELETE USER JUMP SETUP (FILL WITH NOPS)

FOR M=16847 TO 16857
POKE M, 0

11

220 NEXT

230 POKE 19521,80:REM CHANGE ("] TO [P] IN SIGN-ON MESSAGE

240 GOTO 260
248

249 REM SET USER JUMP TO 0400@H IF NO <ESC> [P]

250 POKE 16848,0:POKE 16849,64
257

258 REM SET Ur JUMP AT 04000H WHEN RUN
259 REM USING OLD TOP OF MEMORY ADJUST SPACE
260 DATA 62,195,50,0,64,33,15,66,34,1,64,0

2780 FOR M=16864 TO 16875
280 READ D

290 POKE M,D

300 NEXT

308

309 REM CHANGE THE SIGN-ON MESSAGE TO 4000H, COLOR TO CYAN

310 DATA 6,52,48,48,48,72
320 FOR M<19468 TO 19473
330 READ D

340 POKE M,D

350 NEXT

358

359 REM SAVE 'FRED4' TO DISK AND RUN IT. (HIM?)
360 PLOT 27,4:PRINT "SAVE FRED4 4180 165D":PLOT 27,27

370 PLOT 27,4:PRINT "RUN FRED4"

Call for Information

An interesting use of ISC computers was devised by Mr. Shepard of Rochester
(present whereabouts unknown) who marketed the machines with a horse race
handicapping system. His disappearance leaves those owners completely out
of the saddle. If you're one of those owners, Colorcue can serve as an
information exchange for you. We will be happy to publish information (if
someone will provide it for us) or, if you wish, publish names of users
interested in contacting each other. Let us hear from you.

CLASSIFIED ADVERTISING

FOR SALE: Intecolor 3651. New in
original carton. 32K, 5 1/4 inch disk.
Disks (no games). Joystick option.
$2800 (list $3800). George Wilson
(404) 458-1431 (nights).

FOR SALE: Compucolor II, V8.79, 32K,
extended keyboard, modem, manual set,
disks, games, Great condition. $1200
or best offer. Pete Gammon (404)
393-9690.

)

FOR SALE: Compucolor II, V6.78, 16K,
71 key keyboard, manual set, disks,
including assembler, Compuwriter, De-
bug, gauses. Asking $1000. Charles
Lovejoy (800) 225-2465 x1365, weekdays
9-5.

In and Out of the Compucolor 11

by Jane Devlin
3889 Airport Road
Waterford, MI 48095

Will someone explain what I'm
doing, sitting here with a screwdriver
in either hand and the Compucolor
crouched in front of me like a threat-
ening beastie? I'm more at home with
knitting needles, crochet hooks or
quilting blocks, so the idea seems to
be that if I can get into and out of
this computer without major damage to
it, myself, or the immediate environ-
ment, then ANYONE can. Nervous? Who's
nervous? ME! (I wonder if he'll prom-
ise to count to ten if he hears a
scream and a crash? That should give
me a good running start!)

First, clear a space to work (as
I went along, I found it had to be
about three times the size of the
computer to allow the back to swing
out of the way and the logic board to
be pulled free). If you're working on
anything that you'd 1like to keep
scratch-free, cover it with a cotton
sheet or towel, or newspapers. Nothing
synthetic, please! The Compucolor II
has MOS chips in it, and while with
reasonable care there's no danger to
them in taking the unit apart, a stray
static charge might fry them. I'm told
it's a good idea to get all the tools
you'll need together (to just take
the computer apart and put it back
together, all you'll need is one
regular screwdriver and one phillips
head) and then stay put while you're
working, (No fair scuffing your feet
on the carpet first).

Disconnect the AC cord from the
back of the set by grasping the
connector (not the cord!) and wiggling
it up and down while pulling. Find
the screws holding the back on; there
are three phillips heads across the
top and a nut with a screwdriver slot
at the very bottom. This last omne is

at the end of a groove that resembles
the trench in Star Wars and you need
either a long screwdriver so the
handle extends past the back or a lot
of patience. You can tilt the set
forward where it will remain fairly
steady while you remove the bottom
screw (Fig. 1). Remember to put the
screws somewhere where you can find
them again,

Now, before you remove anything
else, note the two tiny green PC board
tabs sticking through the back on
either side of the edge connectors.
These will be important in reassemb-
ling the computer. Tilt the unit back

Figure 1

down on its base and look down the
ventilation slits in the neck cover
(that's the part that sticks out the
farthest). You'll see a small board
attached to the neck of a big, black
glass bottle——the CRT. As you work
the back off in a straight backward
motion, be careful not to put any
pressure on that small board and thus
on the neck of the CRT. As you pull

i3

the back free of those two PC tabs,
there will be a slight jerk as the
logic board drops a little; don't
panic, you didn't break anything. You
now have the back in your hands, but
it is still connected to the computer
by an ‘'umbical cord' of wires. Swing
the back gently to the left and it
will be out of the way without discon-
necting any more wires than necessary.

You can now see the interior of
the computer. To the novice (like me)
it's a confusing jumble of metal
boxes, P.C. board, and wires running
everywhere. To your left as you look
into the set 1s a rectangular metal
box with a cylindrical projection and
a gray ribbon cable running off the
P.C. board attached to the box's left
side (Fig. 2,A). This is the working
end of your disk drive. The big, black,
glass ‘bottle’ in the center is the
CRT, as I mentioned before (Fig.
2,B). Leave it alone. CRTs are capa-
ble of storing jolts that can make
things very uncomfortable. This cme
has a "bleeder' to draim high charges,
but why take chanches? On the far
right (and facing to the right),
partially protected by an aluminum
frame that doubles as a heat sink for
three power transistors (those are
the 1little oval things that vaguely
resemble a streamlined flying saucer),
there is an intriguing becard with all
sorts of pots that seem to beg to be
twitched or tweedled. DON'T-~unless
you like non-working computers, sleep~
less nights and gray hair. This is
the infamous analog board, and it's
awfully easy to blow up, so leave it
alone!

(At this point, it's a good idea
to touch the disk drive case or some
other metal inside the set so you and
the computer will be at the same
electrical potential and thus protect
the circuitry.)

The board sitting on the bottom
of the case with three edge connectors
pointing right at you is the logic
board. This is the one that holds all
the chips that make the computer
compute, and it's here that most
modifications are installed. For the
sake of simplicity, I'm going to refer
to the side with the three edge
connectors as the rear of the board

14

(because it's in the rear of the set)
and the side disappearing into the
recesses under the CRT as the front
of the board.

There are three wired connectors
to the left side and the other end of
the ribbon cable from the disk drive
in a DIP socket just beside them.
These four connectors have to be
disconnected before the board can be
pulled out, but before you start
yanking, take the time to mark the
connectors with masking tape, magic
marker or anything handy so you know
where to put them back. It can save
a lot of hassle -in the long rum if
they're keyed for replacement. (Two
of ours are, and two aren't.) Careful-
ly work the connectors free and pull
the logic board toward you. (Now :see
why I said you would need a lot of
space to work in?)

If you have a 32K machimne, there
will be a funny locking (it's upside
down) small card on long spindley pins
toward the right front quarter of the
logic board. This is the 16K add-on
EAM card and it is placed in two
connector sockets known collectively
as J8., To the right of this area is
another set of widely spaced connector
sockets (J9). If you have an EPROM
board already installed, it will be
in the J9 sockets and will loock about
the same as the 16K RAM card.

The chips have been designated
sequentially from the right rear cor-
ner. The letter designation reads from
right to left across the board and
the numbers from the rear to the fromnt.
Therefore, the chip in the right rear
corner is UAl, and in the front left
corner you will find UGll. It makes
finding chips on the board quite
simple. (But when it comes to the
schematic, it's everyone for them-
selves!)

Now for the fun part-—getting
everything back the way you found it.
If you look at the front edge of the
logic board between J8 and J9, you
will see a small notch in the P.C.
board. This was designed to fit onto
one of the plastic fins molded into
the case just under the CRT. Reconnect
the four connectors, being careful to
get them in the right places, and slip
the board into the case. Don't expect

T D

to be able to see to guide that notch
onto the fin; you can't, and it has
to be done by feel and blind luck.
When it's engaged, the board will not
move sideways. Let the board rest on
the two rubber knobs on the bottom of
the case.

Tilt the computer forward again
and take a deep breath, Getting the
back on has been known to drive people
crazy. I struggled with trying to get
everything aligned for almost ten
minutes before I gave up and asked
for help. Tom made it look easy, but
then he's had a lot of practice. What
I hadn't noticed was that there are
two small wedges on the bottom edge
of the back that have to fit into two
notches in the case. You can sort of

look through the ventilation slits to
keep track of what you're doing. Once
those wedges are engaged, the back
slips easily over the neck and onto
the rim. The two tabs on the logic
board have to be fit into their holes.
As the board is slightly raised when
they are in place, you have to lift
it gently with a pencil or some other
non-conductive object so the back can
slip the final quarter inch into
place. (Don't put too much pressure
on the P.C. board or you may crack
it,) Find where you hid the screws,
tighten them in, replace the line cord
and you're done!

As for me, I have an afgan, two
sweaters and a quilt to finish., @

=

~)

7

\ orRT B

. ,

Ny
i \\

! =
DISK DPIVE (A?7
| Loaic BoarD (b)
OV

‘ ANALOG
/T INL Ny RN 3%4)/20

Figure 2

15

VERSATILE

EASY TO USE

TRACE SET
ECONOMICAL

willey

LENS DESIGN PROGRAMS

FOR THE COMPUCOLOR 11

The optical design aids which we offer now for the COMPUCOLOR have evolved from 20
years of experience in developing lens programs for the IBM 704, 7094, GE 235, 400, 635,
ModComp 11, and HP 1000 computers. Those of you that already have a COMPUCOLOR
know that it is hard to beat in what you get for t{»e money. These programs have been

written to give you the benefit of this Computer Explosion. We currently offer a set of pro-
grams, two for tKe First Order Optics and one for the Rigorous Ray Tracing with spot diagrams.
We plan to offer an ongoing series of programs and updates.

The current programs are written for a COMPUCOLOR with 16K memory and disc. The
programs are provided on disc with a tutorial users manual in a notebook binder. The
manuals are written with the beginner in mind so that a high school student can use them.
The programs are written with the professional in mind so that anyone can do practical
optical evaluation and design with a small investment in the computer and software.

FIRST and EFL ore first order evaluation programs which take the input of the lens descrip-
tion in radii, spacings, and indices and compute the image positions and magnifications

and plot a representation of the optical system on the screen. EFL computes the Front, Back
and Effective Focal Length and shows the nodes on the Screen-plot. Mirrors and Catadioptics
are hondled by all programs,

TRACE is a program to trace rays rigorously through spherical and conic section surfaces with
optional decentrations. The resulting array of rays can be plotted on the screen as a spot
diagrom and listed by coordinates. The size and position of the best focus is computed, and
images of three weighted colors can be evaluated. The inputs and outputs are simple and
straightforward, In an hour of learning, you can be well on your way to constructive lens
evaluation and design.

TRACE SET includes: FIRST, EFL, and TRACE programs Price $250.00 (U.S. dollars)
ENCLOSE check or money order, Corporate Purchase Orders accepted.

Price subject to change without notice.

Wit LEY CORPCRAICN
?0 BOX 670, MELBOURNE, FLCRIDA 32901
PHOKE (305} 727 2046

Combine Record Documentation
with Record Access

by Alan D. Matzger
960 Guerrero St,
San Francisco, CA 94119

Most business applications in-
volve keeping records, updating them
from time to time and generating
reports from them. Such applicatioms
involve several to many programs, each
of which does something with the
fields in a record--reading or modi-
fying or writing them back. A while
ago I found I was getting lost inside
a record, forgetting or confusing
which field was in what location. For
a time I kept a formal, handwritten
list of what was what in there. Things
were a bit better, but lately I've
hit on a method whereby such documen-
tation is incorporated into the body
of a program and is marvelously use-
ful.

Recall the general format for the
GET and PUT statements: PUT file
<,record <,first>>; nexpr, sexpr [byte
count]. I guess I didn't read all that
too carefully at first, because I
thought that all except the "nexpr"
and "sexpr" had to be constants. My
early programs were overflowing with
GET and PUT statements for each and
every field accessed, all with the
appropriate numeric constants,

But one day in a flight of fancy
I played with variables in place of
constants and lo!, they worked splen-
didly. All at once, field access
became a matter of a few subroutines
and lots of DATA statements, And those
data statements, appropriately
REMmed, provided internal documenta-
tion for the byte-by-byte contents of
the reccrd. In what follows the vari-
able FL is the file number used when
the FILE "R” ... opened it; R is the
record number; SB is the starting byte
of the field; AS or A is the receiving

variable for string or number; and L
is the length (byte count) of the
field.

So now the DATA statement contains
the file number (if appropriate), the
starting byte and field length. Thus,

160 DATA 1,1,25:REM NAME
11¢ DATA 1,26,20;REM ADDRESS
120 DATA 1,46,15:REM CITY & STATE

200 DATA 2,5,4;REM AMOUNT OWED
The accessing subroutine might be:

400 READ FL,SB,L:IF L=4 THEN
GET FL,R,SB;A:GOTO 420

410 GET FL,R,SB;AS[L]

420 RETURN

Be careful that none of the string
fields are four bytes long; should
one be, then use a different value
for L to denote a numeric field. (Then
be sure to remember that the actual
field length is indeed four so that
the SB of the next field is correct.)

The calling program RESTOREs the
proper line number for the field
desired. It will also somehow have a
value for R, the record number. (Here
is perhaps the only advantage of
BASIC's having only global variables.)
You then simply GOSUB 400 to get the
desired field. Thus, to print the City
and State field,

870 RESTORE 120:GOSUB 400:
PRINT AS

7

The PUTting subroutine may or may
not need a READ statement., Mine usu-
ally don't because I GET or "pretend"
to GET whenever I work on a field.
The values for FL, R, SB and L remain
unchanged. By "pretending" I mean that
I keep other wanted information 1in
the DATA statement, such as the X and
Y coordinates of the field's position
on the screen. So even though there
may be nothing in the record to GET,
I'll pretend and at the same time get
the several field parameters.

My updating programs do usually
include the X and Y coordinates and
sometimes the color code; appropriate
PLOT statements in the subroutine make
for a pretty screen. The report pro-
grams have appropriate values for TAB
positions. These extra pieces of in-
formation are READ into other vari-

ables in the one READ statement.

Having discovered that variables
work as well as constants in GET and
PUT statements, I think my programs
are a whole lot cleaner and surely
are closer to being self-documenting.
But then, I suppose you knew that all
along.

P.S. As 1long as we're talking
about GETting and PUTting, here's
something I found disconcerting the
first time I ran across it. The LENgth
of the receiving string variable e-
quals the byte count used in the GET
or PUT. A two character string GETten
by A$[20] is 20 characters long--the
two plus 18 trailing spaces. It took
me a while to figure out why my print
lines were overflowing. @

*+ About Your Subscription »»

Most of our subscribers' subscriptions will come up @or renewal
after July. (Check your mailing label: the number indicates your
last issue number. The June/July issue is issue number 6.)

We need your subscriptions to continue publication.

Since its beginnings in 1978,

Colorcue has been financed by In-

telligent Systems Corporation. That financial assistance will ter—
minate with the June/July issue. Whether we will be able to continue
publishing Colorcue will depend on whether you renew your sub-
scription., There is a critical number of subscribers, below which
Colorcue will not have the funds to continue, Let us know of your
desire to see Colorcue flourish. Send us your renewal now so that
we may know in advance where we stand and so that you can help
guarantee the continued publication of what we believe to be an
outstanding magazine for Intecolor/Compucolor users,

Subscription for one year (six issues) is $12 in U.S., Cangda and
Mexico; $24 elsewhere, Please make check or money order in U.,S.
funds payable to "Colorcue",

At the same time, why not take this opportunity to let us know what
kinds of information you would like to see in Colorcue during the
coming year? Would you prefer more hardware oriented articles?
Tutorials? Programs? Applications? Games? Perhaps you have something
specific in mind,

i8

Assembly Language
Programming

by

David B. Suits

Part V: Creating
an INPUT Routine

We have discussed several ways of
getting information from memory onto
the screen., Let's take up the subject
of getting information from the key-
board intc memory. The very first
thing we need to know is how to get
one character from the keyboard.

Suppose you were working in BASIC
but without the INPUT statement. How
would you get data from the keyboard?
If you can answer that question, then
you can probably devise at least one
perfectly useful method in assembly
language. Under normal conditions,
when a key is pressed, its code 1is
stored in location 81FEH (33278 deci~-
mal), and then it is output to the
screen., The codes range from 0 (con-
trol @) and 1 (AUTO) through 17 (red)
and 18 (green), and then through the
printable ASCII characters, 32
(space), 33 (!), and finally up
through the special function keys,
240 (FO) through 255 (F15). The rou-
tine which reads the keyboard and
stores the result in 81FEH if a key
was pressed is a ROM routine which is
automatically executed many times per
second. That is, it interrupts your
program, does its thing, and then
returns control to your program. This
happens in BASIC and in assembly
language, and it occurs so fast that

1000 KB=33278

161¢ POKE KB, @0
10829
1930

1040 RETURN

1.

you are usually unaware of it. There
are, however, several methods of alter-
ing this routine so as to make it more
adaptable to your particular needs.
We'll get to that later. Right now,
let's look at the quick and dirty
method, which can be illustrated with
the following flow chart. A simple
BASIC subroutine is given in Listing

ENTER

[kB=g |
1S Y
KB=07?
N
GOT A :
CHARACTER !

<RETURN)

An equivalent assembly language
program is given in Listing 2.

Last time I explained that labels
may be wused in place of constants
(such as addresses) in an assembly
language program. Thus, the instruc-—
tion "JZ LOOP" is iuterpreted by the

A=PEEK(KB) : IF A=@ THEN 1020
REM GOT IT!

Listing 1. A simple BASIC program to wait for a key press.

19

assembler as "Jump, if the zero flag
= 1, to the instruction which is at
the address LOOP:". But suppose I
had not included the "LOOP:" label
off to the 1left in Listing 2. How
would the assembler know where to make
the program jump to in response to
"JZ LOOP"? It wouldn't, Similarly with
KBCHAR. The instruction LXI H,KBCHAR
will be translated as 'put the two
byte number represented by KBCHAR into
the HL register pair". But what two
byte number is that? It is the EQU
instruction which gives the assembler
that information. It says, in effect,
that whenever the word "KBCHAR" ap-
pears, make it EQUal (or EQUivalent)
to-—or, better yet, EQUate it with-
81FEH. (It is roughly similar to an
assignment statement in BASIC, as in
line 1000 of Listing 1; whenever KB
appears, 33278 is meant.) By the way,
since you can load the HL pair with
any two byte number, and since all
addresses are two byte numbers, you
can even load HL with the value of
LOOP. That is, the label "LOOP:" is
merely an address in the program. So
if we wanted to, we could have all
sorts of instructions which referred
to it. For example

JMP LOOP
LXI H,LOOP
CALL LOOP

and so on, Although you are not allowed
to have duplicate labels, you may
refer to any label you please as often
as you please. Notice also that labels
which specify the location of an
instruction in your program (such as

GETCHA and LOOP) must always be fol-
lowed by a colon. But assignment (that
is, ©EQUate) statements, such as
"KBCHAR EQU 81FEH", have no colon; if
you put one in, the assembler will
signal an error. That's because KBCHAR
does not indicate the location of an
instruction in your program. Rather,
it is merely a convenient way of
writing the number 81FEH (or whatever
number it is which you EQUate to
KBCHAR). That convenience makes your
programs easier to read: "IXI H,
KBCHAR" is a bit more meaningful than
"LXI H,81FEH". This also makes things
easier to change in case you need to
do so, Most, if not all, of the EQUate
statements are traditionally grouped
together near the beginning of the
program or routine. If you were to
learn that, say, 8lFEH is not after
all the correct number, then you need
only change the appropriate EQUate
statement, and the assembler will make
all the required corrections for you,
The EQUate statement is one of
several instructions which are some-
times called pseudo—ops because they
don't end up in the final machine
' language program created by the assem-
bler. Every time KBCHAR appears, it
is translated into 81FEH. But the
instruction "KBCHAR EQU 81FEH"
itself disappears; it is an instruc-
tion to the assembler to act in a
certain way. Thus, if the assembler
were to assemble the get a character
subroutine in Listing 2 starting at,
say, 9000H, the machine language code
it would produce would be the string
of numbers in the Contents column
below:

;Subroutine to get a character from the

we we ™o

doing it.
KBCHAR EQU B81FEH
GETCHA: LXI H,KBCHAR
MVI M,0
LOOP: MOV A,M
CPI @
JZ LOOP

RET

keyboard. NOTE: this is a workable,
although not very efficient, way of

:Load HL with 81FEH.
;Set keyboard char=§.
:See what's there,

;If zero, keep looping.
;I.e., wait for key.
;Return with key in A.

Listing 2. An assembly language subroutine to get
one character from the keyboard.

20

Address Contents

9000 21H LXI H
Sp01 gFEH 81FEH
9902 81H

9003 36H MVI M
9004 PoH]
9005 7EH MOV A,M
9006 PFEH CPI
9007 PoH]
5098 PC2H JNZ
5005 P5H 9005H
900A 90H

900B PC9H RET

Another important pseudo-op is
the ORG (ORiGin) statement. It in-
structs the assembler that you wish
the following series of instructions
to be located in memory beginning at
the address specified. A popular place
for a.sembly language programs for
ISC machines to begin is address 8200H
{because that's where you go with ESC
T). So you'll find a number of programs
begioning with "GRG 8200H". Gften
there 1is only one ORG in the whole
program, but occasionally there are
more, Perhaps, for example, you want
the program to live at 8200H, but for
some reason you want a particular
subroutine located in very high memo-—

ry:

ORG 8200H

;main program

ORG OFACOH

;a subroutine

Finally, the END pseudo-op merely
tells the assembler to stop assem—
bling. It must be the last line in
your assembly language program. More-
over, it must be followed by a carriage
return (to signal the end of the line
on which the END occurs). Failure to

include the <carriage return 1is a
common source of frustration for be-
ginners; the assembler will insist
that it didn't find the END statement,
eventhough it's right there in front
of its nose.

Logical OR

Back to reading the keyboard.
(Forgive me for these frequent, but
important, digressions.) I want to
make the get a character routine more
elegant. Several new 8080 instructions
can help. The first is the ORA <reg>
instruction. This takes the contents
of <reg> and logically ORs them with
the contents of the Accumulator; the
result ends up in the Accumulator.
(The contents of <reg> are unaltered.)
What is a logical OR? It is simple.
It says, for each bit in <reg> and
the corresponding bit in the Accumula-
tor, if either one is a 1, then the
result is a 1 for that bit., Otherwise
(i.e., if they're both 0), then the
result i1s 0 for that bit. Some examples
are given in Figure 1. Notice that
the Accumulator may be logically ORed
with itself. The result will be it-
self, Why bother? Ah! You see, the
ORA <reg> instruction affects the
carry, sign, parity and zero flags,
and it is the zero flag which 1 am
interested in here. If the Accumulator
has all zeros, then ORA A sets the
zero flag. Otherwise, the zero flag
is not set. That 1is, we now have a
nondestructive test to see if the
Accumulator is zero. Since it is a
one byte instruction, it can replace
the more cumbersome CPI 0 instruction
which was used in the original get a
character routine:

ORA A sA=07?
JZ :Yes,
. :No.

This is really no big deal, of course.
We save one byte of space and negligi-
ble execution time. But I find this
way of doing things to be more elegant
and actually easier to read and under-
stand., (There is also an ORI <mum>——OR
immediate-~instruction which logical~-
ly ORs the byte of immediate data with

21

the contents of the Accumulator.)

STA and LDA

A more important refinement to
the get a character routine is possi-
ble by understanding alternative meth-
ods of moving data to and from the
Accumulator. Instead of accessing a
memory location indirectly wvia the
address in HL, we can get to a memory
location directly with the instruc-
tions LDA <addr>, which loads (i.e.,
copies) the contents of <addr> into
the Accumulator, and STA <adr>, which
stores (i.e., copies) the contents of

the Accumulator into memory location
<addr>. The get a character routine
will now look like Listing 3, assuming
KBCHAR EQU 81FEH.

Exclusive OR

There's one more new instruction
to investigate: the logical exclusive
OR. The XRA <reg> instruction takes
the byte 1in <reg> and exclusive ORs
it with the byte in the Accumulator.
(The contents of <reg> are unaltered.)
What is an exclusive OQOR? It says for
each bit in <reg> and the correspond-
ing bit in the Accumulator, if exactly

==

)
P8 19 180

SRS
S~
LS
[
— =

P 000 OG11O
0 00O O11O0

1 1 1Initial contents of Acc.
Contents of B.

Contents of Acc. after ORA B.

@ 1 1Initial Contents of Acc.
g 1 Contents of H.

Contents of Acc. after ORA H.

Initial contents of Acc.
Contents of Acc. after ORA A,

Figure 1. Examples of ORA <reg>.

1106011
100021021290

P 21120
00000

o=

Initial Contents of Acc.
Contents of B,

Contents of Acc, after XRA B.
Initial contents of Acc.
Contents of H.

Contents of Acc, after XRA H.

Initial contents of Acc.
Contents of Acc. after XRA A.

Figure 2. Examples of XRA <reg>.

GETCHA: MVI A,0
STA KBCHAR

LOOP: LDA KBCHAR
ORA A
Jz LOOP

RET

:A=0

;Contents of KBCHAR=0.
;Get byte at KBCHAR.

: =07

:Yes. Wait for a key.

Listing 3. The modified get a character routine.

22

one of them is 1, then that bit of
the result is 1. Otherwise (i.e., if
they're both 1 or both 0) the result
is 0 for that bit. Examples are given
in Figure 2. Notice that the Accumula=-
tor may be logically XRAed with it-
self. The result will necessarily be
zero. Like the ORI <num> instruction,
there is an XRI <pum> instruction; it
exclusively ORs the byte of immediate
data with the contents of the Accumu-
lator. And, like the ORA <reg> and
ORI <num> instructions, the exclusive
OR instructions affect the carry,
sign, parity and zero flags. (Unlike
the inclusive OR instructions, the
exclusive OR imnstructions also affect
the auxiliary carry flag.) Often the
XRA A instructicon is used instead of
MVI A,0, simply as an elegant way of
setting the Accumulator to zero. (But
remember that it will affect the
flags, whereas MVI A,0 will not.) Now

we can write the get a character
routine as in Listing 4.
Well, that routine is fine for

getting a single character. But what
about getting a whole string of char-
acters? Let's write a routine which
will act something like BASIC's INPUT
statement, First, however, we must
make yet another digression.

CHEINT
As I mentioned before,
a keyboard scanning routine

there is
in ROM

whizh 1is automatically executed a
nurber of times every second., If a
ke 1s pressed, its code is put intoc

81 7EH, the character 1is sent to the
se.reen (echoed), and then the routine
returns to your program. It 1is the
part where the character is echoed on
the screen that we want to interrupt
so as to be able to disallow certain
keystrokes, If, for example, the AUTO
key is pressed, we might want to be
able to ignore it., Or perhaps we want
to ignore the down arrow or erase page

key, or.... A popular routine to do
just this may be found in many assembly
language programs for ISC machines.
The location 81FFH holds a byte which
the keyboard scanning routine looks
at in order to see whether it should
echo a character which has just come
in from the keyboard. Now, if we could
allow a character to come in from the
keyboard and be stored in 81FEH but
fool the computer at just the right
time into thinking that a character
hasn't come in, then we will effective-
ly have cut off the echoing of charac-
ters. It so happens that location
81FFH is used as a keyboard character
flag:if the contents of 81FFH=0, then
the character won't be echoed on the
screen, Somehow we will have to add
these instructions at the appropriate
spot:

XRA A
STA 81FFH

Fortunately, there is a "jump vector"
at location 8I1DFH (33247 decimal).
Ordinarily the contents of 81DFH are
such that the keyboard scanning rou-
tine looks at that memory location
and goes off to echo the character on
the screen., We can interrupt that
process at this point by putting the
number 1FH (31 decimal) into this
spot. Now the keyboard scanning rou-
tine, when it finds 1FH, will JMP to
location 81C5H instead of its wusual
spot. What is at location 81C5H? We'll
put still another JMP instruction
there so that the routine will jmup
to our own routine, namely, XRA A and
STA 81FFH.

All this must sound a bit Rube
Goldberg, but it is a versatile scheme
which allows us a good deal of control
over what happens, It is important to
remember, however, that all this is
occuring many times per second-—inter-
rupting our regular program in order

GETCHA: XRA A
STA KBCHAR
LOOP: LDA KBCHAR
ORA A
Jz LCOP
RET

A
e
F

s {3
§ T

=GO
ontents of KBCHAR=0,
et contents of KBCHAR,

:Wait until

-

i

a key 1s pressed.

¢:Return with char in Acc,

Listing 4. Thrice modified get a character routine.

z3

to do so. So we must be careful that
our interrupt routine does not alter
the flags or the contents of any
register., We ought to make sure to
save and later restore anything which
will be affected. Hence, the CHaRacter
INTerrupt routine, since it uses the
XRA A instruction, must first save
the Accumulator and flags. (See List-
ing 5.)

But first, how do we get the
keyboard interrupt routine to jump to
CHRINT instead of to its own echoing
routine? Put the jump vector number
1FH into location 81DFH. That's easy:

MVI A,1FH
STA 81DFH

Now put a JMP to the CHRINT routine
into locations 81C5B~81C7H. That is,
we want:

81C5H JMP
81C6H ?
81C7H ?

The JMP is easy. The 8080 JMP instruc-
tion in QC3H (195 decimal)., So:

MVI A,6C3H
STA 81C5H

;='JMP'.

Now we need only put the low byte of
CHRINT into 8l1C6H and the high byte
into 81C7H. But what are those bytes?
That is, what is the address of CHRINT?
If it begins at, say, 9000H, then the
low byte is 00H and the high byte 1is
90H. But is CHRINT really to be found
at 9000E? HNot necessariiv. It 1is
wherever the assembler pubs it., We
could force the assembler to puib it
there with an ORG statemenft, of
course:

ORG 9009H
CHRINT: PUSH PSW

XRA A

STA 81FFH

POP PSW

RET

ORG 8200H

;Your program.

But we run a terrible risk: perhaps
the program at 8200H will be long
enough to overwrite 9000H and beyond,
thus destroying our CHRINT routine,
We could always put CHRINT way, way
up in high memory, just to make
sure.,.. But there's a far easier way
to handle all of this,

What will LXI H,CHRINT do? It w:ll
load the HL pair with the address of
the label CHRINT, whatever that hap~
pens to be., We don't have to know the
address; the assembler figures that
out for us, just as it also figures
out where to jump to with something
like JMP LOOP., Now that we have
CHRINT's address in HL, we need to
put it at 81C6H-~81C7H. We could do it
as in Listing 6. But there's a more
elegant way.

SHLD and LHLD

The contents of the HL pair can
be copied into memory with the SHLD
<addr> instruction, {Store HL Direct.)
The contents of L are stored at <addr>,
and then the contenzs of H are stored
at <adde>+1., Similavly, LHELD <adde>
{Load HIL Direct) will load & with the
contents of <addr> and then load H
with the contents of <addr>#l.

Just what we need! We have the
address of CHRINT in HL, and we know
where we want to put that address:

i

KBFLAG EQU 81

g

CHRINT: PUSH PSW

STA KBFLAG
POP PSW
RET

FH :Location of keyboasrd char flag.

;5ave Acc, and flags.
XRA A sAcc, =0.
;Pretend that no key was pressed,

;Restore Acc. and flags.

Listing 5. The character interrupt routine.

24

LXI H,CHRINT
SHLD 81C6H

We can now write the routine which
sets up the jump to the CHRINT routine.
(Listing 7.)

Don't get confused between the
LXI H and LHLD imstructions. LXI
H,<addr> will put <addr> into HL. LHLD
<addr> will load the contents of
<addr> and <addr>+1 into HL. Some
examples are given in Figure 3.

The Input Routime

Using CHRINT is easy. At the
beginning of your program, set up the
jump vector 1FH and the jump to CHRINT.
Once that has been done, CHRINT will
have been spliced into the normal
read-keyboard-echo-to-screen routine.
Nothing will appear on the screen

unless we explicitly put it there,
CHRINT, along with something like the
get a character routine, form the
basis of our input routine.

Just what do we want the input
routine to do? Let's specify that it
is to recognize only uppercase ASCII
characters, from " " through "]". A
backspace (left arrow) will cause the
previous character to be erased, and
a carriage return will end the input.
Let's also specify that no more than
128 characters will be allowed.

Next time

Try your hand at writing a full
fledged assembly language program for
the input routine, I'll show you my
version in the next issue. @&

LXI H,CHRINT

MOV A,L
STA 81C6H
MOV A,H
STA 81C7H

;Get address of CHRINT.
;Low byte in Acc.

;High byte in Acc.

Listing 6. Setting up the jump to CHRINT. First version.

MVI A,1FH
STA 81DFH
MVI A,0C3H
STA 81C5H

LXI H,CHRINT

SHLD 81C6H

;Jump vector 31,

:="JMP"'.

Listing 7. Setting up the jump to CHRINT. Final versiom.

Before LXI H,9908H

Address Contents HL
90B0H PAH 73A4H
9001H 3DH

Before LHEHLD 9668H
Address Contents HL

9000H PAH 73A4H
9001H 3DH

Before SHLD 9860H

Address Contents HL
9000H @AH 73A4H
9001H 3DH

After LXI H,9006H

Address Contents HL

9000H @AH
9901H 3DH

9000H

After LHLD 9666H

Address Contents HL

9000H PAH
9901H 3DH

3D@AH

After SHLD 96686H

Address Contents HL

9000H PA4H
9001H 73H

73A4H

Figure 3. Examples of the LXI H, LHLD and SHLD instructioms,

25

CTE SCREEN EDITOR

Order number: CT832
Price: US$ 40.00

DEBUG

Order number: CT841
PRICE: US$ 30.00

TERMII

Order number: CT821
Price: USS 70.00

in Australia: For Intecolor: Color Computer Systems, ATTN: Don Sforcina

in Austraii

in Germany:

in anada:

i S :

LARGEST SOFTWARE CENTER
FOR COMPUCOLOR +INTECOLOR

INTELLIGENT
COMPUTER
SYSTEMS inc

CHECK THESE EXAMPLES OF HIGH QUALITY SOFTWARE LISTED IN OUR CATALOG!

The new editor 1s a high speed machine language editor progr.m which will
move block, copy., delete or print text. CTE will change lower cac: characters

to

upper case yellow characters for those who do not have lower case

installed. CTE will allow the insertion of «c¢yan colored control characters
(these characters are not counted as text, so printing will be normal) in the
text for printer use. CTE has a global search-and-replace function on all
ASCII characters 0-1Z7 1n both forward and reverse.

CTE has an active character, line page counter on the screen at all times and

is

updated on every key press or use of HOME key. CTE has all single key

commands plus any keyboard can be wused. CTE will allow you to set vyour
printer's baud rate and print all the text or marked text only. CTE has a
fast typematic keyboard action. CTE will set wup 1it's text buffer to the
memory size of your computer or honor the memory size guestion from BASIC at
80AC hex.

CTE is an excellent low cost wordprocessor.

DEBUG 1s & machine language EDITOR, DISASSEMBLER, HEX AND ASII DUMP, MASTER
DEBUGGER, and more. Use any serial printer (with user selected print format),
select Baud rates, ©print ASII/HEX dumps (in compressed or standard mode) to
the printer & CRT with a floating address header for every 60 lines
(printer}or 24 lines (CRT), move, copy, compare, verify memory blocks ,
disassemble programs, test all memory locations, search for a string of data
(1-16) bytes long etc.

TERMII is the most powerful communications program for the CCII and
Intecolor. It includes: up/down loading of disk files (all types, with byte
for byte verification); dumb terminal communications up to 9600 baud;
send/receive and buffer all types of terminal outputs (binary, text, random
files, pictures, etc.} at 110 to 4800 baud, print/save gil buffered data to
the disk, display all in-coming & out-going data to the CRT in HEX and/or
ASCII.

You can also set upper/lower case character colors. Half/full duplex, parity

ODD/EVEN/NONE, turn on/off ECHO BACK feature, Xon/Xoff protocol, and special
menu HELP command. All commands can be toggled on/off. All keyboard type-outs

are in one color and port inputs in another color (both selectable). Select
large or small character mode, and many mcore features too numerous to
mention.

Phone: 416-889-8557 SOURCE: TCM101

Phone: 205-881-3800

58 Valley Rosd, Hernsby, NSW 2077, Phone: 02-1476-2480

For Compucolor: Trevar Tavier
1/6 Mcintosh St., Chaisweod, NSW 2067

1ICS, Attn: Heinz Sork,
Graue Burgstrasse 18, 5303 Bornheim 4, Phone: 02227-3242

IC5, 21 Dersingham Cres., Thrill, Ontarioc L.3T 4P5

ICS, 12117 oache Trail, Huntsville, AL 35803
SOURCE: TCB610

INTELLIGENT RN TR
COMPUTER i 8
SYSTEMS ic g

INVOICE/ The INVOICE/ORDER program prints automatically the name and address of your
company together with the personalized invoice, stating the item numer,
ORDER description, number of units and the total price. This program runs together

with any kind of printer, even using Epson's ability for print densities. The
program is easy to operate and wrong entries can be corrected without

difficulties. It allows entry of 10 1lines comments, special discounts,
Order number: EM111 shipping charges, taxes, etc. It is asking for the mode of payment, even for
Price: yss 38.00 the credit card number. The totals (with customer name and address} can be

stored ‘'in a data base which will be generated automatically.

The ORDER program has the same features as the invoice program, and has in
addition of the data base with the order totals a data base for frequently
used vendors and their addresses.

GRAPHICS This 1is the first graphics checkbook on the market. You can specify your own
15 expenses and 6 deposit categories. The program will print tables, sort
CHECKBOOK according to the date, display/print totals of one or more specifies

categories, and generate a graphic display or printout of the monthly money
Order number: EM201 flow, or the totals for each category within a given year or month. This is
Price: US$ 38.00 an excellent tool, when tax time is coming.

LABEL This program generates ir}div‘idual personalized labels of your family, your

own company, Or organizations which you have contact fregently. It can be
used with the IDS "Paper Tiger" printer and all Epson printers, or printers
which are able to print in different print densities. You can store the

Order number: EM109 labels in different categories. This way, you can print the same label again

Price: US$ 15.00 later at any time.

PERT This program allows you to create 7 PERT plans on one 5 1/4" disk with 200
5 IN activities each. You may create, change, modify, and analyze vour PERT plans

PLANN G to detect the critical path, enter the actual dates, and calculate the ending

date within the given uncertainty range. This program is a "must" for program
and production managers.
Order number: JW (04 Included with the PERT program are two programs which allow you to calculate
” the end date from a beginning date by adding a certain number of working
Price: USS 38.00 days, and to calculate the number of working dJdays between any two given
dates. ’

The perfect MODEM for your communications:

L HAYES SMART MODEM fully automatic, programmable USs$ 235.00
The perfect DISKETTE for your programs;
VERBATIM DISKETTES 10 blank diskettes Uss 24.00
10 formatted diskettes Uss 29.00
The perfect low-cost PRINTER for your paperwork;
C.ltoh 8300 Dot Matrix 132 columns
125 CPS, bi-directional USs$ 375.00

MASTER CHARGE, VISA AND AMERICAN EXPRESS CARDS ACCEPTED

MASTER CHARGE,VISA AND AMERICAN EXPRESS CARDS ACCEPTED

Colorcue

Editors:
A Bi-monthly Publication by and for Ben Barlow
Intecolor and Compucolor Users David B. Suits

Compuserve: 70045,1062
June/July, 1982

Volume 4, Number 6

3 Editors' Notes
4 New Products from ISC

5 Rubik's Cube Demystified, by Roger Safford
Have the computer solve it

9 Assembly Language Screen Dump to MX80 Printer
by Steve Reddoch
A fast version of a program originally in BASIC

13 CALL Subroutine Linkage, by Ben Barlow
Getting two languages together

17 Keyboard Reading in BASIC, by Steve Perrigo
The INs and OUTs of keyboard scanning

20 Assembly Language Programming, by David B. Suits
Part VI: The Input Routine

25 Classified Colorcue Index, by James A. Kavanagh
A comprehensive CCI code

27 About Your Subscription

Advertisers: You will find our advertising policies attractive. Write for
details.

Authors: This is a user—oriented and supported publication. Your arti-
cles/tips/hints are required to make it go. Send your articles or write
for information.

Colorcue is published bi-monthly by Intelligent Systems Corporation, with
editorial offices in Rochester, New York. Editorial and subscription
correspondence should be addressed to the Editors, Colorcue, 161 Brookside
Dr., Rochester, NY 1461&8. Product related correspondence should be
addressed to ISC, 225 Technology Park, Norcross, GA 30092, ATTN: Susan
Sheridan. Opinions expressed in by-line articles are not necessarily those
of the editors or of ISC. Hardware/software items are checked to the best
of our abilities but are NOT guaranteed.

Editors’
Notes

As we mentioned in the last issue,
this issue is the last issue subsidized
by ISC. From this point on, Colorcue's
continued existence will depend on you,
We need a certain number of renewals to
make its publication worthwhile--not to
make a huge profit, but to keep the
enterprise from becoming a public service.
Subscriptions have begun to roll in on a
regular basis, We thank those early re-
uppers (we'll hold your checks until we
reach our magic number); your response
has been gratifying. The suggestions for
articles that we've received along with
the renewals will be an excellent source
for planning next year's content., Keep
them coming.

Compucolor users interested in start-
ing a user group in the northern New Jersey
area should contact Amod Patwardham, 21
Beachmont Terr., N. Caldwell, NJ 07006
(201) 226~8619.

The CUWEST user group has a fully
working Scrabble game available for the
cost of a disk and airmail postage. The
game, written by Chris Teo, holds a
dictionary of over 700 two and three letter
words., The computer's moves take only
about a minute. Send a check for $9 payable
to CUWEST to Doug Grant, CUWEST librarian,

2 Brookside Ave., South Perth, Western
sustralia 6151,
Doug Van Putte, who wrote <he 3-D

Graphics article in the Feb/Mar issue,
suggests these changes to his program:

285 FOR L=1 TO 3:A=A(L)%3.14159/180:
IF A(L)=0 THEN 295

290 GOSUB 560: GOSUB 450
295 NEXT L

550 delete this line

580 RETURN

A new version of 'THE' BASIC Editor
has been released by Quality Software
Associates, 21 Dersingham Crescent, Thorn-—
hill, Ontario, Canada L3T 4P5. (See origin-
al review in the Dec/Jan issue of Color—

cue). The new version features typamatic
keys, improved cursor movement, and many
other improvements, If ordered in EPROM
or for the Devlin RAM board (see Apr/May
Colorcue), 'THE' Editor will also contain
a full set of FCS commands, an erase line
command, an origin command to move a BASIC
program, and a print command for programs
and variables. A super program made even
better!

We'd like to have some articles on
languages. We have been using BASIC and
assembly language for years, But what of
the less well-known languages available?
A tiny-c interpreter is available; so is
FORTH and, of course, FORTRAN, about which
we will have a series of articles in the
coming months, Whatever happened to PILOT?
Do you remember rumors of a compiled
language from ISC called ALGAE? It was an
interesting approach to a block struc-
tured, procedure-oriented language, but
apparently it was never officially re-
leased. Anyone for LISP? It is available
on a few microcomputers, but is anyone
running LISP on an ISC machine? (One of
your anxious editors is drooling at the
thought.) There are rumors of a BASIC
compiler (actually, two of them) in the
works., One in Germany and the other in
California, Will their authors and/or
users please stand up? By the way, there's
a money maker! Suppose you wrote a BASIC
compiler, even a simplified, stripped down
version. Double precision integers instead
of floating point numbers. Maybe omit trig
functions and random file handling. You'd
still have a very marketable product. How
mich would you sell it for? Let's make it
cheap, so as to encourage lots of sales.
$507 1'1l take one for that price. (At
$75 you'd be testing the patience of my
poor bamk account, and at $100 I would,
reluctantly, walk away.) Now, how many
can you sell? That's difficult to esti~
mate, but at §$50 surely you'd sell at
least five or six hundred of them. Let's
see... $50 x 600 = $30,000. There's a tidy
sum! We have had thoughts of just such a
project for some time now, but it has
always been pushed to the back burner.
Perhaps, if no one else produces one (after
all, a compiler is a difficult beast to
create), we'll get back to work on it.
Consider this a challenge. First one there
wins. @

NEW PRODUCTS FROM ISC

TERMINAL SOFTWARE

ISC has released FlexWare, a terminal
firmware package for ISC 8000, 8300 and
8900 machines. FlexWare's three asynchro-
nous communications protocol modes with
parameters definable from the keyboard or
host allow ISC terminals to be interfaced
to a variety of hosts., FlexWare's editing
functions are accessed through ANSI se-
quences, and color via ISO standard color
sequences., FlexWare's built-in expansion
capabilities allow the user to interface
his own firmware extensions and special
functions by simply adding EPROMs.

Optional function keys can consist of
keystrokes in local or on-line modes,
Function keys can also be loaded with
executable machine language patches, Flex-
Ware has a disk I/0 option that allows
simultaneous capture of incoming data,
The CRT display may be subdivided into as
many as 32 discrete regioms, each with
its own roll mode, colors and character
size. Single piece price is $250.

GRAPHICS SOFIWARE

ISC has released IGS (Intelligent
Graphics System), an advanced color graph-
ics programming language with over 100
graphics commands which can be issued by
any host computer. IGS may be used alomne
or driven by other computer languages.
Features include seven type fonts, auto—
matic labelling, scaling and rotation of
grids and axes, rotate and zoom, and
real-time plotting. IGS runs on ISC 8000R
and 8300R series terminals and computers.
Introductory price for IGS and 8301R
terminal is $3490.

TEKTRONIX 4014 EMULATOR

ICS's 800lR terminal with 8 color
dot~addressable display is available with
Tektronix 4014 emulation package. The ISC
terminal emulates the Tektronix storage
tube display by using the "shrink mode",
in which the terminal receives vectors
and fits them to its own 480 x 384
resolution., Color is added to the data by
using the intensity bit in the 4014 data
string, The emulation package alsoc sup-
ports the screen dump to Printronix print-
ers and Printacolor 8-color graphics print-
ers. The 100 piece price is $3275.

DEC VT52/VT100 EMULATOR

This software package allows the ISC
terminal to behave like VT52 or VT100 in
DEC environments, Color coding is used to
emulate the VTI00's reverse video, under-
score and bold, 100 piece price, including
terminal, is $2465.

- IBM 3275 EMULATOR

ISC's 8001 terminal with 13" or 19"
display allows for an 80 character by 24
line display with a 25th line for status.
Software is mnow available so that the
terminal may be attached to a host with
binary synchronous communication (BSC).
Color control is provided by the 3270 data
stream. 100 piece price for terminal and
software is $4055.

UL-APPROVED TERMINAL

ISC has received Underwriters' Labora-
tory approval for a new version of its
model 8001G 19" color terminal. The new
terminal, the 8001G/82, meets UL 478
(electronic data processing) and FCC Class
A regulations. While the digital circuitry
of the 8001G/82 remains unchanged from
the original 8001G, the analog circuitry
has been completely redesigned, including
a new switching power supply and switch-
selectable 115 or 220 input voltage. 100
Piece price is $2870.

NEW TERMINAL

The IS/2405 has an 80 column, 24 line
color alphanumeric and graphics display
with a single-board design based on the
8085 microprocessor, There are 12 function
keys providing 36 programmable functions,
each of which can store up to 40 charac-
ters, The terminal has a resident set—up
mode for selecting physical I/0 parameters
which is retained by 2K of CMOS RAM even
during power off. The IS/2405 also has 4K
of screen RAM and 8K of EPROM for the
operating system and an RS-232C printer
port and a communications port that can
be configured for RS~232C or current loop
interface at 19.2K baud. The standard
single-piece price is $1995, but before
October 1, 1982, the price is $1200.

For information on any of the above
products, contact Marketing Services, In-
telligent Systems Corporation, 225 Tech-
nology Park, Norcross, GA 30092, (404)
449-59%1. &

4

is no

Unlike the book,
there

If

cube,
[Yes, and have fun typing

The program will also let
We suggest a team of eight year

this is not a set of patterns.
the

for fun is not. The program listing which You enter the color orientation matching
follows is not just for the eight year that of the Cube in your hands, and the
old down the street who has no problem computer will print a list of moves which

solving

solve
The program RUBIKS uses approximately

ers or disassembled it), the program will

let you know,

solution (if someone has moved the stick-
his hands. This program is also you try to solve it yourself by entering

single or multiple move commands.,
olds be hired for the job. --Eds.] @&

one they started with.,

it in!

NY 14530
He will

15 safford Ave,

by Roger Safford
Perry,

seconds.

in 37.5

Rubik’s Cube Demystified

but fortunately programming however,
cube

the

in

The Rubik's Cube fad may be on the

down cycle,
and for those who followed the array of 13K. Have fun.

assuredly will find it a challenge trying

to match up the colors with the handicap
of not being able to tumble the Rubik's

patterns described in the book but ended
up with a colorful mess not unlike the

for those who don't have an eight year
old to show them how to solve the Cube,

Cube

NYML3Y:T LX3N:@ReZ 0L T=I y0d

« 3A0W QITYANI N9 ST ., LINIYd

E(TYN) SH1S) SIHOTY S $W ININd:LT ‘@°E 107d

Bv2°CH2 0L09 4 ND:SIZ 8NS09 N3HL #)N ANY <N 4T
cE2 0109

NMY N3HL W Du=$W dI

PEZ 0L09:S0Z IWOLSIH NIHL «Ho=$W dI

B62 QLO93SLT 3HOLS3IY NIHL wdu=%W I

PEZ 010935671 3J40LSIH N3HL o u=$W dI

Q62 0LO9:SGT 3¥0LS3Y N3HL wHe=%W dI

P62 0L09:597T 3HOLS3H N3HL wNe=sW dI

Q62 DLO9ISET 3H0LS3Y NSHL WQu=$W FI

(A ‘s@ $QIW=%0% ({12 °$Q) $ATW) THA=N? (T *$0) $1431=$W
NMML3Y N3HL @0 d1:2-($Q)N3IT=a

I LX3N:QQ®T OL 1=1 ¥04:511 dNS09

NMOLIHIT LX3N

L=(d)r23 (M) I=(d) D5 () D=L 1=(D) I (D DI=(S) T (S)3=L
ST2 0L0971=(S)3: ()= D (DN I=(D I () T=(d) D (dr =L
SE€Z 0L09F1l=(d) D (N D=(@ I (@ I=(H) I (N T=(S)J? (S)3=L
GZZ'ecd ‘e=Z? 0109 N NO:S*¥*o‘d qu3y:ia 0L 1=I ¥04
3NILNCYANS NOILYLOM W3y

EVEE BT LT CT f1549 'S I foy gLwd
STYTLfa2 9y fee iRl fon '35 49Ty yiud
v 'y ter e ‘s iy fe 2 1282 YLud
€222 92 gy f9r ‘a1 ‘2 'y BT *9 YlLud
2159 oS feT fET Oy fTH ‘e Blud
L1598 g L P9y fE fuy foE fTT YLud
LE'ES fYS eI 2y foT YT 'RE fns Yibd
w1 2 v ter fE 6T ‘G 02 fry ‘28 Yibd

GT ‘9121 "1 1S 2505 ‘05 ‘LS 6y Y1lud
i Shdalalibal il S - Sl AR C VA T
94971 ‘L e ‘av 'y fEY F2S FE BT YLbd
I1SGT ‘ez t@T ‘er fvy “12 'Sy fER Y YLYd
9190 UNDILYLOH W3y

NYMNL3¥:L N LX3N

BTT GNSOO:9% (L) +TB=AIGH+9* (N+1) =X

¢4 ININdIGB1 HMNS09: 9% [—QT*N+EE=A ¥BT+T*L=X
$0 INIHQ:SOT ANSDOI9*L+DT*#N+BL=A199+O%1=X

$3 INIHdIS@T GNS0S:S*L+RIxN+@I=AIG5+I*L=X

$d ININA:GRT HNSOQ:2*L-DI*MN+T13=A:0v+9%L=X

BIT ANSDYFG* (L= +TTT=ATEL+I% (N+1) =X

£ 0L I=Mn ¥04:¢ 0L I=L ¥0d4i@=Z

NYNLIY Y INIHGIT-A'X 292 *A*X*2*(2)3'9 LOd:1+2Z=2
NHAL3YMIG-A ‘X *T92 *AX '25(2YD°9 L0diT+2=2Z

$3AN0 MOU¥A 0L 3NILNCWANS W3y
2221 0L09:@221 ¥Y31D

W3y

VEGHT "A N “‘Aud3d W3y

*3AY gu0d449S o7 W3N

2861/81/98 d¥0O44Ys °3 ¥390¥ ¢ 3d9NJ SHIANY W3
W3y

cag
g
562
’ee
582
€82
282
52
aLE
G992
@92
g&2
52
542
e2
cE2
RES
S22
22
SIe
712
2 ¥4
[19-4
sez
a2
561
RET
=1:2¢
28T
521
LY
591
291
551
¥S1
£87T
[u1h4
Sv1
241
SE1
2T
521
227
Git
Rl
=134
Yol
gel
%'
R%
ot
82
o1
']

3e9
310
315
318
319
32a
325
328
329
330
335
34@
345
350
355
360
365
370
375
380
385
39@
395
400
405
41@
415
420
425
430
435
440
445
450
455
460
465
47@
475
48Q
485
490
495
Se@
505
S1@
515
520
525
53@
535
54@
545
55@
555
560
565
7@
575
580
585
590
595

REM CORNER IDENT. DATA
DATA 6,39, 4,18, 40,5, 42, 38, 3, 54, 41,2

DATA 1,14,53,13,17,52,49, 16,51, 37, 15,5@

REM EDGIE IDENT. DATA
DATA B,47,9,44,1Q, 45, 11, 46, 36, &3, 12, 22
DATA 24,21, 48,20, 7,35, 31, 34,43, 33,19, 32

REM MOVE BUILD SUBROUTINES TO LINE 305
D$="pa"

D$=D$+I$+" 1D2"+1$+"3"

D$=D$+"D2"

D$=D$+F$+"3D1"+F$+"1" :RETURN

D$=F$+"3D3"+F$+"1"
D$=D$+"D2"

D$=D$+I$+"1D3"+I1$+"3" :RETURN

D$="D3"

D$=D$+I$+"1"

D$=D$+"U1"+H$+"3U3" : RETURN

D$="D3"

D$=D$+I$+"2" ; RETURN

D$="D1":60T0 36@

D$="D3":60TC 36@

D$=F$+"3"

D$=D$+I%$+"3" : RETURN

D$="U3"+F$+"3U1" : RETURN

D$=G$+"1"

D$=D$+"U2"+G$+"3U2" : RETURN

D$="D1":GDTO 3285

D$=H$+"1DZ"+H$+"3" :GDTO 36@

D$=G$+"3D2"+G$+"1":GDTO 355

D$=H$+"3D3"+H$+" 1" :50T0 36@

D$=I$+"3D2"+1$+"1";GOTO 360

D$="D1":G0TO 235

D$=F$+"3"

D$=D$+"U3"+F$+"1U1" : RETURN

D$="D2":60TO 37@

D$="D1":G0TD 372

D$="Dz":G0TD 385

D$=H$+"1":GOTO 375

D$=6%+"1"

D$=D%$+"U1"+H$+" 1U3" : RETURN

DE=HE+" "

D$=D$+I1%+"1":RETURN

D$=I$+"3":60TO 375

D$=5G$+"3D2"+Gs+"1" :GOTO 345

D$="D1":60T0 345

D$="D3":G0TO 345

D$="D3":60TO 335

D$="UZ"+G$+"1UZ"

RETURN

D$=G#s+"1D1"“+G$+"3" :GOTO 355

D$=F&+"1D2" +F$+" 3" :GOTO 345

D$=G$+"1D1"+B$+"3" :GOTO 345

D$=H$+" 1D2"+H$+" 3" :GOTO 340

D$=1$+"1D1"+13+"3" :50TD 34@

D$="":0N CM GOTO 535, 390, 36@, 395, 355, 330, S35, 405, 41@, 420

ON CM-1@ GOTO 375, 425, 43@, 35, 435, 440, 445, 450, 455, 365, 465
ON CM-21 GOTO 472, 372,475, 535, 535, 535, 535, S35, 535, 460, 400
ON CM-32 GOTO 485, 495, 585, 3685, 510, 340, 515, 345, 520, 525, 415
ON CM-43 GOTO 53, 430, S0, 462, 380, 54Q@, 545, 552, 555, 564, 335
D3$="":0N CM GOTO 43@,355,39Q, 368, 395, 525, 480, 375, 425, 410

ON CM-1@ GOTO 420, 47%,54Q, 445, 350, 435, 442, 330, S35, 370, 365

600
6as
61@
615
62@
625
63@
635
640
€45
65@
655
660
665
670
675
680
€85
630
695
700
7@5
710
715
720
725
73@
735
749
745
750
755
760
765
770
775
780
785
73@
795
aea
8as
s1@
815
aze
825
83@
a3s
84@
845
ase
53
86a
865
ave
875
sea
aas
89@
835
g2a
9as5

ON CM-21 GOTO 465, 472, 380, 535, 535, 535, 535, 535, 535, 415, 505
ON CM-32 GOTO 4@@, 485, 495, 425, S35, 520, 340, 515, 345, 335, 455
ON CM-43 GOTO 46@,S53@, 432, Sa@, 385, 51Q, 560, 545, 55@, 555, 450
D$="":0N CM GOTO S4@, 335,355, 390, 6@, 335, 415, 420, 375, 405
ON CM-1@ GOTO 410, 380,519, 440, 445, 350, 435, 525, 480, 470, 37@
ON CM-21 GDTO 365, 465, 385, 535, S35, 539, 535, 535, 535, 455, 495
ON CM-32 GOTO 525, 4@, 485, 475, 43@, 345, 520, 340, 515, 458, S35
ON CM-43 GOTO SQ@, 46Q, 530, 490, 425, 535, 555, S5, 545, S50, 330
D$="":0N CM GOTQ =10, 360, 355, 355, 390, 450, 455, 41, 420, 375
ON CM-1@ GDTO 4@, 385, 535, 435, 440, 445, 350, 335, 415, 465, 47@
ON CM-21 GDTO 372, 365, 425, 535, 535, 535, 535, 535, 535, 535, 485
ON CM-32 GDTO 493,505, 48@, 380, 542, 515, 345, 520, 34@, 330, 480
ON CM-43 GOTO 490,520, 46&, S38, 475, 430, 550, 555, 560, 545, 525
D$="":0N S GOTO £3@, 630, 635, 685, 635, 6535, 695, 685

ON S-8 GDTO E83, £95, £85, 638, 682, 63¢, 695, 635, 635

ON S-17 GOTO 685,685, 695, 635, 685, 685, 692, 635, 680
F$="R":G8="1_":G0TO 700

Fé="L":G$="F":GOTD 70&

F$="F":6$="R":E0TO 70@

F$="R":G$="E"

D$=F$+"1D3"

DE=DF+F $+" 3" +G5+" 1 "+F$+ 3 +GH+" 3 +F$+"1"
RETURN

D$=F$+" 1D2" +F$+"3D3"+F$+" 1D2":G0TO 725
D$="":R=2:0N CM-7 GOTC 7&S,77@, 775, 780, 760
R=1:0N CM-15 GOTO 75@,75S, 760, 745

R=2:IF CM=24GOTD 755
IF CM=36G0TD 745

ON CM-43 GOTO 7as, 79@, 795, 802, 75@
D$="L1U1D3B1UID3R3UZDALI":ON R GOTO 775,790
D$="F1U1D3L1UIDIHIUSDSFZ":ON R GOTO 782,735

D$="R1U1D3F 1U1D3L3UZD2R2":ON R BOTO 765, 820
D$="E1U1D3R1UIDIFIUZD2E3":0N R GOTD 778,785

D$=D$+J$+"F 1U1D3L1U1D3BIUSDZF3" +K$: RETURN
D$=D$+J$+"DIR1UID3IF1U1DILIUEDZRID3" +K$: RETURN
D$=D$+J$+"FILSDZELIUIDIRIUIDIF1 "+K$: RETURN
D$=D$+J$+"F1UID3LZUIDIBEUZDEF3" +K$: RETURN
D$=D$+J$+"F1U1D3L3U1D3E1UZD2F3" +K$: RETURN
D$=D$+J$+"F 1U3D1 RZU3DILZUZDZF 3" +K$: RETURN

D$=D$+J$+"F 1U2DER1U3D1L3U3DIF3" +K$: RETURN
D$=D%+J%+"D3L1U1D3R3UIDIR1UZDEL3D1 " +K$: RETURN

ON R-1 GOTD 81@, 815, 820, 625, 830, 835, 848, 845, 850, 855, 860

D$="RZU3IDIEzUID3Z" : RETURN
D$="BZU1DZRZU3D1 " :RETURN
D$="UZDEF2UZDZEZ" :t RETURN
D$="F2U3DIR2UID3" : RETURN
D$="LZU3DIF2UID3" : RETURN
D$="REU1D3FEU3D1" : RETURN

D$="BZU3D1LZUID3" : RETURN

D$="R2_2U1D3FZF2U3D1 " s RETURN

D$="F2U1D3L.2U3D1 " : RETURN

D$="L2U1D3E2U3D1 " : RETURN

D$="RIUZDILZUID2" : RETURN
D$="R3LIUIR3LIFIR3L1IDIRELSZUIR3LIFIRZLIDIR3L1B2" : RETURN
D$="R1L1UIR3L1FIR3LIDIREL2ZUIRILIF1R3L1DIR3L1EZR2" : RETURN

D$="B3F1DIF3F1L1BIF1UIBEF2DIE3FILIESF1ULRIF1R2" : RETURN
D$="B3F1UIE3F IR1E3F1DIEEFZUIB3F1R1B3F1DIE3FILA" : RETURN

g$=”R3L3U1R3L1F1R3LlD1RELEUIR3L1F1R3L1D1R3LIBEL2":RETURN
g=nn

D$=D3%+"R3L1DIR3L1EB1R3L1VIRZLEDIR3LIBL"

D$=D$+“R3ILIUIRIL1FZ" : RETURN

GOSUB 865:PLOT 3, @, WW, 6, 7 :WW=WW+1:DRINT D$:G0TO 895

999
1200
12@5
1210
1215
1eza
1@a25
1030
1@35
184a
1@45
1ese
1255
1060
1265
1270
1@75
1e8e
1285
1290
18395
11e2
1198
1193
120@
1205
121a
1215
12za
1225
1232
1235
124@
1245
1298
1259
1300
1303
1304
13085
131@
1315
1322
1325
133@
1335
1338
1339
13402
1345
1352
1355
13690
1365
1370
1375
1380
1385
1388
1389
13902
1395
1409

REM INITIALIZATION (START)
DIM C(S4)

A$=CHRS (24@) +"eeeDVVV"+CHRS (255)

E$=CHR$ (240) +" f f £ +CHR$ (255)

C#=CHR$ (Z40) +"ULU" +CHR$ (255)

FOR Z=1 TQ 43 STEP 6:C(Z)=3
C(Z+1)=13:C(Z+2)=7:C(Z+3)=5:C(Z+4) =4
C(Z+5)=2:NEXT 2

PLOT 27,24,6,6, 14, 12

PLOT 3,35, 1:PRINT “UP BACK

PLOT 3,21, 14:PRINT "FRONT RIGHT
PLOT 3,2,2,6,3:PRINT "R U B I K ' §"

PLOT 3,11,4,6,4:PRINT "C U B E":G0OSUB 115
PLOT 15,6,2,3,@,7:PRINT "1 — INSTRUCTIONS"
PRINT “Z - MIX & PLAY":PRINT "3 - MATCH & SOLVE"
PRINT :INPUT SELECT ;D%

IF D$="1"GOTD 2z0a

IF D$¢)"2" AND D$()"3"GOTO 1835

PLOT 3,@, 16

INPUT "DISPLAY ERCH MOVE (Y/N)7 *;E$

E=1:1F E$="Y" THEN E=2

IF D$="3"GOTD 1302

LEFT®
DOWN™

REM -~ MIX AND PLAY ROUTINE
INPUT "HOW MANY MIXES "jsU
ME="RUBLDF":D$="":F=1:1IF U>31 THEN U=31

FOR J=1 TD U:D=INT(RND(8)*6+1)

D$=D$+MID$ (M$, D, 1)

D$=D$+RIGHTS{STR3 (INT (RND(B) £3+1)), 1)

NEXT J:GDSUE £45:G0SUB 115

PLOT 3,@,17,11,28, 11

PLOT 3,4, 16:INPUT "ENTER MOVE (TYPE *QUIT' TO END) ";D%
F=E:BOSUR 245:1F F=1 THEN GOSUB 115

GOTO 1230

REM ——— e MATCH AND SOLVE ROUTINE
GOSUE 1825:WW=16

REM ——mmemem e SOLVE TOP EDGIES
F=E:F&="R":G$="B" :HE="L": I$="F":FOR EG=1 TO 4

RESTORE Z2@:EX=C(2Z5+EG)*#C(25):FOR EY=1 TO 1Z:READ R,S
IF EX (O C(R)*C(S) THEN NEXT EY:EY=C(25):G0T0 ZB@Q
EY=12:NEXT EY:CM=R:IF C(S)=C(Z5) THEN CM=§

ON EG GOSUR 592,615,648, 565:IF D$=""GOTO 1335

PLOT 3,@,7+EG,6,3:PRINT D4$:G0SUR 245:G0OSUB 115
Dé=F$:F$=0%:5$=Hs:H$=I$: I$=DE:NEXT EG

REM SOLVE TOP CORNERS

FOR EG=1 TO 4:RESTORE 31@:EX=C(Z5)*C(26)*C(29)
IF EG(4 THEN EX=C{(25)*C(25+EG) *C (Z6+EG)

FOR EY=1 TO 8:READ R, S, T:Q=C(R)*C(S)*C(T)

IF EX(Q THEN NEXT EY:EY=C(25):G0TD 2045
EY=8:NEXT EY:CM=T:IF C(R)=C(23) THEN CM=R

IF C(S)=C(23) THEN CM=S

ON EG GDSUB 550,615,642, 565%:IF D$=""GOTO 1382
PLOT 3,@,11+EG, 6,6:PRINT D$:GB0SUER 245:G0SUEB 115
IF C(EG+25) O C(EG+43) THEN EY=C(Z23) :GOTO zp4@
De=F$:F$=G%:56=Hs:H$=I1s: I$=DE:NEXT EG

REM CHECK FOR VALID CORNER COLORS
FOR EG=1 TO 4:RESTORE 31@:EX=C{38)*C(26)*C {2

IF EG(4 THEN EX=C(3@)*C(ZS+EG) *C (Z6+EB)

FOR EY=1 TO 4:READ R, S, T:Q=C(R)%#C(S)*C(T)

1405
1410
1413
1414
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1585
1510
1515
1520
1523
1524
1525
1530
1535
1538
1539
154@
1545
1550
1555
156@
1565
1572
1575
1588
1585
1590
1593
1594
1595
160
16@S
1610
1615
1620
1623
1624
1625
1630
1635
1640
1645
1650
1653
1654
1655

IF EX(Q THEN NEXT EY:EY=C(32):60TC 2025
EY=4:NEXT EY,EG

REM PATTERN TO FLIP EOTTOM CORNERS
S=@:RESTORE 31@:FOR I=3 TO &:FOR J=2 TD 2

READ R:IF C(R)=C(3@) THEN S=S+3~I#J

NEXT J,1:IF S=@GOTO 1445

PLOT 3, @, WW, 6, Z:WW=Wi+1:GOSUR 685:PRINT D%

IF WW) 2@ THEN PLOT 3,@, 26:PRINT "NO SOLUTION":GOTO 2060
GOSUE 245:G0SUE 115:G0TO 1415

FOR CM=2 TO S:IF C(CM}=C(CM+36)G0TO 1462

NEXT CM:GOSUE 715:PLOT 3, @, WW, 6, &: WW=Wk+1:PRINT D$
GOSUE £45:G0SUB 115:G0T0 1445

FOR J=26 TO £9:1F C(CM) (3C4J) THEN NEXT J
EG=J-CM-24:IF EB(Q THEN EG=EG+4

ON CM-& GOTO 148S, 1492, 1495

IF C(4)=C(4®)G0OTO 151@

Fe$="E":6%$="L":G0TO 1500

Fe="L":G$="F":G0TO 150@

Fé="Fv:G$="R":60T0 152@

F$="R":G$="E"

GOSUE 715:PLOT 3, @, WW, 5, 2:WW=WW+1:PRINT D%

GOSUB 245:G0SUR 115

IF EG=060TO 1525

D$="D"+RIGHT$ (STR$ (EG), 1) 1 PLOT 3, @, Wi, 6, 2 s WiW=W+1
PRINT D%:GOSUR 245:GOSUE 115

REM FINAL CORMER CUBIE CHECK

FOR EG=1 TO 4:1IF C(EG+37)=C(2S+EG) THEN NEXT :GOTO 154Q
EY=C(26+EG) : IF EG=4 THEN EY=C(Z6)
EX=C(3@) *C(25+EG) *EY:EY=C (32) :GOTO =@2e

REM SOLVE EQTTOM EDGIES

FOR EG=1 TO 4:RESTORE 32Q@:EX=C(Z5+EG) *C(32)

FOR EY=1 TO 8:READ R, S

IF EXOC(RY*C(S) THEN NEXT EV:EY=C(Z@):G50T0 200@
EY=8:NEXT EY:CM=R:IF C(3)=C(32) THEN CM=S

R=INT (EG#EG*EG/3~-EG*EG#*1. S+EG/6+5, 1)

IF CM=12%*RGOTO 1592

Je="":IF EG>1 THEN JE="D"+RIGHT$ (STR$ (5-EG), 1)
Ke=""3:1F EG)1 THEN Ke="D"+RIGHT$ (5TR& (EG-1), 1)
GOSUR 720:IF D$=""GOTO 159@

PLOT 3,2, WW,6,5:WW=WW+1:PRINT D$:G0SUE 245:GOSUB 115
NEXT Ef

REM CHECK FOR VALID EDGIE COLORS

RESTORE 320:0=C(26)*C(29) :FOR I=@& TO 3:READ R, S

IF QOC(RY*C(S) THEN NEXT I:EY=C(29) :EG=1:G0T0 00Q
Q=1:1=3:NEXT I1:FOR EG=1 TO 3:RESTORE 320

P=C(EG+25) *C(EG+26) :FOR EY=1 TO 4:READ R, S

IF PO C(RI*C(S) THEN NEXT EY:EY=C(EG+26) :GOTO el

EY=4:NEXT EY,EB

REM POSITION CENTER EDGIES

RESTORE 320:P=C(26)*C(27):FOR I=a TO 3:READ R, S

IF POC(RI*C(S) THEN NEXT I:END

R=Q#3+I:IF I(Q THEN R=R+1

I=3:NEXT I:IF R=1GOTO 1655

GOsSuUR 8RS

PLOT 3, 9,WW, 6, 7:WW=WW+1:PRINT D$:GOSUR 245:G0SUB 115

REM ————mmmmemme e FLIP CENTER EDBIES
R=1:IF C(8) ¢()C(26) THEN R=R+4

1662
1665
167@
1675
1682
1685
169@
1695
17¢0
17@5
1820
1823
184
1885
1810
1815
1826
1825
1830
1835
1840
1845
185@
1855
1860
1865
1ava
1875
1882
1885
1888
185
18935
190
19@5
1912
1915
139398
1999
200
25
zela
2015
2020
f=fratcas]
2232
2035
204
2a45
205
=l oS
2062
2Q65
c2e7e
275
2080
a5
2292
2293
zleo
e1es

IF C(3) (3C{E7) THEN R=R+z2

IF C(1@) OC(28) THEN R=R+1

IF R=1G0OTO 1695

ON R-1 (B0OSUR 865,870,875, 880, 885, 892, 905
PLOT 3,@,WW:IF LEN(D%$)>S@ THEN PRINT RIGHT$ (D%, 42)
PLOT 6, 7:1IF LEN(D%) (5@ THEN PRINT D%

GOSUR 245:605UR 115

FOR EG=26 TO 22:1F C(EG) ()C(EG+18)GOTO Z06@
NEXT EG

PLOT 3, 1@, 3@:PRINT "ALL DONE"

INPUT "HIT RETURN WHEN READY " ;WW$:RUN

REM - ——————— SUBROUTINE TO SET CUBIE COLORS
PLOT 3,4, 17:PRINT "ENTER COLORS VIA COLORED KEYS"
FOR S=@ TO 5:F0OR T=@ TO 2:FOR U= T0O 2:I=5+Us6+T»{8
ON S GOTO 18E%, 183@, 1835, 1845, 1855

X=(T+U)#E6+51: ¥Y=112+(U~-T) *6:6G0TO 186Q
X=T#6+46;:Y=B5+U*1Q-T»6:60T0 1852
X=T#6+64:¥Y=76+U*10+T*6:G0T0 184@
X=T#E6+92:Y=04+U*1Q+T*6

GOSUR 187Q@:GOSUE 1@5:PRINT C$:G0T0 1865
X=T#5+112:Y=1A3+U*1Q-T*6

GOSUER 187@:G0SUEB 1@S:PRINT B$:G0TO 1863
X=(T+U) #E€+37: Y=8Z+ (U-T) %6

GOSUER 187@2:5608UE 11@

NEXT U, T,5:60T0 190@e
X1=INT(X/2)-1:¥1=322-INT(Y/4):PLOT 3, X1,Y1

PLOT €,Q, 32, 26: INPUT "";WWS$

IF WW3="@" THEN RETURN

WW=ASC{LEFTS (WW$, 1)) —16:IF WW)7 THEN WW=WW-64

IF WW(l OR wW)7G0OTO 187@

IF WWOE THEN C(Z+1) =WW:RETURN

GOTO 187@

PLOT 3,4, 17:INPUT "ANY FURTHER CHANGES (Y/N) ";WW$
IF LEFT$ (WW$, 1)="Y" THEN PLOT 11,28,11:G0T0 1805
FOR EG=7 TO 15:PLOT 3,@,EG:PRINT SPC{2@) :PRINT :NEXT EG
FOR EG=16 TO 31:PLOT 3,Q,EG,11:NEXT EG:RETURN

[R ERROR MESSAGES FOR INVALID CUERES
pPLOT 3,8@,29,6,E6:PRINT "CANNOT FIND";

BOSUE =@7@:EY=C(ZS+EG) :G0SUE 2@7@:PRINT " EDGIE®

PLOT 6,2:PRINT "SOMEONE SWITCHED THE STICKERS®

GOTO 1822

PLOT 3,0,29,6,56:PRINT "SWAPPED COLORS AT";:GOTO 2@30
PLOT 3, 0,53, E, 663 PRINT "CANNOT FIND";:EY=C(3@)

GOSUE =@7Q:EY=C(25+EG) :GOSUE 207@
EY=EX/C{3@) /EY+. 1:505UE 207@:PRINT " CORNER":60TO 201@
PLOT 3,@,29,6,66:PRINT "SWAPPED COLORS AT";:GOTO 205
PLOT 3,@,23,6,66:PRINT "CANNOT FIND";:EY=C(25)

GOSUE 2@7@:EY=C (25+EG) :G0SUE 2072
EY=EX/C(25) /EY+. 1:GO5UE 207@:PRINT * CORNER":GOTO 201@
PLOT 3,@,29,6,66:PRINT "YOUR CUBE MUST BE DISASSEMEBLED"
PLOT &, 2:PRINT "AND PUT TOGETHER CORRECTLY!":GOTO 18ze
CN EY—1 GOTO Z08Q, 2085, 205@, 2095, 2100, 2125

BRINT " RED";:RETURN

PRINT " GREEN";:RETURN

PRINT " YELLOW";:RETURN

PRINT * RLUE";:RETURN

PRINT " PURPLE”;:RETURN

PRINT " INVALID";:RETURN

PRINT " WHITE";:RETURN

2198
2139
c2ea
221e

224@
22se
2260
gae7e
ccbe
2290
2300
2318

2320
2330

2340
2352
2360
237¢
238@
2390
240@

2410
2420

2430
2440

2450
2455

2460
2470

REM —=————=——m—mm— o INSTRUCTIONS

PLOT 3,@, 16:PRINT "MODES OF ALAY"

PRINT :PRINT " SELECT MIX & PLAY AND I'LL MIX THE CUBE FO
R YOU TO SOLVE. "
PRINT :PRINT *
DISPLAYS TO"

SELECT MATCH & SOLVE AND YOU CAN MATCH MY

PRINT " YOUR HAND HELD CUEE THEN I'LL GIVE YOU A LIST OF
MOVES"

PRINT * WHICH WILL SOLVE THE CUBE FROM THAT POSITION OR L
ET YOu"

PRINT * KNOW YOU HAVE AN INVALID CUEBE!

PLOT 3,12,3@:INPUT "HIT RETURN TO CONTINUE ";WW$

PLOT 3,@,16:PRINT "HOW TO ENTER MOVES"
PRINT :PRINT " MOVES ARE ENCODED BY USING THE FIRST LETTE
R OF FACE TO EE™

PRINT " ROTATED. THIS IS FOLLOWED BY A NUMBER FROM ONE (
1) T0 "

PRINT * ~ THREE (3) TO INDICATE THE NUMBER OF QUARTER TURNS
IN A "

PLOT 11:PRINT " CLOCKWISE DIRECTION AS YDU FACE THAT SIDE

PLOT 11:PRINT :PLOT 11

PRINT ™ FOR EXAMPLE: F3 TURNS THE FRONT FACE THREE (3) QU
ARTER™

PRINT * TURNS. (WHICH EGUALS ONE CCW TURN)":PRINT

PRINT " MULTIPLE MOVES MAY BE WRITTEN AS FOLLOWS:*

PRINT ™ DIUZRZD3U1 (NOTICE NO SPARCES! "

PLOT 3,12, 3@: INPUT "HIT RETURN TO CONTINUE ";WW$

FOR I=3@ TO 16 STERP —-1:PLOT 3,@,I,11:NEXT I
PRINT "MISC. FUNCTIONS:”:PRINT

PRINT A TYES®' RESPONSE TO THE DISPLAY EACH MOVE QUERY W
ILL po"

PRINT *® JUST THAT AND ALLOW YOU TO SEE EACH MOVE. HOWEVE
R, WHEN"

PRINT * DONE IN MATCH AND SOLVE MODE, MY SOLUTION SPEED I
g »

PRINT " GREATLY REDUCED. ” :PRINT

PRINT * IN MATCH & SOLVE MODE COLORS ARE SET BY PRESSING

THE™

PRINT * COLOR KEY PAD (OR THE COLCRED KEYS OF THE STD. KE
YEOARD) , *

PRINT * FOLLOWED BY RETURN. THE BLACK CURSOR WILL INDICAT
E THE"

PRINT * CHANGE LOCATION.

PLOT 3,12, 3@:INPUT "HIT RETURN TO START "j;WW$:RUN

Is Your Subscription Expiring?

Assembly Language Screen Dump
To MXS80 Printer

by Steve Reddoch
1158 via Bolzano

Santa Barbara,

After typing in the BASIC language
version of the screen dump program (Aug./
Sept. Colorcue), I typed RUN and waited.
And waited, BASIC was just too slow, or
I'm too impatient., In any case, I sat down
right then and rewrote the program 1in
Assembly Language, and after working out
the bugs, it's as fast as the original
was slow.

The program follows the original to
the letter (almost). The BASIC statements
are included as comments, and serve to
guide the reader, even one unfamiliar with
the 8080 instructiomns, through the code.
The tramslation looks easy. It was, but
it's misleading. Much use was made of the
fact that many of the numbers never get
greater than 127 (one byte) and there are
no floating point numbers. Not all BASIC
programs would lend themselves to such a
simple translation. Since most of the
multiply instructions are by powers of 2,
rotate instructions are used. The only
tricky instruction is at line 9520, but

CA 93111

some study will lead to an understanding
of its logic, if you're so inclined.

The program is set up to be CALLed
from a BASIC program, and it occupies the
top of memory. When RUN, it is brought
into memory and protects itself by chang-
ing BASIC's end of memory pointer to just
ahead of itself, It sets the CALL vector
to point to the CALL entry point, sets
the baud rate and returns to FCS, and then
to the BASIC CALLer. When CALLed, the
label named CALL: is given control, and
the program begins to translate the screen
(plot characters only) into Epson graphics
characters in the standard character set,
and print them line by line. Screen plot
blocks are 2 dots wide and 4 dots high;
Epson blocks are 2 dots wide and three
dots high. When printed, the image looks
a little higher than when on the screen,
but that shouldn't prove objectionable,
A sample BASIC test program is shown which
exercises the routine. @

9 REM

BRING IN ASSEMBLY LANGUAGE ROUTINE
10 PLOT 27,4:PRINT "RUN EPSPLT“:PLOT 27,27:CLEAR 1000
11 REM

PUT INTO VECTOR PLOT MODE

20 PLOT 12,2,242

21 REM

PLOT SO0 RANDOM VECTORS

30 FOR X= OTO 50

40 PLOT RND (2)% 127,RND {(2)%x 127
S50 NEXT

51 REM

PRINT SCREEN

&0 Z= CALL (O)

(1)

ASSEMBLY LANGUAGE SCREEN DUMP FOR MX-80 FRINTER
BY STEVE W REDDOCH

ASSEMBLY LANGUAGE VERSION OF A BASIC FROGRAM EY MARK
FAIRBROTHER FUEBLISHED IN AUG/SEFT 81 COLORCUE
CALLARLE FROM EASIC FROGRAM EY:

10PLOT 27,4:"RUN SCRDMF.FRG":FLOT 27,27

11CLEAR 1000 (OR WHATEVER)

200Z=CALL (0) :REM FLOT WHATEVER IS ON SCREEN

s e W4 ws WS B WA wa WS w4 WS wa S s We ‘Wi we

SCREEM

Lo
0STR

LOFL
KEYBD
cAaLLY
MAXBAS

START:

MSGO:

EMTRY START :;FOR REG. ASSMELR, MAKE INTO ORG STMNT
AT DESIRED LOCATION E.G.

ORG ADOOH

Eau FOOOH :28672

EQU II92H ;3 17C8H FOR 8.7%

EQU IIFAH ;1826H FOR 8.79

EQU BIFFH :81FFH

EQu ZEEIH 3 0911H

EQu B200H 3 B820ZH

EQU BOACH ;BOACH

L INKAGE ROUTINE

WHEN FROGRAM 1S RUN FROM BASIC, THIS ROUTINE ESTAELISHES
THE NECESSARY LINKAGES AND POINTERS. IT ALSD SETS THE
BAUD RATE OF THE RS23Z FORT.

FUSH FSW

FUSH H ; SAVE NEEDED REGISTERS

FUSH D

LXI H,START~1

SHLD MAXEAS :SET END OF BASIC IN FRONT OF PGM
MvI A, (JMF)

LXI H,CALL 3SET UF CALL VECTOR WITH

sTA CALLY ;JMP INSTRUCTION AND

SHLD CALLV+1 ;ADDRESS OF DUMP ROUTINE

LXI H, MSGO

CALL 0STR ;SET BAUD RATE

FOP D

FOP H

POP FSW :RETORE REGS

MVI B,0 ; INDICATE "MO ERRORS™ TO FCS
RET ;RETURN TO FSC

DE 3,64,0 ;BET RID OF CURSOR

DB 15 ;SMALL LETTERS

DB 27,18 ; (ESC) (R)

DE 7 :BAUD RATE x%Xx FOR DIFFERENT RATES,
DB 239 ;END DATA SEE BELOW

RATES:
110 BA
150

IO

34 —- 1200
35 — 2400
56 — 4800
37 ~ R&QO

wn er

CAaLL:

EXIT:

H
37020
BEGIN:

59020
$ 9030

59040

S040

39050

-

§ 7060

cAaLL

PUSH
PUSH
PUSH

LDA
FUSH
MVI
STA
MVI
ouT
IMP

FOP
sTA
MVI
ouT
FOF
FOP
POF
RET

MAIN

FOR Y

XRA

D

ED ROUTINE, ENTERED FROM BASIC BY
Z=CALL (0}CALL VALUE NOT USED

PSW
H
B :SAVE NEEDED REGS (AND UNEEDED AS WELL)

LOFL

FS ;SAVE LOFL VALUE
A 14
LOFL
A, 199
8 ;LOCK QUT KEYEOARD (LOWER CASE Y*S)
BEGIN

sNEW LOFLAG TO DIRECT ALL OUTPUT TO PTR

FSW

LOFL

A, 207

8 ; UNLOCK. THE EEYEBOARD

=1

H

FPSW s RESTORE REGISTERS
sRETURN TO BASIC FGM

:RESTORE LOFL TO FREV VALUE

ROUTINE

= 0 (TO 126 STEF =

= O (TO 126 STEF 2)

CI s CHECK FOR INTERRUFT
10
EXIT s IF ONE, QUIT.
A, 160

VCH

ALt
VM

A2
VIM
= 126 THEN IM = 1
VY
126
SPO60E
Al
VIM

IT

SPOLOE

19070

S9070
;9080

S9080
9090

$9100

S9120E
39170

39140
§9140:

39150

391460
§91460:

5?9170

EQU 5

FOR I = Q (TO IM)

XRA A

STA VI

EQU ®

FOR J = o (TO 1)

XKRA A

STA vJ

EQU k3

SX = X + J

L.DA VX

MOV E.A

LDA vaJ

ADD B

STA v8X
SY = Y + 1

LDA VY

mMav E,.A

LDA VI

ADD E

STA vsY
GOSUE 2500

CALL S5O0

IF PT = -1 THEN M = M % 4: GOTO 9160
LDA VPT

CPI -1

INZ SP120E

LDA VM

RAL sASSUME TOF 2 RITS CAN NEVER EE ON
RAL

STA VM

JHMP S9160

eou k3

IF PT > O THEN CH = CH + ™
L.DA VFET

CFI O

Jz 59140 s IF FT = O
Jc 59140 3 IF FT < O
LDA v

Mav B,A

LDA VCH

ADD B

STA VCH
M=M2x 2

LDA VM

ADD A sDOURBLE IT
STA VM
NEXT J (TO 1)

LDA vJ

INR A

STA va

CPI 2 :COMFARE TO 1 STEP OVER LIMIT
JNZ SP080 s IF LESS, GO BACK TO TOF OF J LOOP
NEXT I (TO IM)

LDA VI

INR A

STA VI

MoV B.A

LDA VIM

CmMP B ; COMPARE VIM WITH VI
JINC SPO70 IF VIM »= VI (IF VI <= VIM)
FRINT CHRs (CH) ;

L.DA VCH

CALL Lo

$9180 NEXT X (TD 126 STEF 2)

LDA VX
INR A
INR A sBY 2
STA VX
CPI 128 ;COMPARE TO ONE STEFP FAST LIMIT
JINZ 59040 ;AND RESUME LOOF IF NOT OVER
59190 FRINT
MV A, 13
cALL LO
MVI A, 10
cALL Lo
$9200 NEXT Y (TD 126 STEF)
LDA VY
INR A
INR A
INR A :INC BY
sSTA VY
CPI 129 ;COMP WITH 1 STEF FAST,
JINZ SPO20 ;G0 IF LESS
$9210 PRINT CHR$(12)
MV I A 12 s FORMFEED
cAaLL LO
JMP EXIT s LEAVE.
$9220-9240 REFLACED BY EXIT
59500 ENU $
$9510 FT = 0
XRA)
STA VPT
59520 AD = SCREEN+ 2% INT(SX/2) + 128% INT(SY/4)
LXI H, SCREEN
LXI D,0
LDA VSX
RAR ;8% /2
ANI QA7FH sMAKE SURE TOF BIT’S OFF
RLC 3 2RINT(SX/2) IN A
MOV E,A
DAD D 3 SCREEN + 2% INT(SX/2) NOW IN H
LDA VsY
RAR
RAR :SY/4
ANT O3FH s INT(MANE SURE TOP 2 BITS OFF)
RRC s THIS IS THE SAME AS SHIFTING LEFT 7
MVI E,O 1BITS. WE DO IT BY SHIFTING RIGHT i,
JINC S9520A ;WITH SHIFTED BIT INTO CARRY, FUTTING
MVI E.0B0H ;THE CARRY EIT INTO E, AND THE RIGHT
59520A: ANI O7FH sSHIFTED EYTE (WITH CLEARED TOF EIT)
MOV D,A ; INTO D.
DAD D sADD INTO ADDRESS
39530 DA = FEEK (AD)
MOV ALM ;PICKE UP BYTE WHOSE ADDR JUST FQUND
STA VDA
3 CL = PEEK (AD + 1)
INX H
MoV AM sFPICK UFP CCI RYTE
359540 IF CL >127 THEN 9S70:REM IF DA IS A PLOT BLOCK
ANT 128 ;CHECKE, FOR FLOT BIT IN CCI EYTE
JINZ 59570 ;IT WAS ON
39550 PT = -1
MVl A, -1
sSTA VPT :IT WAS NOT.
59540 RETURN
RET

59570 DO = 4% (SX AND 1) + (8Y AND 3)
S9370: LDA vSX

[

§9580 FT =

;9550

CI:

CII:
CIIZ2:

PUSH
PUSH
PUSH
XRA
DCR
JINZ
CALL
POP
POF
POP
RET

;SX AND 1

:4 x (SX AND 1)

B,A
vsY
3 ;SY AND 3
E :A NOW IS 4 #(SX AND 1) + (S5Y AND 3)
MS(DQ) AND DA
E,A
D,0 ;DE NOW HAS DO IN IT
H, SQUTAE ;FOINT TABLE
D ;ADD IN DO OFFSET,
A, M ;PICE UP EBYTE,
B, A
VDA
R ;A NOW HAS MS(DO) AND DA
VET
N
H
D
B s SAVE REGS
A ;D0 A LODF SO THERE
A sWILL NOT BE A KEY EBOUNCE
CI12 ;SPIN FOR 255 COUNTS
KEYED ;THEN CALL KEYED SCAN
2 ; RESTORE THINGS
D
H
s RETURN

s¥Xx A TABLE OF A FLOT SQUARE *xxx

SQUTA

RS2

VY:
2. ¢
VI:

3
VJ:
VM:
ViM:

s

VDA:
VCH:
VEY:
VSX:
VFT:

PR

BR: DE

FROGRAM VARIABLES XXX

DS
DS
DS

DS
DS
DS

DS
DS
DS
DS
D3

END

—

e e e

START

: VARTABLE FRR ACROSS THE SCREEN LOOF CTL
s VARIARLE FOR DCOWN THE SCREEN LOOF CTL

s VAR FOR VERTICAL SFOTS FER EFSON FLOT
BLOCK. 3 FOR ALL EBUT LAST FASS, WHEN 1.
;L00P VARIABLE FOR HORIZ SFOTS FER BLOCK
;EPSON FWR GOF 2 SFOT CODES. REL. TOJ 160
s VERTICAL SFOTS LOOF LIMIT. WOULD RE =
EXCEFT LAST FASS REQUIRES BUT 1

sDATA CHAR FROM SCREEN
s EFSON PLOT CHARACTER

3CCII Y FLOT FOS. (O TO 127)
sCCII X FLOT FRS (QTC127)

sRETURN VARTIABLE FROM “IS DOT CON?" SUBR.
‘—1 IF NOT ON,

>0 IF DOT FRESENT

F—
wll o
LN —
L S
'--h e
- ---1 fae
I FPam . 1 j
I Uy T " | 3 1
fy =, % N]
T TR) .
b o s g SN
i % B fs 0 g S)]
= s =% o N g e |
5 b 1 (1] —l
1 Fw At F Ol o S .
%y o " " e ™ 1 1~
i R T Call I o " § B e [
[] L B Tl f‘] [-
1 b | T ™ o " | e el ']
] Puds o | o " ™5 54 AW S l
id Cal oo N BT e | [R
8 - e BB, o5 0 ™ o *
] T AT U e T B R i _r
[] e Tl TR Y O LI sol B Boa™ "
n FL vmall | R e | [Bl ol -l Cd
[»* [- ™ 0
] r ™]
. n i aallie oy
B 1o
™, 3 r
-
-‘
o™ A
f '
-]
- [}
-y 14"
- At
rid 3
Tl ™% S
o "%

-lq:::::-.

Cueties

PLOT 12,2:F=,3:X=64:Y=X:FOR J=0 TO 200:
A=F*J:X=X+SIN(J) *A:Y=Y+COS (J) *A:PLOTX,Y:
NEXT:PLOT 255

CALL Subroutine Linkage

by Ben Barlow

Volume 1, Number 1 of Colorcue con-
tained the first assembly language CALL-
able subroutine {(the famous "Scrolling
Patch¥), and many have appeared since,
Recently we have published CALLable sub-
routines to sort strings and handle pro-
tected fields on the screen., It's about
time to explain what they are, why they
are, and how they work.

First, what are they and why are they
used? A CALLable subroutine, or assembly
language patch, is a piece of code similar
to a GOSUB subroutine, but coded in 8080
assembly (i.e., machine)} language. It is
connected to a BASIC program, and the
BASIC program CALLs it much like it GOSUBs
to BASIC subroutines, Figure 1 illustrates
this type of 1linkage. (Some computer
languages offer the ability to "drop into"
assembly language from a high level lan-
guage, which would bring the assembly
language routine "inline', but BASIC 1is
not one of these,

Such reoutines are most frequently used

when speed 18 required or desired, The
scrolling patch wused in the Star Trek
program, for exawmple, had a need to

manipuiate a small portion of the screen
as if it were a scrolling CRT terminal
screen. BASIC could have done the job,

PEEKing and POKEing, but would have been
just too slow to be effective. The sort
routine (Oct/Nov Colorcue, p. 21) has been
written in BASIC, but was speeded up by
a factor of 50 when recoded into assembly
language. The Soundware routines, on the
other hand, wouldn't work if they were
coded in BASIC; fast execution is needed
to control the sound.

Figure 2 shows how CALLable subrou-
tines are most often positioned in memory,
stuffed away almost at the top. (Although
the routines can be placed in other
locations, the top of memory is the easiest
and safest place. Other locations are left
as an "exercise for the reader".) Cne
obvious question is how to get the subrou-
tine up there. The most common methods
are:

(1) A series of DATA statements, with
READs and POREs from BASIC, suitable for
short routines, but tedious, very tedious,
for something the size of the sort routine,
This type of placement is illustrated by
the scrolling patch, but is wuseful only
for small routines,

{2) Using FCS te LOAD a previously
assembled routine and establishing the
linkages through BASIC POKEs. This method
saves most of the trouble of converting

Jme

BASIc Pl VECTERS A.L. RoutrmE
RN —
—_ JMP - /////////"

statements, but it is still a non—optimum
mix of function between the BASIC and the
assembly language program.

(3) Using FCS to RUN a previously
assembled program which then proceeds to
set up its own linkages. This is the method
used in recent Colorcue articles; it keeps
the BASIC program small, reduces the
chance for error (and the need to do hex
to decimal conversions), and is simple to
program.

Linkage to the subroutine is estab-
lished by putting a JMP (jump) instruction
into the CALL(x) jump vector location
(33282 or 8202H for the hex famatics) to

cause a jump to the beginning of the
assembly language routine. Normally, this
location containsa JMP to an error routine
in BASIC. When BASIC interprets a CALL,
it sets up registers as directed, and then
JMPs to the CALL vector location. If the
vector contains a JMP to your patch, it's
entered, If not, the CALL immediately
returns to the interpreter, and acts as
a NOP (No OPeration) statement., There are
two ways to get the JMP to your routine
into the CALL vector:

(1) POKE it in from BASIC. Assuming
your routine begins at location OFEQDH in

memory, the following code in Listing 1
will set up the vector,
I5BViEs FREE (2) store it from the assembly lan-
guage routine., Given the same assumptions
ASSEMBLY LANGUAGE RTH: as above, the code would be as given in
var Listing 2.
Loading the routine into memory and
establishing linkage to it is not the end
BRSIC VARIABLE of the 1inititalization phase. Without
taking precautions to protect the routine,
Var BASIC would overwrite (read destroy) it
at the first opportunity. By putting the
routine at the top of memory, however, it
is a simple matter to "fake out" BASIC
BASIC PRt RAM and protect our routine. This is done by
changing the system's pointer to the top
33434 a19A of usable memory, making it point just in
front of the routine we wish to protect.
RESERVED - VECTTRS, ETC When BASIC subsequently allocates string
32168 gooo space, it will check the "top of memory"
SCReen MEMORY location (32940, or 80ACH) and not go
. beyond, Figure 3 shows what this looks
Figure 2 like., There are two ways to set this
ASEMBLY LANGUAGE RTA.
BASIC VARIABLES
BASIC VARIABLES
BASIC. PROGRAM BASIC PRLGRAM
Rescrveo RESERVED
FoF 5F MEMPRY POINTER 32990 ToF oFF MEMoRY _PornTER goAac
SCIZEEN MEMORY SLREEN MEMORY
Figure 3

14

pointer (wouldn't you guess?):

(1) By executing BASIC POKEs,
Listing 3.

(2) By executing 8080 instructions in
the setup section of the routine (Listing
4).

Once the routine is loaded into memory
and linked to the BASIC program, it is
used by executing the CALL statement in
BASIC, e.g.:

as in

60 Z = CALL (F)

As one might expect from an understanding
of BASIC, the variable F is given to the
subroutine, and the value returned by the
subroutine is assigned to the variable Z.
There are restrictions on F and Z; F will
be converted to a two byte integer value
(giving it a range from 0 to 65535), and
Z will be similarly limited.

On entry to the subroutine, BASIC will
have placed the value of F (after convert-
ing to an integer) into the 8080's D and
E registers (E is the low order byte). To
return a value, which the interpreter will

the subroutine must exit
the D and E
H and L

place into Z,
(RET) with the wvalue 1in
registers. During the routine,
should be preserved.

Now that we understand the concepts,
let's look at a small assembly language
routine (Listing 5) that illustrates them.
There are several interesting topics re-
latea to the omnes discussed in this
article:

Implied parameter passing, i.e, us-
ing BASIC variable values directly in an
assembly language routine.

Linking to an assembly language
routine from things other than CALLs, e.g.
interrupt routines, such as User Timer
no, 2 or the keyboard, the serial port,
or BASIC output.

Implementing multiple functions in
a single subroutine without POKEing new
addresses,

These are topics for a future article,
though you can find examples of some of
them in past Colorcue pieces. Write your
editors and let them know what you'd like
to see. @&

15 RT = 65037:REM FE@DH

16 POKE 33282,195:REM The JMP op code
17 POKE 33283 ,RT AND 255:REM The low order byte of the address
18 POKE 33284 ,INT(RT/256) :REM The high order byte of the address

Listing 1.

MVI A,195
STA 33282 ;or 8202H
ILXI H,CALL

;The JMP op~code. Can be (JMP) if Macro-Assembler.

;CALL is the entry point of the routine,
Listing 2.

19 ™ = 61439:REM @FDFFH, one location in front of routine
20 POKE 3294@,T™ AND 255:REM The low order byte
21 POKE 32941, INT(TM/256):REM The high order byte

Listing 3.

LXI H,START-1
SHLD 80ACH

;O0ne byte in front of code
;Stuff into top of mem ptr (32940)

Listing 4.

15

SHORT ASSEMBLY LANGUAGE PROGRAM TO DEMONSTRATE
CALL SUEROUTINE LINKAGE FROM BASIC.

THE PROGRAM CHANGES SCREEN COLOR TO THE CCI CODE
PASSED TO IT BY ITS CALLER.

THIS FROGRAM CONSISTS OF TWO PARTS:
1. THE "RUN" FART, WHICH IS RUN THRU FCS FROM
BASIC, AND WHICH ESTABLISHES L INKAGES.
2. THE "CALL" PART, WHICH IS CALLED FROM A BASIC
FROGRAM, AND ACTUALLY DOES THE WORK.

5SYSTEM EQUATES — ADDRESSES OF THINGS WE’LL NEED

CALLVEC EQU 33282 ; ADDRESS OF VECTOR FOR CALL STATEMENT
TOPMEM EQU 32940 ;ADDRESS OF TOF OF MEMORY FOINTER
SCREEN EQU 7000H ;ADDRESS OF SCREEN MEMORY
; ORG OFOOH ;UNCOMMENT THIS (OR ANOTHER) ORG
: STATEMENT FOR REGULAR ASSEMELER
START: PUSH H
PUSH PSW : SAVE REGISTERS WE®LL USE
3 WE’LL USE THE FCS STACK; 2 PUSHES WON’T HURT
MVI A, (JMF) ;GET JUMF OP CODE (CAN ALSO USE 195
; FOR REGULAR ASSEMELER)
sTA CALLVEC ;PUT IT INTO CALL VECTOR
LXI H,CALL ;GET ADDRESS OF CALLAELE SUERROQUTINE
SHLD CALLVEC+! ;AND PUT IT INTO VECTOR, GIVING:
; JMP cALL
LXI H,START-1 :GET ADDRESS OF LAST BYTE OF “SAFE"
: s MEMORY ,
SHLD TOFMEM ;AND PUT INTO BASIC’S FOINTER.
FOP . FSW
POF H ;RESTORE REGISTERS THAT WERE USED,
MVI E, O 3SET E=0 TO INDICATE NO ERRORS,
RET ;AND RETURN TO FCS.

CALLED SUBROUTINE. ENTERED FROM BASIC WHEN
Z = CALL(F)
EXECUTED. REGISTER DE (REALLY JUST E) CONTAINS CCI CODE

CALL: PUSH H
FUSH PSW i SAVE REGISTERS WE’LL USE
LXI H, SCREEN+1 sFOINT TO FIRST CCI IN SCREEN MEM
1.00Ps MoV M E s PUT NEW CCYI CODE DOWN
InX H
INX bl 3STER TO NEXT CODEs; IT'S TWO EBYTES AWAY.
MQay AyH CHECH T2 SEE IF WETVE 2ONE =A8T 7FFF
ANT OFOH ZAF JUT LOw ORDER 4 RITS

CrPI O70H s IF IT GETE 7Q 30, I7°5 700 FAR.

Jz LaocP STILL IN RANGE.

roP PSW ;DONE. RESTORE SAVED REGISTERS AND
FOP H

RET ; LEAVE

END START

Listing 5.

S REM THE FIRST THING TO DO IS LOAD AND LINK TO SUEBROUTINE
10 FLOT 27,4:PRINT “RUN QALP":PLOT 27,27:REM LINK UP TO AL
OUTINE

15 CLEAR 100:REM MUST BE HERE, RIGHT AFTER THE RUN CMD.

25 PLOT 27,24,6,2,15

3I0 FOR Y= 0TO 31

35 PLOT 3,0.Y

40 FOR X= OTO RND (2)% &3

45 PLOT 32+ X

SO NEXT :NEXT

55 PRINT

60 PLOT 3,0,0,6,2,11:INPUT “ENTER CCI CODE: ";CCI

65 Z= CALL (CCI)

70 IF CCI< 256THEN 60

80 FOR CCI= OTO 255:Z= CALL (CCI):NEXT zEND

Listing 6.

SUBR

16

Keyboard Reading In BASIC

by Steve Perrigo
c/o Harding Lawson Associates
P.0. Box 3885
Bellevue, WA 980609

Several months ago, an article in
FORUM (1) by B.F. Muldowney of Australia
caught my eye. The article was titled
"Advanced Keyboard Reading" and outlined
a method to interrogate the keyboard for
single or multiple key closures. At the
same time I was looking for a simple
joystick modification that could provide
more than up, down, right and left. The
solution was in the use of the Atari
joystick and a keyboard scanning tech-
nique. An article describing keyboard
scanning for the joystick appeared in the
March/April issue of FORUM. An update was
published in the May/June issue.

Since the publication of articles
regarding joystick modification, software
using joysticks has begun to appear on

the market, Most mnotable (as of this
writing) is CHOMP (2), a version of
Pac-Man. As a result of the article

explaining a method to install and use
the joystick and keyboard scanning tech-
nique, I received several requests to
explain a simplified version of how to
read the keyboard in BASIC. It should be
noted that most of this material is a
representation of material from Muldown-
ey's article,

To wunderstand keyboard reading you
must look at the keyboard from the compu-
ter's point of view. Figure 1 is a
schematic drawing of just that. To under-
stand this article you should rely heavily
on this Figure., In addition, it is very
important to note that this method only
determines whether or not a particular
key 1is physically depressed at any one
time. It does not matter whether that key
is in a shift, control or command status.
That is why on the schematic you may not
see some keyboard characters that appear
on your key caps. In all cases I have
listed the non~shifted, default characters
represented by a key closure,

As depicted in Figure 1, the keyboard
is accessed by 16 lines in, any of which
may be interrogated individually, and one
line out which will tell you the status
of the keys along the interrogated line.
The keyboard is interrogated through port
7 using the OUT 7,"line number" statement,
For example, the statement OUT 7,10 will
send a signal through line 10 to interro-
gate the closure/non-closure status of
the 5, E, U, F5, AUTO and MAGENTA keys,
Note that only one of the 16 lines may be
interrogated at any one time,

After the keyboard is interrogated
with OUT 7,"line number", you must then

check for an answer from the keyboard,
This is done by checking the value in port

number 1 by means of the INP(1l) statement.
The value is retrieved using the form
X=INP(1), and X will be in the range
128~-255. Note that in Figure 1 each of
the horizontal grid lines is assigned a
value in the box on the far right. These
values are 1, 2, 4, 8, 16, 32 and 64.
(Notice any relationship among those num-
bers?) When a key is closed along an
interrogated vertical line (i.e., OUT
7,"line number"), the ultimate result is
that the value 255 is decremented by the
value assigned to the corresponding hori-
zontal grid line. Now an example. Suppose
you interrogate line 10 as described above
with the OUT 7,10 statement. If, for
example, the E and F5 keys are both closed,
then the corresponding value of X that
you retrieve with the X=INP(l) statement
will be 245. That is, 2 for the E closure
and 8 for the F5 closure for a sum of 10,
which is subtracted from 255, resulting
in 245. I'1l1l talk more about simultaneous
closures later.

Now for another example. Suppose you
wanted to detect the closure of any of
the keys 2, 4, 6 or 8, How would you go
about it? Answer: scan for each closure

17

independently, First scan line 13 for the
closure of 2, then line 11 for the closure
of 4, then line 9 for the closure of 6,
and finally 1line 7 for the closure of 8.
Immediately after executing each OUT 7,
"line number" statement, check the value
of INP(1) for a value of 254 (=255-1)
indicating that the key is closed.

Prior to scamnning the keyboard, you
will want to lock out the keyboard (and
some other built in routines) by an CUT
8,0 statement in your program. In this
mode all the keys, including AUTO, ERASE
PAGE, ATTIN/BEKEAK, etc. may be depressed
and their intended functions will be
ignored by the computer, With this lock
out command your program will run, but no
characters from the keyboard will be
echoed to the screen, thus keeping a "clean
screen’ during program execution, At the
end of program or function execution you
will want to reenable the keyboard with
OUT 8,255.

Try the routine in Listing 1 to check
the values of the keys depressed. Make

After using this short routime you
should have a feel for how thissystem
monitors the keyboard for single key
closures., Now try the routine with multi-
ple closures and examine the results.
Depress the 4 key and keep it depressed.
Now add the D key, then the T key and so
forth, pressing all of the keys along one
of the lines into the keyboard. You will
see that the same line is being interro-

gated and that the decremented value
changes as the sum of the multiple closures
changes.

0f course a slick method like this
can't exist without a hitch. And here it
is. There are times when the keyboard can
signal the closure of a key that is not
really depressed. Refer to the schematic,
Suppose that you simultaneously close the
H, G and W keys while you are monitoring
along lines 7 and 8 for key closures. As
usual, while interrogating along lin'. §
for closures, the value of INP(1) will be
249, (If you don't understand this yet,
return to go and start over.) However,

sure you understand why it operates the when you interrogate along line 7, the
way it does before you proceed. value of INP(1) will also be 249, indicat-
In /‘err‘ij‘c one of 1‘/\656 lines with the Out (},-) Command
/ E C ‘i||||||| ¢)
¥ s L An s ¥ An Az al B O§? Lo ALS ‘>‘_"___ 2]
To SN T o Yk 77 Tt Qu .. e Yo ¢ ' ﬁ A Y@ |oan
35 ia¥ 93 292 Rl w» \l 3] %S 34 33 12 Ul » | 4 -
G R W\'—(bg S PRI S wat e P
Las 299 Elﬂ. ; :wv L;% :tms | 294 :L"cn :%‘u_(4 e 8 .
(ﬁ:\’ Fiv TFI3 F3 e Trs Try Te3 Trz T Fg (ged
Inhrro\jﬂ;'c
Inp (1) for
s 1l 13 A 12Y 3 4 5 16 || o value of
> (g__< 44\>w_{k__<5__<5__(gn_(}j?_
ﬁ A PV e S A o o i o 255+ sum.
3 AN 28 23 ‘,1" | 28 23 Lu A 29 s 1] 3 e 122 |
@k & £, 4 : [314 ‘ - e mw Pgoh Bl e Grem odl Wack | 20H
el j)____c‘ﬂ NT /)31 o4 |
CJ: + *® Space 4oH
(ne) (N (nP)

Figure 1. Keyboard scanning lines and

i8

decrement values.,

ing that both the H and X keys are
depressed. Why? Because when you interro-
gate the keyboard with OUT 7,7, the signal
travels down line 7 and then, because the
H key 1is depressed, the signal travels
along the horizontal line which decrements
the wvalue by 2. But when it reaches the
closed G key, the signal also goes down
line 8 to the closed W and out along the
next horizontal 1line, which decrements
the value by 4. Simple? Not really; but
it does make sense. Needless to say, when
designing software using this technique,
be sure to avoid this problem.

Now you should have a general idea of
how the technique works. As you can see,
it is a cumbersome method of getting a
character from the keyboard. The real
value of keyboard scanning is when you
are monitoring for multiple closures,
especially in game situations,

I will make a quick digression into
why this system works so well for the
Atari joystick modification, Basically,
the Atari joystick has five switches in
it. For ease of programming, the primary
joystick is wired into the four main
directions of the number keypad, namely,
the 2, 4, 6 and 8 keys. The joystick fire
button is wired to the 5 key. The joystick
is designed so that an angle closure will
close two keys simultaneously. For exam-—
ple, the diagonal vector of up and to the
right corresponds to the closure of the
6 and 8 keys. With the keyboard scanning
technique we can detect the double closure
and with a short routine interpret that

intended direction. Listing 2 is a short
routine to do that., It returns a value of
0 (no key closure) to 9, corresponding to
the positions of the numbers on the number
key pad. If you come up with a more
efficient routine in BASIC to do this,
let me know,

By now you have probably noticed that
the system as described will not detect
the closure of certain keys, namely, the
SHIFT, CONTROL, COMMAND and REPEAT keys.
(The -only key closure that cannot be
detected is the CPU RESET because it has
a direct line to the processor.) Those
key closures and several others are detect=
able using the following similar method.
Use OUT 7,128 and interrogate INP(1l) for
a value of 127-SUM (instead of 255-SUM as
before). The decrement values are given
in the Table, You will notice that the
COMMAND key is not listed. Remember that
it is actually the simultaneous closure
of the SHIFT and CONTROL keys. @&

Key Decrement

/ (divide) 1

0 (letter 0) 2

_ (underline) 4

Fl15 (Function key) 8

Control 16

Shift 32

Repeat 64
Table of Keys and Decrement Values

Used with the OUT 7,128 Command

18 REM KEYBOARD SCANNING PROGRAM

28 PLOT 29,27,11,6,3,12 'REFERENCES

39 OUT 8,@: REM DISABLE KEYBOARD

40 FOR I=8 TO 15 "

5¢ OUT 7,I: REM SCAN EACH LINE INTO KEYPNAXD (1) B.F. Muldowney, Advanced
60 X=INP(l): REM GET A VALUE FROM THE KEYBO/ARD

78 IF X<>255 GOTO 14¢8:

88 NEXT I
98 GOTO 49
leéd IF X=X1 AND I=I1 GOTO 8@
1169 X1=X: Il=I
120 PRINT I,255-X.X: REM PRINT CLOSURE VALUES
138 IF X=251 AND I=15 GOTO 158: REM QUIT IF "Q"
140 GOTO 8@
158 OUT 8,255: END: REM REENABLE INTERRUPTS & END

Listing 1. Keyboard Scanning Routine.

19 ouT 8,8
20 T=0@
30 OUT 7,13: IF INP(l)=254 THEN T=T-3: REM DOWN (2)
40 OUT 7,11: IF INP(l)=254 THEN T=T+5: REM LEFT (4)
50 OUT 7,9: 1IF INP(l)=254 THEN T=T+7: REM RIGHT (6)
6@ OUT 7,7: IF INP(1)=254 THEN T=T+9: REM UP (8)
7@ IF T>9 THEN T=T-6
88 T=ABS(T)
90 IF T=@ THEN T=1
192 oUT 7,18: IF INP(l)=254 THEN T=6: REM FIRE (5)
119 T=T-1
12p¢ ouT 8,255
138 RETURN

Listing 2. Scanning the Number Keypad.

REM CHECK FOR ANY KEY CLOSURE

Keyboard Reading", FORUM Inter—
national, Vol. I, No. 5 (Nov/Dec,
1981), pp. 64-65. And see 8.
Perrigo, "Joysticks Standard for
the Compucolor'", FORUM, Vol, II,
No. 2 (May/June, 1982). (FORDM
is the publication of the Canadi-~
an Compucolor Users' Group. c/o
Editor, 2]l Dersingham Cres., Thorn~
hill, Ontario, Canada L3T 4P5.
I highly recommend that any seri-
ous user join this group.)

(2) "CHOMP", a highly recommend-
ed program for the joystick,
available from ICS, 12117 Coman-
che Trail, Huntsville, Alabama
35803, and other CCII software
dealers for $29.95.

19

Assembly Language
Programming

by
David B. Suits

PART VI: The Input Routine

In this installment we'll fimish up
the input routine begun last time, and
we'll be taking another look at using the
assembler,

The program in the listing is my
version of the input routine, fancied up
a bit just for purposes of demonstration,
It not only accepts input (both upper and
lower case, contrary to my proposal in
the last 1issue), but, Jjust for £fun,
reprints the input in a different color.
This verifies that the input string did
indeed get stored in memory. In case you
still have doubts, after you've assembled
and run the program, you can use the
Machine Language Debug Package to look at
what's in the input buffer (starting at
822EH, if you use my program). After the
input is reprinted, the program loops back
and asks for another line of input. It
will loop forever this way, and you'll
have to push CPU RESET to get out of it.

The two columns of numbers at the left
of the listing are the hexadecimal numbers
which are the machine language code which
the assembler generated from my assembly
language text. (The rest of the material
is the source code which I typed in using
the Screen Editor,) The column at the far
left is the address (the program starts
at 8200H), and the next group of numbers
indicate the contents of the memory loca-
tions starting at that address. For exam—
ple, at 8202ZH the 3EC3H represent two
bytes. The first byte, 3EH, is the code
for the MVI A instruction, and OC3H is
the byte of immediate data to be moved
into A. That is, it is a translation of
the assembly language line MVI A,QC3H.

20

(Remember that the assembler takes all
numbers as decimal unless followed by H
for hexadecimal or B for binary or O or
Q for (ugh!) octal. Moreover, all numbers
must begin with a digit; that's why JC3H
must be written the way it is.)

Somewhere before the first statement
in the program, I must tell the assembler
where the program is to reside in memory.
The ORG 8200H tells it that.

Notice that I‘ve probably gone over-—
board in my use of EQUate statements. For

example, instead of using the number 13
throughout as the code for a carriage
return, I've used CR and I've told the

assembler that CR is to be EQUated with
ODH (=13 decimal). I've used hexadecimal
everywhere, merely for the sake of adven-
ture,

After the EQUates comes the 1label
INBUFF. You can tell it's a label of an
address because it has a colon after it,
The DS means Define Storage, and the number
to the right of that indicates how many
bytes, namely, LIMIT+l. Since LIMIT is
EQUated to 40H (=65 decimal), the assem-
bler knows to reserve, or skip over, 4lH
bytes and to assign the label INBUFF to
the location of the first byte (822FH).
When characters are read from the key-
board, they will go here, Next come two
bytes reserved for holding the address of
(i.e. pointing to) the next available
location for a new character in INBUFF.
The program really doesn't make any use
of that pointer (although it looks like
it is going to at 828DH~8290H), but if
you decide to add a lot of bells and
whistles to the program, you might have
need for such a thing. Anyway, I put it
in just in case, (Or was it to confuse
you? I can't remember now.) As it stands,

the instruction at 8290H is not necessary;
the contents of HL always keep track of
the next spot in the buffer, and so HL is
used as the buffer pointer.

Next come the 1labels SETUP, PROMPT
and REPRNT. These define addresses at which
a string of Defined Bytes (sort of like
BASIC's DATA) can be found for use with
the OSTR routine. If you translate the
hex numbers on the left into ASCII, you'll
see that the assembler has translated
YELLOW into 13H (= 19 decimal), the T in
TYPE SOMETHING into 54H (= 84 decimal),
and so on. In BASIC if you PLOTted these
numbers (in decimal) you would get the
words "TYPE SOMETHING:"™ in yellow. But
you knew all that from our previous work,
right?

The very last line of my program is
END TEST (followed by a carriage return).
The END signifies the end. (Natch!) The
TEST tells the assembler that the starting
address for the program is at the label
TEST. Didn't it know that already? Well,
yes; that is, it assumed it. But while
the ORG statement told the assembler where
the program is to be loaded, the TEST at
the end tells it where to begin execution,
It is assumed that the two are the same
unless told otherwise, so techmically the
TEST is not necessary. But if I had written
END INPUT, then the program would load at
8200H, but execution would start at 828DH.
But I (almost) always make the start
address the same as the load address; you
will too., For now, anyway.

Dealing with the Assembler

It would be a tax on anyone's patience
to have to plunk in the TEST program one
byte at a time. Even using the MLDP would
not lessen the burden very much. So it's
time to use the assembler.

I use ISC's assembler (mot the Macro
Assembler, please), but if you're using
someone else's assembler, the same, or
similar, procedures will probably apply.
First, write your program using a suitable
text editor, (The Screen Editor is per-
fect, If you have the old Text Editor,
throw it away and buy the Screen Editor.)
Just type it right in and save it on disk.
Now run the assembler. It will sit there
blinkiug stupidly at you, You have several
cheices. You can quit and go watch Rockford
Files re-wvums. Or you can put your text
disk in the drive and tell the assembler
to assemble your program:

>ASM TEST

Or you can have the assembler assemble
the program and save the result on disk:

>ASM TEST TO CDO:

(Depending on your disk drive type, you
will use CDO: or MDO: or whatever you call
your drives. Actually, just the drive
number and a colon should be necessary.)
If you have two drives, you can take the
text off one and save the assembled program
onto another, For example:

>ASM 1:TEST TO O:

When the assembler is assembling your
program, the assembled listing (as in
Listing 1) will flash by on the screen.
Be prepared to hit the ATTN/BREAK key to
have it pause, especially if you see a
line in red flash by, because that will
mean that the assembler has picked out an
error and you will want to re~edit the
source file accordingly and then give it
to the assembler for another try. If you
want only the errors, if any, to be
displayed, then add /E when you tell the
assembler what to do. For example:

>ASM TEST/E

Usually I have the assembler just assemble
the program without saving the result, so
that I can be assured that the program is
error free. When I am satisfied, I run
the assembler again and have the object
file (i.e., the assembled code) written
to disk (and printed on the printer at
the same time).

.LDA and .PRG Files

The result which is saved on disk is
called a load file (.LDA). It is not quite
the final, machine language program which
you can run. The .LDA file can be loaded
into memory with

FCS>LOA TEST

(The .LDA extension 1is mnot necessary,
since it is the default type for the LOAD
command.) Now you can run the MLDP and
test the program. When you're confident
that it is the way you want it, leave the
MLDP, return to FCS and type:

21

FCS>SAV TEST.PRG <;version, if you
wish> startaddr-endaddr

For my program, I would type:
FCS>SAV TEST.PRG 8200-82FE

The result is a copy of the memory contents
from 8200 to 82FE and is a machine language
program which can be rum just like any
other .PRG file.

Try my input rcutine. Then try adding
variations. (Have the input string reprint=—
ed backwards, for example,) Fiddle arcund.
We've come a long way since last year.
There are many tricks still to be learned,
but you ought by now to have a fundamental
grasp of 8080 assembly language program—
ming. What you need now is practice. Why
not try converting some simple BASIC
programs into A.L.? That's often an easy

task. Or how about a machine language
patch to a BASIC program? (See Ben's
article in this issue.)

In the issues ahead we'll explore
tables and vectors, animation, and simple
number crunching. And we'll start looking
at some of the more esoteric features of
the routines in your machine's ROM: disk
file handling, talking to your printer,
and so on. In the meantime, if you've
specific areas of interest you'd like to
see covered, please drop me a note,

See you next issue! (Unless your sub-
scription expires.) @

B2@s8 zzCebl

e e 90 s

(@Q@D) CR EQU @DH
(QE2A) LF EQU @AH
(aain) LFTARO EQU 1AH
(QRaR) ERSLIN QU @BRH

22

3TEST -— An almost do-nothing program to get a string of
H characters from the keyboard and then reprint
H that string.
820@ (8202) ORG B8200H
;First set up Jump to CHRINT.
82@@ 3EC3 TEST: MVI R, GC3H s='JMp?
gzaz 32Csel STA NOECHO
8223 21F782 LXI H,CHRINT

SHLD NOECHO+1

82wk 3E1F MVI A, 1FH
822D 3zDF81 STR KEJVEC
8218 217182 LXI H,SETUP
B213 CDF433 CALL 0STR

R O e L
Here is the mairv program loop.

b3 36K I IE I ST S X

8216 217382 MAIN: LXI H, PROMPT
8213 CDF433 CALL OSTR
821C CDaDsz CALL INPUT sInput is echoed in greern.

sNaw reprint the input string in cyan.

B21F 218A82 LXI H,REPRNT

8zc& CDF433 CALL OSTR

B=2z25S 212E8E LXI H, INBUFF

8228 CDF4Z3 CALL OSTR

822R C3168& JMP MAIN jBack for arother round.

R g e R s S e s
L
sEquates and storage.
§
.
K

A6 T 33 I3 363 I KA T NI I

;Jump vector.

jClear screen, etc.

sCarriage return.

sLine feed.

steft arvcow for backspace.
;ERASE LINE key.

8273
8276
az7a
BE7E
8282
az86

8=8A

828D
z9a
a2

8295
8298
8z9A
829D
829F
BzAZ
8R4

82R7
B82R9
azAc

(Qaza)
(Q@QOEF)

(QREF)
(aR1e)
(Q@Q13)
(22169
(@)

(Q7E)>
(R2Q4Q)

(B81FE)
(BiFF)
(81C35
(81DF)
(3392
(33F4)

(@Q@41)

(2Qaz)

Q@CEF

QDRARA

13543535@
452R534F
4D455448
434E473AR
@DRARIZEF

AD16EF

z12E82
czEFaZ
PEQD

CDEERBZ
FE@D
CaDti&2
FEQE
caceaz
FEIR
CACz8c

FEZ@
DA9S82
FE7F

SPACE
ECL INE

EOM
GREEN
YELLGW
CYAN
PAGE

MRAXKEY
LIMIT

KECHAR
KEBELAG
NOECHO
KEJVEC
La
08TR

z
=]
4
n

o ae e as a8

INBUFF &

INBFPR:

SETUP:

PROMPT 2

REPRNT :

EQU zaH ;Just a regular space.

EQU WQEFH 3I'm choosing 233 as end of line byte
; so that the input can be reprinted

;5 with the 05TR routire.

EGU @EFH sErnd of string byte for DOSTR.

EQU 12H

EQU 13H

EQU 16H

EQU @CH ;Erase opage.

EGU 7EH jKey codes above this are ignored.
EQU 4@H iMax rnumber of characters allowed.
EQU B8!FEH sHolds code of most recent key press.
EOQU 81FFH ;eyboard character ready flag.

coU 81CsH ;Halde JMP to CHRINT routire.

EQU 31DFH iHolds irout yump vector.

EQU 339:2H ;Sends char in A to screen. (V6.78)
EQU 33F4H sPrints string ending in 239. (V6.78)

Set LO and OSTR as appropriate faor your system. If your
machire is VB.79 or V3.8&, you will use:

L0 EQU 17C8H

OSTR EQU 182AH

DS LIMIT+1 sBuffer for maximum number of chars
H plus the end of line byte.

DS 2 jPoirter to rnext spot in INBUFF,

DE PAGE, EOM ;Very simple.

DB CR,LF,LF
DE YELLOW,'TYPE SOMETHING:!

DR CR, LF, GREEN, EOM

DB CR,CYAN, ECM

E2TEZILTI LTSS SSSS S S R 8 £ b b b g

i

.

? .
sHere are the subroutines.
H

;

I A AT TR FHE K

s INPUT —- Subroutine to get a string of characters from the

an B aa A ap BE s B aw WA ag RS an G0 as ES e

INPUT :

INPUTYL :

keyboard urntil carriage return.
Upper and lcower case ASCII characters are allowed,
as well as the ERARSE LINE, CARRIAGE RETURN, and
HBACHKSPACE (LEFT ARROW) keys. ARll other characters
are igncred.
The irnput prompt is assumed to have been printed.
CHRINT must be set up.
ENTRY: No register values expected.
EXIT: (C} = count of characters in buffer,
excluding the erd of line byte.
D,E unchanged.
(HL) —=) end of input buffer.

jInitialize.

LXT M, INBUFF ;Buffer pointer points to first spot
SHLD INEBFPR H in the input buffer.

MVl C,@ ;Use register C for count of characters.
CALL GTCHA ;Get a character fram keyboard.

CPI CR ;End of irout?

JZ INPUT4 sYes. Bo finish up.

CPI ERSLIN sNo. ERASE LINE key?

Jz INPUT3 1Yes. Go erase the lire.

CPI LFTARD sNo. Left arrow?

JzZ INPUTZ ;Yes. Bo backspace.

;At this point we're expecting a normal printable
scharacter. Anything out of that rarge must be
sigrored.

Crl SPARCE 3I1s SPACE } character?
JC INPUTYS ;Yes, so ignore it.
CPI MARXKEY+1 ;No. Is MAXKEY+{) character?

23

a2B1
8zr2
8ZR3
8ZHS

82E8
82k3

2RA
8ZER
82BC
82HF

aace
82CS

azca
ZCB
82CE

8201
82D3

8zb4a
8zDS
azbe

2D3
82DR
82DE
8zER

2E3
8zES
B2EA
B2E9
82EA

82ER
82EC
82EF

2Fa
8z2rF3
B2F6

82F7
[=F={)
82F3
82FC
82FD

82FE

Dz9582

47
79
FE4D
chR9sa2

7@
23
@c
78
CDSZ233
C39382

CDp48&2
c33582

CDD482
cezCeas
c33582

36EF
c9

79
EB7
CRERABZ

3E1A
CD3233
3EZQ
CD3233
3E1A
CD3&33
2B

@D

ca

AF
32FEBS
3AFES8L

CAEFBZ
c3

FS

AF
2FF81

F1

c3

(8z20a)

@ ERRORS

JNC INPUT1 ;No. Igrnore the character.

jThe input character (still in A) is valid. But
ssee if there is still room in the buffer for it.

MOV B;A ;Save character temporarily.

MoV A,C jGet cocunt of characters.

CPI LIMIT jHas it reached 1ts limit?

JZ INPUT ;Yes, so igrnore the character.
MoV M,B ;Put character intc buffer.

INX H jBump buffer pointer.

INR C ;s Increment count of characters.
MOV AR ;Get character again far echocing.
CALL LO ;Echca character on screen.

JMP INPUT1 ;Back for more.

;Come here upon finding a left arrow.

INPUTZ2: CALL ECKSP sDelete previous character.
<MP INPUT1 jThat was easy!

;Come here with ERASE LINE.

INPUT3: CALL BCKSP ;Delete a character.
JNZ INPUTS jContinue until count of characters = .
JMpP INPUTI ;Thern back foar new input.

3Come here with carriage return.

INPUT4: MVI M,EOLINE ;Put end of livme byte into buffer.
RET sReturrn to calling routirne.

BCKSP —-- Subroutire to delete the previous character (if
there is one).

ENTRY: (C) = present count of characters.
(HL} =) spot in buffer of previcus char + 1.

EXIT: (C) = rew count of characters.
(HL) adjusted accardingly.
(Z) if buffer empty.
(NZ) if buffer not emoty.

W A8 sy w8 s A4 ws A0 as e

ECKSP: MOV A,C ;Get count of characters.
ORA A sIs it zerc?
JZ BCKSP1 sYes, so dorn't backspace.

;Get rid of the character on the screen.

MVI A, LFTARD

CALL LO

MVI A, SPACE

CALL LO

MVI A, LFTARD

CALL LO

DCX H jAdjust buffer pointer.

DCR C sDecrement count of characters.
BCKSPL: RET sReturn with (Z) or (NIZI) as appropriate.
3GTCHA -- Simple subroutine to wait until a key is pressed.

ENTRY: No register values expected.

EXITs Character in A.
All else unchanged.

- es ws w0 as

GTCHA: XRA A/
5TA KECHAR
GTCHALl: LDA KECHAR

ORA A
JZ GTCHA1
RET

;Keyboard character interrupt routine.

CHRINT: PUSH PSW

XRA A

STA KEBFLAG
POP PSW
RET

END TEST

24

Classified Colorcue Index

by James A. Kavanagh

Gnostech, Inc.
222 S. Easton Road, Suite 15
Glenside, PA 19838

There have been two Colorcue indices
published: the first appeared in the
January, 1980 issue, and the second in
the June, 1980 issue. They are arranged
by article names only and not by topic or
subject,

This index includes all issues of
Colorcue, including the present issue, It
is arranged by subject, although author
names are included if the name appeared
in two or more articles.

I compiled this index for my own
convenience, and so I cannot guarantee
its accuracy or completeness. It is intend-
ed more for the intermediate programmer
and less for the beginner and the non-pro-
grammer, There 1is 1little reference to
elementary topics or to application pro-
grams such as games,

The format used is V.I-P, where V is
the volume number, I is the issue number,
and P is the page number. The December
1980/ January 1981 Colorcue appeared with-
out Volume/Issue numbers, For the purposes
of this index, that issue will bear the
designation III.7.

Appending (programs) I1I,3-2, II.5-6

Apple II.5-13, II.5-14
Arrays I1I.6-6, III.4-7
ASCII codes III.4-14

Assembly Language

Add A to HL (ADHLA) III.6-12
AND DE to HL (ANDHD) TIII.6~12
ASCII to binary III.3-16
Binary to ASCII 1III.3-16

Binary to 1 hex nibble (B2HEX)
Binary to 2 hex chars (LBYT)
Block move (MOVDH) III.4-20

I11.4-20
II11.4-19

Carriage return/line feed (CRLF) III.4-19
Communication III,6-4

Compare, dble precision (CMPHD) III.4-19
Compatibility 6.78 vs 8.79 III.1-22

Cursor movement III.,2-19
Debug 1V.2-3, IV.2-6
Divide DE by HL (DIVHD)
Error codes 1I.4-2

I11.3-16, I11.6~12

Exclusive OR DE with HL (XORHD)

FCS from assembler III,5-13

Graphics (cursor movement)

IBM 1/0 terminal (USC 1035) III.5-15

Interfacing with Teletype III.1-7

1/0 1I1,7-14, I11.8-9, III.1-18 1III.2-19,
III.3~16, III.3~18, III.3-26, III1.4~18,
III.4-26, III1.5-13, I111,7-3, IV.3-5,
IV.5-19, IvV.6-00

Keyboard input III,7-3, IV.5-19, IV.6-00, IV.6-20

Multiply DE by HL (MULHD) III.6-12

NOR (1's complement) HL (NOTH) III.6-12

OR DE with HL (ORHD) III,6-12

Printer program III.3-18, III.4-26

Programming II.7-14, IV.1-17, IV.2-6, IV.3-19,

IV.4-19, IV.5-19, IV.§~20

III.6-12

III.2-19

Protected fields (input) 1IV.3-5
Shift DE left HL times (SHLHD) III.6-12
Shift DE right HL times (SHRHD) III.6-12

Sort 1IV,2-21

Subtraction, dble precision (SUBHD)

2's complement HL (NEGH) III1.6-12

Utility routines III,4~18, III.6~12

Wait routines

20 milliseconds (WATL) III.4-19
0.5 milliseconds (WATS) TIII.4-19

Barlow, Ben ¢ IV.2-4, IV.3-13 : | ./~
BASIC B '

Chaining (Menu) 1II.1-6

Changing directory name II,.5-3

Code line format III.1-16

Editing (FREDI) 1II.5-8, II.8-3, II.8-4

Editor ('THE') 1IV.3-25, IV.6-3

Fixing sequence numbers III.1-16

Format of code line III.l1-16

Formatting numeric fields 1I.7-18, I1.8-6,

I11.4~8

Input flag, input table 1.3-2

Keyboard input II.2-3, IV.6-17

Random files (see Random files)

ReORGing FREDI 1IV.5-11

Sequence numbers III.1-16

String manipulation I.3-4

Structure of code line III.1-16

I1I.4-20

IS A

Tokens II.4-4, I1II1.1-16, II1.4-16
Variable listings II1.3-24

Bell III.7-16

Binary to ASCII III.3-16

Book reviews III.7-18

Break (generation)
CALL function

I11.3-12, III.6-21
I11.7-9

Chaining (Menu) II.1-6
Characters
Large special 1I,8-7

String manipulation I,3-4

25

Clarke, de France 1II1I.1-27, II1I.2-9, II1.2-24
Clock, real time I.2-2
Color
Codes 1I1I.3-11, III.2-16
Misc. II.3~3, II1.2-18, II1I.3-25, III.6-19
Printer, ink jet 1III,7-16
'Comments & Correctioms', etc. 1.3-6, II.2-6,
II.3->, I1.4-9, I1.5-6, I1.7-17
11.7-19, I1I1.8-15, 111.3-26, III.6-22,
I11.7-13, 1v,2-3, 1V.2-20, IV.4-3
Communication III.1-14, III.1-18, III.3-26, III.6-4
Community access bulletin board III,5-22
Compatibility: 6.78 vs 8.79 III.1-22
Comp~U-Writer III,.7-15, IV.4-15
COPY, FCS command III.5-21
COPY (screen display) 1I1I.6-13
Cross reference listing, V6.78 I1II.7-6
Curnin, Peter II1I.3-3, III.4-3
Cursor movement III.2~19, III.5-4
Costom character sets III.,4-12
Date routine II.7-17
Debug 1IV.2-3, 1IV.2-6, IV.4-23
Devlin, Tom 1IV.1-13, IV.5-5
Directory
Changing name II.5-3
Format II.5-11, III.5-9
Printout I.8-15
Supplemental (non-FCS)
Disk dup II.1-4
Disk recovery III.6-20
Dotted limes II.1-2
Dup II.1l-4
Dust cover II.4-2
Editing
Basic, FREDI II.5-8, I1.8~3 II.8-4, IV.5-ll
Basic, 'THE' 1IV.3-25, IV.5-9, IV.6-3
Screen, text III.1-13
Epson Printer 1IV.1-14, IV.2-4, IV.2-15, IV.3-13
Factoring numbers II.5-5
FCC (on Compucolor) 1V.1-3
FCS
Copy 1III,.5-21
From assembler III,5-13
Input flag, input table I1.3-2
Printing directory II.8-15
(See also Directory)
Files
Creating data files II1.2-4%
Random (see Random files)
Recover from errors 111.6-20
Transferring from cther computers
LA and PRS between disks Ti1.5-21
Formetting {numeric fields) 711.7-18, IL.8~%,
I1t.4-8

IT1I.2-4

II1.6~-4

Terizan LIL.7-17
‘0T (BASIC Editor) &, I11.8-3, IL.B~4,

V.51t

Giine 11.7-3
Grsphica
8ar graphs III.7-13
Circular plots 1.2-3
CRT Mode piotting 1IV.4-17
Cursor movement I1II1.2-19, III.5-4
Dotted lines II.1-2
Re—-entrant plot submodes III.2-11
Scaling III.7-13
Sphere 1IV,2-15
3-p II1I.2-6, IV.2-15, 1IV.4-7
Green, Bill II.4-2, II.8-3, III.1-4, III.1-6,
I1I.4-23, II1.5-15, 111.6-9, II1.6~22
Handshake 1I11I.2-26, III.3-26, III.5-21, IV,1-10
Bardware mods III.2-26, III.2-12, III.3-26,
I11.4-21, III.5-21, I11.7-16,
Iv.l-5, 1Iv,.1-13, Iv.3~13, IV.5-5,
Iv.5-13
Hogan, Briam III.1-26, III,2-7
Hudson, Tom II.5-14, III.4-7, III.5-3

26

IBM I/0 terminal (USC 1035)

Index (Compucolor) I1I1.3-12

Input flag, input table 1I1.3-2

1/0 I1.2-6, 1.2-7, 1.3-2, 1I.2-3, II.7-14, 11.8-9,
I1II.1-6, II1.1-18, III.2-19, III.2~24,
I11,2-25, 111,3-12, 111.3-16, II1I1.3-18,
II1,3-26, 111,4-18, III.4~26, III.5-21,
II11.6~4, IV.1-5, IV.1-14, IV.3-5

II1.5-15

I/0 controller (TMS 5501) 1III.l1-6

Interface, serial to parallel 1IV.3-16, IV.4.3
Interfacing with Teletype III.1-6

Interrupts III.2-25

Keyboard

Input I.2-7, II1.2-24, I11.4-11, IIL1.7-3,
Iv.5-19, 1v.6-17, IV.6-20
Lockout II.2-3, III.2-25
Reywords (see Tokens)
Light pen 1IIl1.3-14
Line length II.5-15
Linked lists II.3~5, II.4-5
Lissajous figures 1IV.2-18
Literature 1I1,3-10, I1I.2-11, III.4-13,
II11.6-7
Manazir, Richard 1I1II.2-19, III.4~17, IIL1.5-21
Map, system memory III.1-21
Martin, Dennis II.3-3, III.1-16, III.4-15
III.5-9
Matzger, Alan 1IV.2-21, IV.5-17
Memory map III.1-21, III.7-6, III.7-10
Menu (chaining) II.1-6
MX~80 (see Epson)
Networking III.1~14
Newcombe, F. Lee II,2-4, I1I.8-6
Noise, power linme 1III1.5-16
Numeric base conversion III.5-11
Numeric field formatting I1I.8-6, III.4-8
OP code table III.6-9
Pascal triangle 1III.2-7
Personal software II.4-7, II1,7-12
Photographing screen II.6-2
Plot table 1IV.2~17
Power line noise III.S5-16
Printer (color imk jet) III.7-16
Printer (Epson) (see Epson)
Printer interfacing III.2-25, IV.1-5
Printer program 111.3-18, III,4-26
Printer, screen to MX80 IV.1-14
Printing directory II.8~15
Publishing/selling programs I.2-5, I1.6-5
Raffe, Bernie 1IV,3-5
Kam, add on II.4~9, IV.5-5
Rgadom files TII.6-9, II.7=12, IV.5~17
Randon number IIT,1-26
Real time clock 1.2-2
Rosew, Howard 1IV.1-27, IV.2-27, IV.4=15
R8232 I.2-6, I1.5-7, IIl.1-6, fT1.1-18
I11.,3-26, 111.5~15 B
Screen character position III.2-13
Screen display copy I1.5-13
Screen editor III.]1-13
Screen save I1II,.5-3
Screen to MX80 1IV.1-14, IV.2~15, 1V.6~9
Scrolling patch I.1-2
Selling/publishing programs 1.2-5, 11.6-5, IiI.7-3
Serial port (see RS5232) -
Shank, Bill 1II.7-19, III.1-9
Smith, Bob V. 1IV.2-17, IV.4~17
Software (for Compucolor) 1.8-14, II.4~7, IL.5-7,
(see also I1.6-4, 11.7-6, I11.1-13,
Personal software) I11.1-27, 111.2-14,
III.5-18, IV.4-3, 1IV.4-18
Sort routine (CALLable) 1IV,2-21
Sound board 1I1.5-7
Source nmetwork III.1-14
Space saving in arrays III.4-7
Steffy, Myrom 1II.5-13, III.3-24, III1.7-9
String manipulation 1I,.3-4

]

Stroop phenomenon II,2-2 User groups I1I.2-6, II.5-3, II.7-5, III.l1-9,

Suits, David 1I1.2-6, III.2-11, I11.3-25, III.6-19 IIr.1-10, III.3-15, III.4~13,
Iv.1-3, Iv.1-19, Iv.2-3, IV.2-6, I11.5-8, IIL.6-13, III.7-19,
Iv.3-19, IvV.4-19, Iv.5-19, IV.6-20 Iv.1-17, Iv.4-3, 1IV.5-3

Taylor, Denise I1I11.2~25, III.3-25 Van Putte, Doug IV.4-7

Taylor, Trevor II11.2-25, III.3-12, III.3-25, Variable listings (BASIC) III.3~24

I11.4~21, IIl.6-4, IV.2-18 Williams, A,E., II.3-5, IL.4-5
Teletype (interfacing) TIY.1-6 Word processing III.7-15, IV.4~15
Text editor III.1-13 Ys, lower case 1IV.1-13, IV.2-3

'THE' Editor {(see Editing, BASIC)

TMS 5501 (see I/0 controller)

Tokens (BASIC) 1II.4~4, IT11.1-16, III,4-15
TRS~80 I1.5-13, II.5-14, IT11.2-23, II1.6-4
Ungerman, Mike II1I1.2-23, IIL.6-21

Cueties

PLOT 12:FOR Z=0 TO 1:FOR X=0 TO 255:A=28672+X*4+
128*INT(X/32)+%2*2048:POKE A,X:POKE A+1,128*7+2:
NEXT:NEXT

++ About Your Subscription =«

Most of our subscribers?! subscriptions will come up for renewal
after July. (Check your mailing label: the number indicates your
last issue number. The June/July issue is issue number 6.)

We need your subscriptions to continue publication,

Since its beginnings in 1978, Colorcue has been financed by In-
telligent Systems Corporation. That financial assistance will ter-
minate with the June/July issue. Whether we will be able to continue
publishing Colorcue will depend on whether you renew your sub-
scription., There is a critical number of subscribers, below which
Colorcue will not have the funds to continue. Let us know of your
desire to see Colorcue flourish. Send us your renewal now so that
we may know in advance where we stand and so that you can help
guarantee the continued publication of what we believe to be an
outstanding magazine for Intecolor/Compucolor users.,

Subscription for one year (six issues) 1is $12 in U.S., Canada and
Mexico; $24 elsewhere, Please make check or money order in U.S.
funds payable to "Colorcue".

At the same time, why not take this opportunity to let us know what
kinds of information you would like to see in Colorcue during the
coming year? Would you prefer more hardware oriented articles?
Tutorials? Programs? Applications? Games? Perhaps you have something
specific in mind.

27

	Vol. 4, No. 1, Aug/Sep 1981
	Vol. 4, No. 2, Oct/Nov 1981
	Vol. 4, No. 3, Dec/Jan 1982
	Vol. 4, No. 4, Feb/Mar 1982
	Vol. 4, No. 5, Apr/May 1982
	Vol. 4, No. 6, Jun/Jul 1982

