Cotor Graphics.

tor

INTECOLOR 2651 anc
COPPUCOLIR 1T conpuers

by David B. Suits

COLOR GRAPHICS for Intecolor 3651
and Compucolor II Computers
by David B. Suits

COLOR GRAPHICS for Intecolor 3651 and Compucolor Il Computers is intended for those who want to learn the
ins and outs of color graphics for the Intecolor 3651 or Compucolor II computer. An introductory knowledge of BASIC
programming is assumed.

David Suits has unravelled the mysteries of graphics on the Intecolor 3651 and Compucolor Il Computers better,
perhaps, than anyone else. Suits guides the reader through the graphics capabilities of these computers with cleverness,
style, and touches of genius. His appreciation of these computers infects the reader—and a wonderful infection it is! His
writing is clear, understandable, witty, and engaging. The teaching ability of a good teacher shines through.

The depth and subtleties of the graphics capabilities shared with the reader must be experienced to be appreciated.
There is so much more to be had if one knows how! The topics covered include:

Cursor control Cursor & plot coordinates CRT mode

Hiding the cursor Removing plotted lines CRT plotting
Page/scroll/vertical modes Cursive writing Special function keys
CCI codes Bar graphs Saving & duplicating displays
Color keys Moving bar graphs Editing displays

Double blinking Vector plotting Four-directional scrolling
Blind cursor addressing Incremental plotting Large Chess graphics
Double height blind cursor Plotting character strings Real-time lunar lander
Special characters “Plot-English” Radar simulation

Larger characters Screen refresh memory Animated displays
Character & point plotting Peeking & Poking screen RAM Fast dice

COLOR GRAPHICS contains over eighty tutorial programs and supplements the above topics with nine appendicies
" and an extensive index. It takes up where BASIC Training for Compucolor Computers leaves off.

David B. Suits received his Ph.D. in Philosophy in 1977 from the University of Waterloo, Waterloo, Ontario, Canada. He

-+ presently teaches Logic and Philosophy at Rochester Institute of Technology, Rochester, New York. He has published

articles in both philosophy and computer journals and is the author of a number of Intelligent Systems Corporation’s
programs, including BOUNCE, MAZEMASTER, LINKO and others. His special interests include artificial intelligence,
science fiction, games, and music.

COLOR GRAPHICS for Intecolor 3651 and Compucolor Il Computers. D.B. Suits. Joseph J. Charles Publishing
Company, 130 Sherwood Dr., P.O. Box 750, Hilton, NY 14468. 8.5” x 11” (21.6 cm x 28 cm), ix + 152 pp. (1981).
(Shipping wt. 1 Ib. 10 oz. (740 g).).

ORDERING INFORMATION

ea. COLOR GRAPHICS for Intecolor 3651 and @ $15.00 v
Compucolor II Computers*
ea. Page Mode/Plot Mode Chart, No. 101, pads (50-sheets/pad)* * @$ 400 *
This is a to-scale layout form for graphics and output.
ea. BASIC Training for Compucolor Computers, J. J. Charles* @ $14.95 *
Also applies to Intecolor 3600 series computers.
Subtotal:
New York State residents add sales tax:
Total:

Please remit payment with order. Satisfaction guaranteed or money refunded if returned within 14 days.
ORDER FROM: Joseph J. Charles Publishing Co., 130 Sherwood Dr., Dept. F, P.O. Box 750, Hilton, NY 14468.

Your Name

Your Address City State Zip

Note: *Surface postage included. Extra charge for Air Mail if desired: Mexico, Central America-$3.50; S. America, Western Europe,
N. Africa-$6.50; Eastern Europe, Africa, Middle East, Pacific, Australia, New Zealand-$9.00.

**Pads prohibitively expensive to air mail to most countries, also frequently subject to duty.

R

COLOR GRAPHICS
FOR
INTECOLOR 3651 AND

COMPUCOLOR Il COMPUTERS

BY DAVID B. SUITS
49 KNRRILEE DRUE
WENRIBETIN

JOSEPH J. CHARLES PUBLISHING

130 SHERWOOD DR. P,O0, BOX 750
HILTON, NY 14468

Copyright -© 1981 by David B. Suits

Library of Congress Catalog Card Number:

ISBN 0-9607080-1-4

Printed in the United States of America

ST AL
EETES T -

T EE T
5 %‘* UL

81-69547

S

- ("about author" insert)

NAME: Dave Suits

ADDRESS: Rochester Institute of Technology
General Studies o 95 Castle Road,
Rochester, New York 14623 Rochester. N.Y. 14423

PHONE: (Day) (716) 475-6665, (Night) (716) 359-2179

SUBJECTS TAUGHT: Philosophy, especially symbolic logic at the university
level. Interested in, but do not teach, econamics.

PROGRAMMING LANGUAGES: BASIC, a little FORTRAN, PASCAL, and Assembly.
Personally owns a 32K Campucolor (purchased in October 1978), uses it for
games, word processing, and hobby applications.

SCHOOL INFORMATION: Rochester Institute of Technology. Formal courses in
most computer languages are taught. School owns 1 (maybe 2) 16K
Compucolors (purchased in Fall 1979). Primary application is instruction
in the microcomputing laboratory. Other instructors use the Campucolor in
the microcamputing laboratory. Student population is 10,000.

PROJECT INTEREST: Interested in participating in software exchange; small
group software development; development and writing training materials, AV
aids, workbooks; development of a formal newsletter or other communication
link; and research into software availability.

SOFTWARE AVAILABILITY FOR EXCHANGE OR SALE: Not available yet; working on
some programs in logic and econamics.

4/80

Owner
Text Box
("about author" insert)

PREFACE

This book was written for two kinds of people:

(1) Those who have not had much programming experience and
who wish to learn more about color graphics on the
Intecolor 3651 or Compucolor II computer.

(2) Those who are more experienced programmers and who wish
to learn more about color graphics on these computers.

The book has two main functions. First, and foremost, it is a tutorial
to help you become acquainted with what your computer can do and what you
can do with it. Second, the book is meant to be a reference to return to
again and again in order to refresh your recollection of all the nitty-gritty
of the material presented here. It is just not possible, in one reading,
to become familiar with all the tools you might make use of in your own
work, If you come back to the book now and then, you will no doubt rediscover
interesting tidbits which you had forgotten and which could now make your
programming tasks easier.

This is mot a beginning manual in the BASIC programming language. You
are assumed to know at least the rudiments of BASIC programming. Nor is
this a book on the mathematics of computer graphics. On occasion there is
a little math or trigonometry, of course. But there are no discussions of
hidden line routines, co-ordinate translations, and so on. Nor is it the
intention of the book to teach programming style. (Most versions of BASIC
are not very well suited to the kind of "structured programming" which has
become the darling of writers within the last decade.) Indeed, you will
find several styles of putting together BASIC programs in the book. What
you find to be an easily understood computer program will depend in large
part on how well-versed you are in the particular language used. BASIC on
Intecolor/Compucolor computers is often rather cryptic, allowing for the
concatonation of mysterious numbers such as thesé"”°”rr

S . [l
BLN Daovag, %7 PUWNT U YEC S ®
! -,,‘; LH ‘T [£.5 7 1'% t IR 21 \,n L8 L“ TNT

19 prOT 3, 64 9,2,9,9,242, 127,0,127,127, ﬂ 127 ﬂ ﬂ 255
':i,: O revonad S T “';‘ v;w— ™ f:& B s b on g om TR P e
Still, anyone familiar with this dialect of BASIC will understand that
statement's function almost immediately. Nevertheless, at the expense of
speed and memory, I have usually chosen to break up such statements into

smaller logical units and to add numerous REMarks:

9 REM DRAW A BORDER AROUND THE SCREEN

10 PLOT 3,64,0:REM HIDE THE CURSOR

20 PLOT 2:REM GENERAL PLOT MODE

30 PLOT 0,0:REM FIRST POINT AT X=0, Y=0

40 PLOT 242:REM VECTOR PLOT SUBMODE

48

49 REM DRAW EACH OF THE FOUR LINES OF THE BORDER
50 pLOT 127,90

60 PLOT 127,127

70 PLOT 0,127

(iii)

80 PLOT 4,0
89
90 PLOT 255:REM EXIT PLOT MODE

You are advised to follow suit when entering the book's programs on your
own computer so that subsequent changes are easily made.

Most of the BASIC programs in the book are program "fragments"-—-short
sets of instructions which demonstrate some aspect of the computer's
abilities. They are to be entered, run and studied so that why they do
what they do will be clearly understood. Try variations. Fiddle around.
Explore. There is a skill to be learned--a skill which develops with both
experience and reflection. You ought to learn to appreciate not only the
fundamental rules for using your machine, but also—-—and very importantly---
the aesthetics of the output.

Some of the longer programs in the book build upon other programs.
You might judiciously save them on disk in case additions to them are
offered later in the book, and in case, after having learned new techniques,
you wish to go back and try an earlier program in a slightly different
way. Disk space is relatively cheap. Besides, what you have once saved,
you can later delete.

All the programs were written in Disk BASIC 8001 V6.78, often with
the aid of Intelligent Systems Corporation's BASIC Text Editor. (By the
way, that editor allows for including blank lines, indentations in FOR-NEXT
loops, and other pretty-printing devices used in the listings in this
book.) All programs are compatible with V8.79 and V9.80.

Machine language opens up a host of new possibilities for graphics,
especially for real time applications. However, except for a few helpful
machine language patches (in Programs 9.2, 10.1, 10.2, 12.8, 12.9 and
12.12), 8080 machine language is neither discussed nor used.

I owe special thanks to Christine Bryant, to Fred and Nancy Calev of
Compuworld in Rochester, NY, and to Bruce Williams of ISC for their
encouragement and help.

(iv)

" (preface insert)

PREFACE

This book was written for two kinds of people:

(1) Those who have not had much programming ex-
perience and who wish to learn about graphics
on the Compucolor II.

(2) Those who are more experienced programmers and
who wish to learn about graphics on the Compu-
color II.

This is not a beginning manual in the BASIC programming language. The
reader is assumed to know at least the rudiments of BASIC programming on
the Compucolor II--the assignment of variables, loops, conditional branches,
and so on. Nor is this a book on the mathematics of computer graphics. On
occasion there is a little math or trigonometry, of course. But there are
no discussions of hidden line routines, co-ordinate translations, etc.

Rather, this is a book of instructions and ideas. Although much of the
information is available in the Compucolor II Programming and Reference
Manual (copyright 1978 by Compucolor Corporation), it is presented here
with a good deal of amplification, explanation and examples. 1In addition,
there are tips, idcas and techniques in this book which are not available
in that Manual. _

1 assume you have a Compucolor II on your desk fired up and ready to go.
The short programs throughout the book are there not only to illustrate
the points being made, but also to encourage you to sit down for constant
hands-on experience. Try out some of the ideas presented here in your own
programs, Fiddle around. Explore. Dazzle yourself with the Compucolor
II's power and versatility. _ .

-The book has two main functions. First, and foremost, it is a tutor-

‘“"‘"“M‘Wﬁnigmvﬁﬁﬁﬁpﬂmnmvhwmnana:hrthrmmtpmﬁv?ﬂgﬁmﬁknmaw%--A—
: to demonstrate the use of the many tools at your dlsposal There is little
attempt to develop full-fledged applications: that is a matter in which
your own needs and imagination are far better guides than I.

Second, the book is meant to be a reference to return to again and
again in order to refresh your recollection of all the nitty-gritty of
the material presented here. t is simply not p0551b1e, in one reading,
to assimilate all the data you might make use of in your own work. If
you come back to the book on occasion, you will no doubt re-discover in-
teresting tidbits which you had forgotten and which could make your pro-

. gramming tasks easier.

The BASIC programs in this book were not written for efficiency in
either speced or use of memory. Instead, they were written for instruc-
tion and clarification. And except for the quad-directional scrolling
patch in Section 10 and Ben Barlow's no-echo patch in Programs 9.2, 12.8
and 12.9, there is no discussion or use of 8080 machine language,

All programs were written in Compucolor Disk BASIC 8001 V6.78, often
with the aid of Compucolor Corporatlon s BASIC Text Editor.

(i)

Owner
Text Box
(preface insert)

TABLE OF CONTENTS

PREFACE. . . © & ¢ ¢ ¢ o « o o (iii)

LIST OF PROGRAMS

1. THE CURSOR AND WHERE IT GOES.

2.

4.

COLOBS. . . . ¢ ¢ ¢ ¢ ¢ o o o o =«

THE BLIND CURSOR. ¢ ¢ ¢ ¢ o o« o &«

1.1 Cursor Control
1.2 Hiding the Cursor. . .
1.3 Erase Page . « « ¢« ¢ ¢ « « .
1.4 The PRINT Statement. . . « « « o« o &
1.5 Character Heights.
1.6 Scroll Mode. « « . ¢« ¢ « « o &
1.7 Page Mode. « & v &« ¢ ¢« & o« ¢ o &
1.8 Vertical Mode.

.

.

.

.

.

.

.

.

.

.

.

.

.
NESEPDWNDNDNND ==

1l The FLAG Bit . . . ¢« ¢« « « « . e o o o o o @ e o o o o o+ 8
The CCI Code o« v v o o « o o o o o o s o o o s o o o o o o « « 9
ColOor KeYS o o o o ¢ o o o o o o o o o o o o o o o o o o « « 10
The Hatch Character. « « o ¢ ¢ ¢ ¢ o o o o ¢ o o o o o o« o« o« 12

e o o s o o o o o o o o o o o« « 13

2.

2.2

2.3

2.4

2.5 QUIZ & ¢ 4 4 4 s o o o o o @
2.6 Mystery Program. « « « s o o o o s « o o o o o o o o o o« « « 15
2.7 Blink. « &© & 4 o o o o 2 o o o o o s o o o o o o o o o« o « o 15
2.8 PLOT 31. e e s s e s s s e o e o s e o s s e o o 16
2.9 Blink and the CCI Code e e o o e o o o o

L3 L] - - L] L] Ll . L3 . - L] L] 18

3.1 Blind Cursor Addressing. . « « « « « « = o « o « o « o « « o 18
3.2 Reentry to Blind Cursor Mode . . e e e e e e s e o o 19
3.3 Double Height Characters in Bllnd Cursor Mode. e s o+ s« o« 20

CHARACTERS AND THE PLOT STATEMENT ¢ ¢ « « =« « o« « o o « o 21

TES

PLO

4.1 EXErciSe . o o o o o o « o o o o &«
4.2 Special Characters « « « « « o« « o o o &
4.3 Larger Characters. « « « « « « o« .

A |
L . L .o . L] . L L] L3 . . L] 24

TMODE « « .

e e e e e e e s e e e e e e e e e e 27

T MODES. . © v o o« o o o o o o o o o o o o o o« o « o a o o« s « o« 30
6.1 PLOT 254 —— Character Plot . « « « o o« o ¢ o « o = o« o« o o o« 31
6.2 PLOT 253 —— Point PlOot . v ¢ o « 4 o o o o o o « « o« o o« « » 31
6.3 An Artillery Game. . . « « ¢ o o o o o « o o o o o o o o o o 36
6.4 PLOT 251 -- Incremental Point Plot . o v ¢ ¢ o« o o o o o« « o 41
6.5 SCTIPL & v v o « o o o o o o o s o s a o o o o o o o o o o « 44
6.6 PLOT 250 =— X Bar Graphe « o ¢ ¢ o ¢« « ¢ « o « o s o o o« « o« 45
6.7 PLOT 247 —— Incremental X Bar Graph. . « ¢« « ¢« « ¢ o« &
6.8 PLOT 246 -- Y Bar Graph and

PLOT 243 -- Incremental Y Bar Graph. « ¢« « « ¢ « o « & « o o 51
6.9 PLOT 242 —— Vector PlOte « o v « o o o o o o o o « o« o o« o o 52
6.10 PLOT 240 -- Incremental Vector Plot . « . « « « ¢ « « « « . D56

6.11 Flying Wed8eS8 + o « o« o « o o o a s o o o o o o « o o o o o 57

(v)

6.12 Reentering Plot Submodes. .
6.13 PLOTting Character Strings.

7. PLOT 6,128 ARD ABOVE.
8. SCREEN REFRESH. « . . .

9. CRT MODE. ¢ « « o o o o o« &
9.1 CRT Plotting « « « o o « o «
9.2 Special Function Keys. . . .
9.3 Saving Displays. . . « « . .
9.4 Duplicating Displays
9.5 Editing Displays . . « « . .

10. QUAD-DIRECTIONAL SCROLLIKG PATCH .
10.1 What the Patch Does
10.2 The Patch « . « « &« « &« « &
10.3 Scrolling Up. « « o « « o &
10.4 Scrolling Down. « « « « o &
10.5 Scrolling Right and Left. .

11. MISCELLANEOUS NOTES.
11.1 A Note on Menu Programs . .
11.2 A Note on Displaying Text .

12. MISCELLANEOUS PROGRAMS
12.1 Variations on a Theme . . .
12.2 Simulating a Radar Scope. .

12.3 Radar Scope Using Incremental Vector Pl

12.4 Some Circles. « ¢« v« ¢ o« o .
12.5 An Animated Joke. . « . . .

12.6 Chess Pieces Using Character Plot Submo

12.7 A Real Time Lunar Lander. .
12.8 Extra Large Characters. . .
12,9 Dices v ¢ 4 ¢ ¢« ¢ o o o o
12.10 Dice -- The Fast Way . . .
12,11 Quick Change Artistry. . .

APPENDICES

A. ASCITI CHART.
B. CHARACTER SET. & v ¢ ¢ « « « « « &
C. EXTRA LARGE CHARACTERS . .
D. PLOT MODES . . & & ¢ ¢ ¢ « ¢ « « &
E. INCREMENTAL VALUES FOR INCREMENTAL

INCREMENTAL BAR GRAPH SUBMODES .

F. INCREMENTAL VALUES FOR INCREMENTAL
G. KEYBOARD ENCODING. . « « & « . . .
H. SOME HELPFUL EQUATIONS
I
J

. SCREEN MEMORY LOCATIONS. .
« COLORS ¢« & o o ¢ ¢ o o o o o o o &

POINT PLOT
VECTOR PLOT

(vi)

ot . . .

de . . .

AND
SUBMODE

58
64

65
69

75
75
75
77
78
78

84
84
85
87
88
88

93
93
94

96
96
97
99
102
103
106
111
121
127

129
131

135
136
138
139

140
141
142
146
147
148

149

e Y

6
6
6
6
6
6
6
6
6
6

. e e

NoOUVPrLN-

1
2
3
4
5
6
7
8
9
1

.10 Triangle Using Incremental X Bar Graph.
6.11 Mystery Program Using Incremental X Bar Graph
6.12 X Bar Graph with FLAG On.
6.13 Erase Screen Using X Bar Graph.
6.14 Erase Screen With X Bar Graph and FLAG on . .
6.15 Sine Function in Y Bar Graph Mode .

LIST OF PROGRAMS

The PRINT Statement. « . . . « e o o o o o @
PRINTing Past the Right Side of the Screen
PRINTing More Than 64 Characters Without a CR/LF
Double Height Characters
The Vertical Mode. « ¢ « ¢ o« « « o o o o o o o
CR/LF in Vertical Mode . .
Drawing a Border

e o e e . e o . e o .

Setting Foreground and Background Colors .
The CCI Code . v v ¢ « &+ ¢ o o o « « o s o o o
Explosion Effect Using Erase Page. .
Color Changes From the Keyboard.
Color Changes in REMark Statements .
The Hatch Character. « « « « o« « o« o o o o o o &
More of the Hatch Character. . . .« « « ¢ « ¢ « &«
Mystery Program. . &OWUM E090ES WITyN Boppens -
Blinking Characters. . « « o« « o o « o o o s o
0 Out of Phase Blinking

Blind Cursor, Addressing. . « « « o « « « o« o o &
Interaction of Visible and Blind Cursors
Reentry to Blind Cursor Mode . . « « & &« &« & o«
Broken Characters. « « o« o« o o o o o o o o o o &
Special Characters . . « « « « « o &
Circle and Square. . . « « « « &
Edges of Characters.
Borders Using Special Characters . . . « « « »
Underlining. « « « « « o o « +
Characters in 4 SizeS. .+ o o« o o o o o o o o o &
Demo Introduction Using the Test Mode.
Demo Introduction #2 . . . « « &« « + &
Explosion Effect Using Test Mode

Character Plot . +« « « & « o « &
Demonstrating the Character Plot
Point Plot Submode . . « ¢« & ¢« ¢ ¢ ¢« ¢ o o o o @
Resolution of COlOrS . o & o o o o o o o o o o @
Testing the Pseudo-random Number Generator .
An Artillery Game€. . o« « o o « o o o o s o o o

Mystery Program Using the Incremental Point Plot
Script Using Incremental Point Plot.
A Triangle Using X Bar Graph « . « « &« « o« « &

(vii)

.
BWE £ cYPN CUESCBIRRD
« o e e o e o o

e o e o . e o o

. e o e o o o o

ocouvunpLLEN

10
11
12
12
14
15
16
16

18
19
19
20

21
22
23
24
24
25

27
27
28

32
32
33
35
35
38
43
44

46
47
48
49
51

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

12,10 Dice v v v v v o ¢ o ¢ e o o o e o e o e e

Incremental Y Bar Graph Demo. « « « o ¢ o« o o o
Explosion Using Vector Plot Submode

Erase Screen Using Vector Plot -- I
Erase Screen Using Vector Plot -- II.
A Flying Wedge. « « ¢ ¢ o o ¢ o o o o o o« o o «

Random Flying Wedges. . « ¢ « o o« o o o o « « &
Reentry to Plot Submodes. . « ¢« ¢ ¢ ¢ ¢ o o + &
Plot Mode Default Co—ordinates. . « « « o o« « &
Graphing Widgeco Production . . « ¢ ¢ ¢ ¢ « o« &
PLOTting Character Strings. « « « o« o« o o o o @

7.1 Verifying Plot Mode Output . « « « & ¢« o « o « &
7.2 Plot Mode. « & o« o o 2 o 2 o o o o « o o o o o
7.3 Blind Cursor in Plot Mode. o « o« o o « o o o o &
7.4 Plot a Border Around the Screen. . « « « « o« o &
7.5 Erase Page in Plot Mode. . « ¢ ¢ ¢« « o o o o o &

1 PEEKing Screen Refresh Memory. . « « « o o o« « &
2 POKEing Into Screen RAM. . ¢ « ¢ ¢ ¢ ¢« « « & o «
3 POKE Any Character Into Screen Memory.
.4 Half Character Color Changes . « « « « « &« « « &
5 POKEing CCI Codes Greater Than 127
6 Move a * Across the Screen . o « « ¢« « « « & o «

Dup a Screen DiSpPlay . « o « o o o « o o o o o @
Display Create/Edit/Dup. o « « o o o o o o« o o &

Quad-Directional Scrolling Patch. « . .
Backwards Text Guessing Game€. . « « o« o o« « o &

Blank MeNU. « o o« « « « o o o o o o o o o o
Displaying TeXt o « « « o o o o o o o o« o o

Converging Borders. « « « o« « « o o o o o o « &
PLOTting a Circle . v v ¢ ¢ o« ¢ « o o o o o o s
Simulating a Radar Scope. . « « o« o o o o o « &
Radar Scope Simulation Using Incremental Vector
Circles About the COrners . « « « « o o o o o &
An Animated Joke€. o o ¢ ¢ o o o ¢ ¢ o o o o o o
Chess Pieces Using Character Plot « .
Real Time Lunar Lander. « « « « « « o o o o o &
Extra Large Characters. . . ¢« « ¢« ¢ ¢ ¢ o ¢ o &

12.11 Dice —— The Fast Way + o o o o « o « o o o o«

12,12 Quick Change Artistry. « « « o o o o o o o &

(viii)

51
52
54
55
57
58
58
59
60
64

65
66
66
67
68

69
70
71
72
73
73

78
79

85
92

93
94

96

97

99
101
102
103
107
112
121
127
129
132

1. THE CURSOR AND WHERE IT GOES

1.1 CURSOR CONTROL

Characters are printed wherever the cursor is presently located. But
your Intecolor®or Compucolor®is a cursor addressable machine, which means
that you may put the cursor anywhere on the screen before printing a
character. This is accomplished by a statement of the form PLOT 3,X,Y, where
X is a number (or variable, or expression) which determines the horizontal
location of the cursor, and Y is a number (or variable, or expression) which
determines the vertical location of the cursor. For example,

PLOT 3,5,10:PRINT "TEST"

would position the cursor at the sixth column (counting 0 as the first) and
the eleventh line down (counting 0 as the first) and print the word "TEST"
beginning at that spot.

X —

0 1 2 61 62 63

«—
b

30

31

It is not always necessary to use this cursor control in order to print
a character at a desired spot on the screen. We will see two other methods
later in Section 3 (Blind Cursor) and Section 8 (Screen Refresh Memory).

The cursor may be moved up, down, right or left by PLOT 28, PLOT 10,
PLOT 25, or PLOT 26, respectively. PLOT 13 returns the cursor to the beginning
of the line it is presently on. PLOT 8 places the cursor in the top, left
hand corner of the screen. It is therefore equivalent to PLOT 3,0,0. (See
Appendix A for a list of the PLOT commands.)

®Intecolor and Compucolor are trademarks of Intelligent Systems Corp.

-1~

1.2 HIDING THE CURSOR

The cursor may be taken off the screen, where it will remain until (1)
explicitly moved elsewhere, (2) the end of the program is reached, or (3) a
PRINT or INPUT statement is issued (except for an INPUT statement which
prints nothing; that is, INPUT "X";A$ will print "X" and, hence, put the
cursor back on the screen; but INPUT "";A$ will output nothing to the
screen, and so the cursor will not be moved from wherever it is until a key
is pressed).

To place the cursor off the screen, specify 64 for the X value. Thus,
PLOT 3,64,0 will place the cursor just off the screen on line 0 (the top

line), and PLOT 3,64,15 will place it off the screen on line 15, and so
on,

1.3 ERASE PAGE

The entire screen is erased by the PLOT 12 instruction (or by pressing
the ERASE PAGE key). The screen will be erased in the background color last
used by filling all the character positions with spaces. In addition, the
cursor will be homed--placed at co-ordinates X=0, Y=0. For additional ways
of erasing the display, see Sections 5, 6.13, 6.14, 6.18 and 6.19.

1.4 THE PRINT STATEMENT

The PRINT statement in BASIC will print whatever follows, until the end
of the program line (or a colon) is reached. Then a carriage return and
line feed will automatically be performed. (A carriage return [CR] simply
moves the cursor back to the left side of the screen, just like PLOT 13, and
a line feed [LF] moves the cursor down to the next line, just like PLOT 10.)
However, the CR/LF may be suppressed with either a semicolon or a comma
following whatever is to be PRINTed. A semicolon will hold the cursor at
its present location. A comma will move the cursor over to the next tab
column. (The tab columns are columns 8, 16, 24, etc.) Note also that a
semicolon or comma may be inserted before whatever is to be PRINTed.

5 REM PROGRAM 1.1

6 REM THE PRINT STATEMENT

10 PRINT "TEST #1":REM THIS DOES AN AUTOMATIC CR/LF
20 PRINT "TEST #2",:REM TAB OVER AFTER PRINTING

30 PRINT "TEST #3":REM CR/LF

40 PRINT,,"TEST #4":REM TAB TO COLUMN 16 BEFORE PRINTING
50 PRINT "TEST #5";:REM SUPPRESS CR/LF

60 PRINT "TEST #6"

70 FOR J=7 TO 10

80 PRINT "TEST #"J;

90 NEXT

100 PRINT

110 PRINT; "TEST #11"

What does line 100 do? 1If a PRINT statement has nothing to print, it

-2

will just do a CR/LF. Notice that after the FOR-NEXT loop (lines 70-90) has
executed, the cursor will be sitting at the end of the last thing printed,
because it will have encountered a semicolon. If line 100 is omitted, the
"Test #11" in line 110 will be printed on the same line as the four previous
"TEST"s. (Try it and see.) Also notice that the semicolon in line 110 is
superfluous. I don't even know why I put it in....

When the cursor has been moved past the right-most column, it wants to
"wrap around" back to the left side of the screen and one line down. But
in addition the computer does a CR/LF. Now, since the "wrap around" is, in
effect, also a CR/LF, pushing the cursor past the right-most column is like
suddenly issuing two carriage return/line feeds, and the result will be that
a line will be skipped before the printing is continued.

5 REM PROGRAM 1.2

6 REM PRINTING PAST THE RIGHT SIDE OF THE SCREEN
10 FOR J=1 TO 32

20 PRINT "TEST";

30 NEXT

Notice that although "TEST" will be printed 32 times, the first 16 will fill
up the first line, but the second 16 will be printed only after skipping a
line,

If a series of PRINT statements outputs 64 or more characters, and if
each of those PRINT statements is followed by a semicolon, then BASIC will
insist on doing a CR/LF, even if the cursor has not reached the right side
of the screen., (The PLOT 15 in the following program selects the small
characters, and will be discussed in the next section.)

5 REM PROGRAM 1.3

6 REM PRINTING MORE THAN 64 CHARACTERS WITHOUT A CR/LF
10 PLOT 15,12:REM SMALL CHARACTERS; CLEAR SCREEN

20 FOR J=1 TO 15

30 PLOT 3,J,J:REM POSITION THE CURSOR

40 PRINT "LINE"J;:REM SUPPRESS THE CR/LF

50 NEXT

By the time the program is part way through PRINTing "LINE 11", 64 characters
will have been PRINTed without a CR/LF, and so the CR/LF is automatically
issued, resulting in the disruption of part of the text. (Notice that the
valueof Jis printed, as all positive numbers are, witha leading space-—negative
numbers, of course, have a negative sign-—and so that must be taken into
account when counting out 64 characters.)

1.5 CHARACTER HEIGHTS

The computer can print 32 lines of 64 (regular height) characters per
line, or it can print 64 double height characters per line, with only 16
lines. (When the power is first turned on, the double height characters are
used.)

The double height characters may be selected in BASIC by PLOT 14. Any
subsequent character (letter, number, special character, and even a space)
will be double height. A PLOT 15 statement will set the computer to output

-3-

regular height characters.

The character height may also be set from the keyboard: the A7 ON key
acts just like PLOT 14, and the BL/A7 OFF key is equivalent to PLOT 15.
Incidentally, this key-—or a PLOT 15--also turns off the BLINK. (See Section
2.7.) Be aware, though, that the BASIC interpreter will not understand these
keys and will tell you so with "SN ERROR" (syntax error), unless the keystroke
is in a REMark statement or enclosed in quotes. (See Section 2.3.)

Appendix B displays all the computer's characters in both regular and
double height.

When the A7 is on (double character height), characters will be printed
on 2 of the 32 regular height lines on the screen., Moreover, the bottom of,
a double height character will always appear on an odd-numbered line.
Although you may direct the cursor to an even-numbered line, the character
will nevertheless be printed on the odd-numbered line.

‘e

FIG. 1.2

5 REM PROGRAM 1.4
6 REM DOUBLE -HEIGHT CHARACTERS

10 PLOT 14:REM DOUBLE HEIGHT
20 PLOT 3,0,3:PRINT "LINE 3"
30 PLOT 3,10,4:PRINT "LINE 4"

Giant sized letters can be fashioned by certain combinations of the
computer's special characters. (See Section 4.3.)

1.6 SCROLL MODE

The monitor screen displays 64 characters per line (numbered 0-63) and
32 lines per "page" (numbered 0-31). When the cursor reaches the bottom of
the screen and attempts to go down another line, it just stays at the bottom
and the rest of the screen "scrolls" up. The top line consequently disappears.
This is called the SCROLL (or ROLL UP) MODE and is the mode the computer is
automatically in when power is first turned on. If the screen is subsequently
taken out of the scroll mode, it may be brought back in BASIC by PLOT 27,11,
or from the keyboard by the sequence ESC K.

1.7 PAGE MODE

Sometimes it is desirable not to have the screen scroll up, and in such
cases the PAGE MODE is used. This is accomplished in BASIC by PLOT 27,24
or from the keyboard by the sequence ESC X. Now when the cursor passes below
the bottom of the screen, it will reappear at the top, and the screen will

-4

. not scroll.

Programs which use the PAGE mode might conveniently end with PLOT 27,11
(return to scroll mode), for two reasons: (1) In debugging a program, you
will want to list it, and if the listing is more than 32 lines, the page
mode will cause the listing to overlay itself from above, which makes for
difficult reading. (2) Also, if the computer is left in page mode, a
subsequent program which requires the scroll mode will be foiled, unless it
includes PLOT 27,11 near its beginning. (Not a bad idea—-just in case.
A program which takes too much for granted is a program likely to go awry.)

1.8 VERTICAL MODE

You can also set the display to print a string of characters in a vertical
row. That is, anything to be printed will be displayed not horizontally,
as usual, but vertically (top to bottom). In addition, the screen will not
scroll.

The vertical mode is selected in BASIC by PLOT 27,10, or from the
keyboard by ESC J. You may specify the cursor X,Y position where you wish
to begin printing in the vertical mode, and this specification may take place
whether you are already in the vertical mode or not.

5 REM PROGRAM 1.5

6 REM THE VERTICAL MODE

190 PLOT 12:REM CLEAR SCREEN

20 PLOT 27,10:REM VERTICAL MODE

3¢ pLOT 3,10,5:REM POSITION THE CURSOR
40 PRINT "TEST #1"

50 PLOT 3,20,5

60 PRINT "TEST #2"

68 REM NOW FOR PROOF THAT THE SCREEN DOES NOT
69 REM SCROLL WHEN IN VERTICAL MODE

70 PLOT 3,32,28:PRINT "TEST #3"

8¢ PLOT 27,11:REM BACK TO SCROLL MODE

Remember that if a PRINT statement is followed by a semicolon, the cursor
is held at the end of whatever was printed, whereas if nothing occurs at the
end of the PRINT statement, the cursor will return to the left side of the
screen, one line down. This occurs in scroll, page and vertical modes.,

5 REM PROGRAM 1.6

6 REM CR/LF IN VERTICAL MODE

10 PLOT 12,27,10:REM CLEAR SCREEN & SET TO VERTICAL MODE
20 PLOT 3,32,5:REM POSITION THE CURSOR

30 PRINT "TEST #1";:REM NOTE THE SEMICOLON

40 PRINT "TEST #2":REM NO SEMICOLON

50 PRINT "TEST #3"

60 PLOT 27,11:REM SCROLL MODE

In BASIC, an entire line of the display may be erased by PLOT 11, Or
if you wish to spend more time doing it, PRINT SPC(64) will work. A still
slower method is to generate a loop in which each character position is
successively replaced by a space:

FOR J=@ TO 63:PRINT " ";:NEXT

But the PLOT 11 (or the ERASE LINE key) will erase a horizontal line, even
if you are in the vertical mode. The PRINT SPC(32) method and the loop
method will, however, erase a vertical line if you are in the vertical
mode. (You need only 32 spaces in vertical mode, because a vertical column
is 32 lines high.)

Suppose, now, we wish to draw a line around the entire screen. We could,
of course, use some of the special characters for drawing the line, or we
could use the PLOT mode. But the discussions of the special characters and
of the PLOT mode will be reserved for later. Right now let us draw the line
by drawing spaces in a different background color. Since the discussion of
the various color commands will come later, it is enough at this point to
attend to how the line is drawn, nevermind its color.

5 REM PROGRAM 1.7

6 REM DRAWING A BORDER

19 pPLOT 15,6,6:REM SELECT REGULAR CHARACTER HEIGHT; SET QOLOR
20 PLOT 12:REM CLEAR SCREEN

30 PLOT 27,24:REM PAGE MODE

49 PLOT 6,8:REM SET BACKGROUND (OLOR TO RED

50 PLOT 11:REM ERASE THE TOP LINE (I.E., MAKE IT RED)

60 PLOT 3,0,31:REM MOVE THE CURSOR TO BOTTOM OF SCREEN

70 PLOT 11:REM ERASE BOTTOM LINE IN RED

80 PLOT 8:REM HOME CURSOR

90 PLOT 27,10:REM VERTICAL MODE

100 PRINT SPC(32)"":REM DRAW A LINE IN RED

119 PLOT 3,63,0:REM POSITION CURSOR AT TOP OF RIGHT HAND CQORNER
120 PRINT SPC(32)"":REM DRAW A LINE

139 PLOT 8:REM HOME CURSOR AGAIN

149 PLOT 27,11:REM SCROLL MODE

150 PLOT 6,3:REM BACK TO A MANAGEABLE QOLOR

Notice that when the PLOT 11 occurs in lines 50 and 70, the cursor
remains at the beginning of the line it is presently on. Since, in line
50, that is the top line of the screen, and since the computer is set to
page mode, we could move the cursor to the bottom line by moving it up one
line: it will wrap around and appear at the bottom. (Actually, it will do
this in vertical and scroll modes, too.) So line 60 could just as easily
be:

60 PLOT 28:REM CURSOR UP

Line 80, which homes the cursor, i.e., places it at the top left of the
screen, could also be accomplished by moving the cursor down one line from
the bottom of the screen so that it wraps around to the top. (It won't do
this in scroll mode!) On the other hand, why bother to put it at the top
of the screen at all? Why can't we just print 32 spaces starting at the
bottom? We can. In vertical mode, just as in page mode, the cursor wraps
around from the bottom to the top. So let's delete line 80.

Line 110 positions the cursor in the upper right corner before drawing
a vertical line. But line 100 has just drawn a vertical line on the left
side of the screen. What happens if we move the cursor left from there? It
will wrap around to the right side, which is just where we want it to be.

-6-

So we could change line 110 to:

110 PLOT 26:REM CURSOR LEFT

2. COLORS

The computer is equipped to display characters in any of eight colors
against a choice of any of eight background colors. There are several ways
of setting the colors in BASIC.

2.1 THE FLAG BIT

If a PLOT 29 is issued, then the FLAG bit is turned off, and subsequent
color commands will determine the foreground color according to Table 2.1.
The background color will not be changed. If a PLOT 30 is issued, then the
FLAG bit is turned on, and subsequent color commands will determine the
background color according to that same Table. The foreground color will
not be changed.

PLOT COLOR
16 Black
17 Red
18 Green
19 Yellow
20 Blue
21 Magenta
22 Cyan
23 White
TABLE 2.1

5 REM PROGRAM 2.1

6 REM SETTING FOREGROUND AND BACKGROUND COLORS
160 PLOT 30:REM FLAG BIT ON

20 PLOT 17:REM SET BACKGROUND TO RED

30 PLOT 29:REM FLAG OFF

40 PLOT 20:REM SET FOREGROUND TO BLUE
50 PRINT "BLUE ON RED ";

60 PLOT 23:REM SET FOREGROUND TO WHITE
70 PRINT "WHITE ON RED ";

80 PLOT 30:REM FLAG ON

90 Cl=20:C2=16

109 PLOT C1:REM SET BACKGROUND TO BLUE
110 PRINT "WHITE ON BLUE ";

120 PLOT C2:REM SET BACKGROUND TO BLACK
130 PRINT "WHITE ON BLACK"

2.2 THE CCI CODE

If a PLOT 6 is issued, then the next PLOT statement is taken as color
information (commonly referred to as the CCI code) for both background and
foreground colors according to Table 2.2, If the argument of the PLOT
statement which follows the PLOT 6 is viewed as an eight bit binary number,
ther Table 2.3 indicates what color will be determined by which of the
eight bits is on. (The functions of bits B6 and B7--blink and plot--will
be discussed below, in Sections 2.9 and 7.)

Program 2.1 above could be rewritten as Program 2.2.

Bit:| B7 B6 B5 B4 B3 B2 Bl BO

PIOT | BLINK| BACKGROUND QOLOR FOREGROUND COLOR

BLUE | GREEN| RED BLUE | GREEN| RED

Decimal:| 128 64 32 16 8 4 2 1

TABLE 2.2

Y e ‘,;N;_u-;,;.:‘,ur‘,
pomn, Fonf @®oenn
G+ g +4 v -

“un— %!

PIOT 6,n Color:
Decimal Binary Background Foreground
/) 00000000 black black
1 00000001 black red
2 20000010 black green
3 00000011 black yellow
4 00000100 black blue
5 20000101 black magenta
6 00000110 black cyan
7 00000111 black white
8 00001000 red black
9 00001001 red red
62 09111110 white cyan
63 99111111 white white
TABLE 2.3

5 REM PROGRAM 2.2

6 REM THE CCI CODE

10 PLOT 6,12:REM BACKGROUND RED, FOREGROUND BLUE
20 PRINT "BLUE ON RED ";

30 PLOT 6,15:REM BACKGROUND RED, FOREGROUND WHITE
40 PRINT "WHITE ON RED "“;

50 PLOT 6,39:REM BACKGROUND BLUE, FOREGROUND WHITE
60 PRINT "WHITE ON BLUE ";

70 PLOT 6,7:REM BACKGROUND BLACK, FOREGROUND WHITE
80 PRINT "WHITE ON BLACK"

Note that the PLOT 6,n command will not affect the FLAG bit, so color
commands like those in Program 2.2 will be unaffected. For example, add
this to the above program:

99 PLOT 17
100 PRINT "RED ON BLACK"

Line 100 will indeed print red characters on a black background, unless
the FLAG was on, in which case line 90 changed the background color to red,
and line 100 consequently printed white characters on a red background. On
the other hand, as Program 2.2 demonstrates, the condition of the FLAG bit
will not affect the setting of foreground and background colors by means
of the PLOT 6 ,n sequence.

If you erase the screen several times in succession using different
background colors, you can create an explosion effect.

5 REM PROGRAM 2.3

6 REM EXPLOSION EFFECT USING ERASE PAGE

1@ FOR J=1 TO 2

20 PLOT 6,56:REM BACKGROUND = WHITE

30 GOSUB 20@:REM ERASE PAGE & PAUSE SLIGHTLY
40 PLOT 6,24:REM BACKGROUND = YELLOW

50 GOSUB 200

60 PLOT 6,0:REM BACKGROUND = BLACK

70 GOSUB 200

80 PLOT 6,24:REM BACKGROUND = YELLOW AGAIN
99 GOSUB 200

109 PLOT 6,0:REM BACKGROUND = BLACK AGAIN
110 GOSUB 200

120 PLOT 6,40:REM BACKGROUND = MAGENTA

130 GOSUB 200

140 NEXT

150 PLOT 6,2,12:REM BACK TO A MANAGEABLE COLOR
160 END

198

199 REM

200 PLOT 12:REM CLEAR SCREEN

210 FOR T=1 TO 25:NEXT:REM SLIGHT PAUSE

220 RETURN

Alternatively, if the FLAG bit is set, then the background colors may

be selected by PLOT 16 for black, PLOT 17 for red, and so on, so that the
above program could be re-written:

-10-

[\

10 PLOT 3@:REM FLAG ON

20 FOR J=1 TO 2 .

30 PLOT 23:REM BACKGROUND = WHITE
40 GOSUB 200

etc.

Since a previously run program may have affected the FLAG bit, and
since, as well, the FLAG bit can be turned on or off from the keyboard, it
is good programming practice to make sure your programs take nothing for
granted: near the beginning of the program you could put in a statement
which sets up everything the way you want it (especially colors, the FLAG
bit, character heights, and page or scroll mode). If your program changes
foreground colors frequently, you might put in a PLOT 29 early on, just to
make sure the FLAG is off. Now you can change foreground colors the easy
way with PLOT n, where n=17 for red, 18 for green, and so on. (If the FLAG
is already off, a PLOT 29 statement will do no harm., Better safe than sorry,
and all that.)

2.3 COLOR KEYS

You can specify colors from the keyboard, too, just by pressing the
CONTROL key along with the appropriately colored key. If you have the color
key pad at the left of the keyboard, you need only press the appropriate
color key there. Once you have set the color in this manner, whatever you
type in will be displayed in that color until the color is changed, either
from the keyboard or by a program. The FLAG ON and FLAG OFF keys are there
as well., If the FLAG is off, then any subsequent color key (or PLOT statement
which affects the color-—except for the PLOT 6,n statement) will select a
foreground color. If you press the FLAG ON key, then any subsequent color
key (or PLOT statement which affects the color) will change the background
color. .

All this is only to say that the computer does not care whether you
set the FLAG or the color from the keyboard or from a BASIC statement.
However, BASIC will not recognize such a change entered from the keyboard
(and it will tell you so with "SN ERROR") unless the key stroke is in a
REMark statement or enclosed in quotes. You may use quotes only in PRINT
statements, INPUT statements, DATA statements, or string commands. In the
following program, use the CONTROL-color key (or the color key in the color
key pad) as specified in brackets: [].

5 REM PROGRAM 2.4

6 REM COLOR CHANGES FROM THE KEYBOARD

10 PLOT 29:REM TURN FLAG OFF, JUST IN CASE IT WAS ON
20 PRINT " [yel]YELLOW"

30 PRINT " [red]RED"

40 DATA " [wht]WHITE"

50 READ DS

60 PRINT DS$

-11-

Be aware, though, that setting colors from the keyboard requires one byte
for each key stroke. For example, D$ in the above program is five characters
in length plus one more for the [wht]. You can verify this by adding the
following lines: '

78 PRINT "LENGTH OF D$="LEN(DS)

80 DATA "WHITE":REM NO OOLOR CHANGE FOR THIS ONE
99 READ WS

100 PRINT "LENGTH OF W$="LEN(WS)

118 IF D$=WS THEN PRINT "D$=W$":GOTO 130

120 PRINT "DS<OWS"

139 IF D$=" [wht JWHITE" THEN PRINT "OK!"

Color changes may also be included in REMark statements. Such changes
will affect the color of the program listing (and so it is useful for
highlighting different parts of a program listing), but since BASIC ignores
everything after the REM, a color change there will not affect the colors
which your program puts out when it runs.

5 REM PROGRAM 2.5

6 REM QOOLOR CHANGES IN REMARK STATEMENTS
10 PLOT 29:REM FLAG OFF

20 REM [red]

30 PRINT " [wht]WHITE"

49 PLOT 18:REM GREEN

50 REM [yel]

60 PRINT "GREEN"

There is one final way to change colors, and that is by POKEing suitable
CCI codes into the screen refresh memory. We'll take up that interesting
topic in Section 8.

2.4 THE "HATCH" CHARACTER

Although the computer has eight background and eight foreground colors,
even more are available under certain conditions. Look at the character
associated with shift-@ (FLAG off): §§ . (PLOT 96 also does it.) That little
character, like any other character, can be printed in any color on a
background of any color. But because the background shows through only in
between the hatches, the result is a new color which is a function of the
foreground and background color combination. Use the PLOT 6 followed by a
CCI code, followed by PLOT 96 (or PRINT "§§") and see what you can come up

with, Program 2.6 will display all the possibilities.

5 REM PROGRAM 2.6

6 REM THE HATCH CHARACTER

10 PLOT 27,24:REM PAGE MODE

20 PLOT 30,16,29,16:REM SET CQOLORS

30 PLOT 15,12:REM SMALL, CHARACTERS; CLEAR SCREEN
37 REM PRINT HEADINGS AT TOP. THE NUMBERS UNDER
38 REM 'BG' AND 'FG' ARE BACKGROUND AND FOREGROUND
39 REM QOLORS FROM BLACK (16) TO WHITE (23)

12

(-

40 FOR X=6 TO 54 STEP 16

50 PLOT 3,X,0,17:PRINT "BG ";:PLOT 22:PRINT "FG"

60 NEXT:PRINT

68 REM INITIALIZE BACKGROUND (BG) AND

69 REM FOREGROUND (FG) TO BLACK

70 BG=16:FG=16

80 FOR X=@ TO 48 STEP 16

99 FOR Y=1 TO 31 STEP 2

100 FG=FG+1:REM NEXT FG QOLOR

110 IF FG=24 THEN FG=16:BG=BG+1:REM NEXT BG COLOR
120 IF BG=24 THEN X=48:Y=31:GOTO 170:REM ALL DONE
130 PLOT 30,B8G,29,FG,3,X,Y:REM SET QOLOR & CURSOR
140 PLOT 96,96,96,96,25:REM 4 HATCHES, THEN MOVE OVER
150 PLOT 6,;1:PRINT BG;

160 PLOT 6,6:PRINT FG

170 NEXT Y,X

180 pPLOT 6,2,3,48,31

190 INPUT "WAITING...";AS:REM WAIT FOR 'RETURN'

200 pLOT 27,11

2.5 QuUizZ

OK.

()
(2)

(3)
(4)

Time for a quiz.

Why the PLOT 27,24 (page mode) in line 107?

Why is there a PLOT 25 (cursor right) in line 140 instead of PLOT
32 (space)?

What good do lines 180 and 190 do? Why not just end the program?
Line 200 is supposed to return to scroll mode. Yet when the program
ends, the READY prompt and the cursor appear at the top of the
page. That is, it seems as if the screen is not scrolling. Why?

Half the fun of this computer business is discovering for yourself how

things

work. But in case you need assistance, here are some responses to

the four questions. (No fair peeking until you've tried to answer them for
yourself.)

(1) Try running the program in scroll mode by changing line 10 to:

(2)

10 PLOT 27,11:REM SCROLL MODE

PLOT 32 would print a space, and a space is printed in whatever
background color was last used. The results for this program would
be unaesthetic. See for yourself. PLOT 25 is used because it just
moves the cursor without printing anything, not even a space. (Nor
will it erase anything.) Of course, PLOT 32 will work just fine if
you first change the background color back to black. You could,
for example, combine lines 140 and 150 into:

140 PLOT 96,96,96,96,6,1,32: PRINT BG;

~13~

While you're at it, you could simplify things even more. Remember
that color changes from the keyboard may be entered into a BASIC
program by placing them in REMark statements or within quotes. Let
us, in effect, define a new character with this additional line

(the "[]" indicate information which you should enter from the
keyboard):

25 Ds="BRBBIr1g on] [blk] [flg off] [red] "
And now delete line 150 and change line 140 to:

140 PRINT DS$;BG;

(Note that the semicolon after D$ is optional. You could also
use PRINT D$BG;.)

(3) Omit 1lines 180 and 190 and see what happens. That's no good.
(Omitting line 200 as well--return to the scroll mode-—is also no
good, since the READY prompt will appear near the top of the screen
and erase part of your display.) The WAITING... is just a little
touch to help clarify what's happening. You could use INPUT "";AS$
instead, but when the program has run, the cursor will just sit
near the corner of the screen, blinking. You know that the program
is just waiting, but would anybody else?

(4) Line 200 really does return to the scroll mode, but it doesn't do
so until it has received the dummy input from line 190, which causes
a carriage return/line feed. Since the system is at that time still
in page mode, the cursor '"wraps around"” to the top of the screen.
If you wish the screen to scroll in the usual way at the end of
the program, you can reverse the effect of the line feed by PLOT
28 (cursor up):

200 pLOT 28,27,11

The PLOT 28 moves the cursor up a space, but since it is already at
the top of the screen, it "wraps around" to the bottom.

Notice that eight of the colors in the output of that program seem to
be identical. For example, 17,19=19,17. Actually, the pairs are not quite
the same, but nearly so. There is a slight difference in how the edges of
the hatch characters meet up or mesh. Try this:

5 REM PROGRAM 2.7

6 REM MORE ON THE HATCH CHARACTER

1¢ pLOT 30,16,29,23,12:REM SET OOLOR;FLAG OFF;CLEAR SCREEN
20 PLOT 15:REM REGULAR HEIGHT CHARACTERS

29 REM DRAW A RECTANGLE OF HATCH CHARACTERS (WHITE ON BLACK)
38 FOR ¥=13 TO 21

43 PLOT 3,28,Y

50 FOR X=28 TO 35

60 PLOT 96:REM THE HATCH CHARACTER
70 NEXT:NEXT

86 PRINT

~14-

90 INPUT "PRESS RETURN TO QONTINUE ";A$

97 REM NOW INTERCHANGE BACKGROUND & FOREGROUND
98 REM COLORS & PRINT A SMALLER RECTANGLE OF
99 REM HATCH CHARACTERS INSIDE THE LARGER ONE
100 PLOT 6,56:REM BLACK ON WHITE

119 FOR Y=15 TO 19

120 pLOT 3,30,Y

130 FOR X=30 TO 33

140 PLOT 96

150 NEXT:NEXT

160 PLOT 6,2:REM BACK TO A MANAGEABLE COLOR

Notice how the edges of the hatch character do not quite mesh when the
foreground and background colors are switched. This could be a useful way
of highlighting various colored regions.

2.6 MYSTERY PROGRAM

Try to determine what this program will do. Then type it in and RUN it
to see if you were correct.

5 REM PROGRAM 2.8

6 REM MYSTERY PROGRAM

19 pLOT 15,6,6,12,27,24

20 J=-1

30 FOR L=1 TO 63

49 PLOT 6,L

50 J=J+1:IF J>15 THEN J=0

60 pLOT 3,d,Jd

70 FOR K=1 TO 64-J-J:PLOT 96:NEXT

80 PLOT 26

9% PLOT 27,10

100 FOR K=1 TO 32-J-J:PLOT 96:NEXT

119 PLOT 27,24,28

120 FOR K=1 TO 63-J-J:PLOT 26,96 ,26 :NEXT
130 PpLOT 27,10

140 FOR K=1 TO 31-J-J:PLOT 28,96 ,28:NEXT
150 PLOT 27,24

160 NEXT

170 PLOT 6,2

180 END

2.7 BLINK

The foreground color of any single character or of any group of characters
(including the entire screen) can be made to blink against the background
color. Actually, this is not altogether accurate: the foreground color of
the blinking character is not replaced with the background color as the
character blinks; rather, the foreground color is turned on and off. The
result is always a switch from the foreground color to black, back again,

-1 5..

and so on.
The blink mode is turned on in BASIC in one of two ways.

2.8 PLOT 31

Issuing a PLOT 31 will make any subsequent printable character (including
special characters and graphics) blink. A PLOT 15 will turn off the blink,
but only for subsequent characters: characters which are already blinking
will not be affected. Thus, to stop a blinking character, you will have to
turn off the blink and then reprint that character. Incidentally, PLOT 15
will also turn off the A7 bit, i.e. will cause further characters to be
printed in regular height.

5 REM PROGRAM 2.9

6 REM BLINKING CHARACTERS

19 PLOT 15:REM REGULAR CHARACTER HEIGHT

20 pLOT 30,16,29,17:REM SET COLORS; FLAG OFF
30 PRINT "BLINK TEST (OFF)"

40 PLOT 31:REM BLINK ON

50 PRINT "BLINK TEST (ON)"

60 PLOT 30,19,29,17:REM RED ON YELLOW

70 PRINT "BLINK TEST (ON)"

80 PLOT 19:REM FOREGROUND TO YELLOW

90 PRINT "BLINK YELLOW ON YELLOW"

100 PLOT 15:REM BLINK OFF

119 pLOT 30,16,29,18:REM BACK TO A MANAGEABLE (COLOR

Line 80 blinks yellow on yellow. But since a yellow character on a yellow
background is perfectly camouflaged, it is not seen. Because these characters
are blinking, they alternate between yellow and black. The result is an
on-off message which has a slightly different effect from the message
printed by line 60 (which changes colors, too, but is always there to be
seen). This is no different from line 40, which also blinks its message.
But since that message is red on black, it is not '"camouflaged" until the
red is turned off (in which case it becomes black on black), whereas the
message in line 80 disappears only when its foreground color is turned on.
These facts allow you to print messages which blink in two different ways
at the same time.

5 REM PROGRAM 2.10

6 REM OUT OF PHASE BLINKING

19 pLOT 30,16,29,17:REM SET QOLORS; FLAG OFF
20 PLOT 15,12:REM REGULAR CHARACTER HEIGHT; CLEAR SCREEN
30 PLOT 31:REM BLINK ON

40 FOR Y=14 TO 18 STEP 4

50 PLOT 3,25,Y

60 PRINT "***xkkkkkkkkkxn

70 NEXT

80 PLOT 27,10:REM VERTICAL MODE

90 FOR X=25 TO 37 STEP 12

1908 pLOT 3,X,15

110 PRINT "***"

-16-

120 NEXT

139 PLOT 27,11:REM BACK TO SCROLL MODE

140 PLOT 30,17:REM BACKGROUND TO RED

156 PLOT 3,26,15:PRINT SPC(11)""

160 PLOT 3,26,16:PRINT " RED ALERT ":REM NOTE THE SPACES
176 PLOT 3,26,17:PRINT SPC(11)""

180 PLOT 15:REM BLINK OFF

190 PLOT 16:REM BACKGROUND TO BLACK (NOTE THAT THE

191 REM FLAG WAS LEFT ON FROM LINE 140)

200 PLOT 29:REM FLAG OFF

Incidentally, why not try some other character (or characters) for the

blinking borders produced by lines 60 and 110? Try "#", "+", or some of
the special characters.

2.9 BLINRK AND THE CCI CODE

Blinking characters may also be selected by the PLOT 6,n instruction,
where 63<n<128. That is, just add 64 to the desired CCI code for the colors.
Examples:

PLOT 6,64+1 blinks red on black;
PLOT 6,64+38 blinks cyan on blue.

A PLOT 6,n instruction will turn off the blink if n is less than 64. Or
the blink may be turned off with PLOT 15 or with the BL/A7 OFF key.

-17-

3. THE BLIND CURSOR

There are two methods of putting characters on the screen without using
the cursor. One way is to POKE appropriate numbers into the screen refresh
memory; that will be discussed in Section 8. In this section we examine
the blind cursor mode. The blind cursor mode can be entered in two ways.

3.1 BLIND CURSOR ADDRESSING

The PLOT 3,X,Y instruction usually moves the cursor to the given X,Y
co-ordinate. But if X=64, then the cursor is placed off the screen at the
indicated Y co-ordinate. (See Section 1.1.) And if X is greater than 80,
the X value will be ignored entirely, the cursor will remain where it is,
and the blind cursor mode will be entered. (Values of X from 65 through 80
will generate an AUTO command--LOAD "MENU":RUN.) Following a value of 81
or more for X, the next two numbers will be taken to be the X,Y co-ordinate
of the blind cursor. (These numbers operate just as they would in the
visible cursor mode, but the visible cursor is not moved from its present
location.) The third number will be taken as the CCI code (just as it is
in the PLOT 6,n form). For example,

pLOT 3,127,15,20,1

will position the blind cursor at X=15,Y=20 and set the CCI code to 1 (red
on black). (Although the blind cursor will now print in red, the color for
the visible cursor will remain unaffected.) The blind cursor mode is exited
by PLOT 27,27 (or ESC,ESC).

PLOT 3,127,15,20,1:PRINT "BLIND CURSOR":PLOT 27,27

The visible cursor controls (PLOT 10, PLOT 28, PLOT 26, and so omn),
will not move the blind cursor, although they will move the visible cursor,
even when you are in the blind cursor mode. The only blind cursor control
is the explicit setting of the X and Y values. However, you need not exit
the blind cursor mode and then reenter it in order to re-position the blind

cursor. Instead, you may issue another statement of the form PLOT 3,127 ,X,Y,CCI
code.

5 REM PROGRAM 3.1

6 REM BLIND CURSOR ADDRESSING

10 PLOT 6,6,12:REM SET OOLOR & CLEAR SCREEN
20 FOR J=1 TO 7

30 PLOT 3,127:REM BLIND CURSOR

49 pLOT J,J,J:REM X,Y & CCI CODE

50 PRINT "LINE"J

60 NEXT

70 PLOT 27,27:REM EXIT BLIND CURSOR MODE

Notice, though, that as this program runs, the visible cursor moves down
the screen as each line is printed in the blind cursor mode. You can slow

-18-

w

things down a bit for a better look by inserting:
55 FOR K=1 TO 200@0:NEXT:REM PAUSE

Even if you first put the visible cursor off the screen with, say,
15 pLOT 3,64,0

you will find that the visible cursor still appears. Why is that? The reason
is not hard to find. Whenever a PRINT statement is executed, BASIC
automatically follows it with a carriage return/line feed (CR/LF), i.e.
PLOT 13,10, unless it is explicitly instructed otherwise with a semicolon
or comma. (See Section 1.4.) But CR/LF are visible cursor controls. No
wonder, then, that the visible cursor reappears. If you place a semicolon
at the very end of line 50, then the visible cursor will not move. The
semicolon, however, introduces difficulties of its own, for whenever 64
characters have been PRINTed without a CR/LF, BASIC thinks that it is time,
no matter what, to go back down to the next line., And this it will do--with
the visible cursor; the blind cursor will continue on its merry way. Compare
the following program with Program 1.3 in Section 1.4,

5 REM PROGRAM 3.2

6 REM INTERACTION OF VISIBLE & BLIND CURSORS
190 PLOT 6,6,12:REM SET COLOR & CLEAR SCREEN
20 PLOT 3,64,0:REM HIDE THE VISIBLE CURSOR

21 REM (WHO NEEDS TO HIDE A BLIND CURSOR?)

30 FOR J=1 TO 15

49 PLOT 3,127:REM BLIND CURSOR MODE

50 PLOT J,J,1:REM BLIND CURSOR X,Y; CCI CODE=RED
60 PRINT "LINE"J;

70 FOR K=1 TO 200:NEXT:REM PAUSE

80 NEXT

90 PLOT 27,27:REM BACK TO VISIBLE CURSOR MODE

You can see that the visible cursor finally appears when J=11, but the
blind cursor messages are not disrupted.

3.2 REENTRY TO BLIND CURSOR MODE

The second method of entering the blind cursor mode is PLOT 27,1 (or
ESC A). This will position the blind cursor at its previous position and
with its previous CCI code. (If the blind cursor has not yet been used,
the values will default to the start of the screen refresh memory [see
Section 8] with 1 as the CCI code.))

5 REM PROGRAM 3.3
6 REM REENTRY TO BLIND CURSOR MODE
19 PLOT 6,6,12:REM SET COLOR & CLEAR SCREEN
20 PLOT 3,127:REM BLIND CURSOR MODE
30 PLOT 15,21:REM X,Y
» 40 PLOT 1:REM CCI CODE = RED
50 PRINT "THIS IS A"

-19-

60 PLOT 27,27:REM EXIT BLIND CURSOR

70 PRINT "VISIBLE CURSOR"

80 PLOT 27,1:REM REENTRY TO BLIND CURSOR MODE
90 PRINT " BLIND CURSOR TEST"

100 PLOT 27,27:REM EXIT BLIND CURSOR

3.3 DOUBLE HEIGHT CHARACTERS IN BLIND CURSOR MODE

If the number following PLOT 3 is greater than 127 (i.e. 128-255), then
the blind cursor will automatically print in double height characters. To
make program listings easier to read, let us establish a convention of
specifying regular height characters in the blind cursor mode by PLOT 3,127
and double height characters in the blind cursor mode by PLOT 3,128.

Try changing line 20 in the previous program to

20 PLOT 3,128

The double height characters require two lines on the screen. The bottom
of the character is always printed on an odd-numbered line and the top of
the character is printed one line above. (See Section 1.5.) This is so with
the blind cursor as well, except when the A7 bit is off (regular height
characters) and the blind cursor specifies that a double height character
is to have the bottom half printed not on an odd-numbered line, but on an
even-numbered line. In this situation, the bottom of the double height
character will be printed over the top! This bug was corrected for V8.79
and later ROMs, and so the following program will produce "broken characters"
only with the earlier, V6.78 ROMs.

5 REM PROGRAM 3.4

6 REM BROKEN CHARACTERS

19 PLOT 15,6,6,12:REM A7 OFF; SET COLOR; CLEAR SCREEN
20 PLOT 3,128:REM BLIND CURSOR, DOUBLE HEIGHT

30 PLOT 15,20:REM X,Y

40 PLOT 1:REM CCI CODE = RED

50 PRINT "THIS IS A TEST!"

60 PLOT 27,27:REM BACK TO VISIBLE CURSOR

This will allow you to put some strange new characters on the screen. It
also demonstrates that the double height characters can be broken in half
and printed separately, although the bottom half will always appear on an
odd-numbered line, and the top half will always appear on an even-numbered
line. More about this later, in Section 8.

-20-

L, CHARACTERS AND THE PLOT STATEMENT

The PLOT statement in BASIC can be used to access all the ASCII characters
and controls available on the computer. (See Appendix A.) For example,
the ASCII code for the letter "A" is 65, so PLOT 65 will be an instruction
to print the letter "A" and will be equivalent to PRINT "A"; or PRINT
CHRS$(65);. Note that the semicolon suppresses the carriage return/line
feed. 1f we wish to include the CR/LF in the PLOT statement, we must do so
explicitly: PLOT 65,13,10.

You can specify any number for the argument of the PLOT statement from
0 to 255, but if the number is larger than 127, then 128 will be subtracted
from it. Thus, PLOT 128 is equivalent to PLOT 0O, and PLOT 193 will print
"A" just as PLOT 65 will,

4.1 EXERCISE

For each of instructions (a) through (c¢) below, refer to the ASCII
chart (Appendix A) to determine what the instruction will do. Then type in
the instruction and see if you were correct.

(a) pLOT 68,73,68,32,89,79,85,32,71,69,84,32,73,84,63
(b) A=28:B=11:PLOT A,B
(¢) PLOT 49,50,51,13,10,56,25,52,13,10,55,54,53

4.2 SPECIAL CHARACTERS

Some micro-computer systems display only the upper case letters. This
makes text harder to read, but it does make things cheaper. Unless you have
the lower case option, your computer will produce only the upper case
letters, corresponding to the ASCII codes 65-90. The ASCII characters for
the codes from 97 through 122 would produce the lower case letters, but
the computer has a set of special characters instead. In fact, for each
of the ASCII codes for the lower case letters, the computer has two
special characters. The condition of the FLAG bit determines which of the
groups of special characters will be used. The FLAG is turned off by PLOT
29 and will stay off until turned on by PLOT 30. You can duplicate part of
Table 4.1 with this program:

5 REM PROGRAM 4.1

6 REM SPECIAL CHARACTERS

10 PLOT 29:REM FLAG OFF

20 FOR C=64 TO 95:REM FOR EACH OF THE ASCII

21 REM CHARACTERS "@" THROUGH "_"...
30 PLOT C,32:REM ...PRINT IT AND SKIP OVER A SPACE
40 PLOT 30:REM FLAG ON

50 PLOT C+32,32:REM SPECIAL CHARACTER THEN A SPACE
60 PLOT 29:REM FLAG OFF

70 PLOT C+32:REM OTHER SPECIAL CHARACTER

-21-

80 PLOT 13,10:REM CR/LF
90 NEXT

Be inventive with youruse of these special characters. Although the

FLAG FLAG
PLOT on off PLOT on off

9% (224) ﬁ nz 20 [N [4]

v

o7 (2250 [] 13 (2a1) by
o (226) | | 22 [K
99 (227) D E 15 (243) H EI
100 (228) [1 (220)]
w e [N7 (285) k
w20 [H 18 (246)1
03 2 k) M N9 (247) F
104 (232) ¥ 120 (248)]
0s 23 [4 H 2 @9 (A]
ws 20] O 220 B[
w 23 [§ ey [B
weo 00 owes § K
109 (231 [] 1l 125 (253) [T
men O we 7@
m@a [[2 (28 [4
TABLE 4.1

character whose ASCII code is 100 (FLAG off) is a diamond, it could also
do as a circle, given the proper context. PLOT 115 (with FLAG off) might
be a spade or a space ship. PLOT 112 (FLAG off) could be a chess pawn or
a robot. And some of the special characterscan serve a dual function,
depending on the foreground and background colors used.

5 REM PROGRAM 4.2

6 REM CIRCLE AND SQUARE

1¢ pLOT 15,30,20,29,17,12:REM SET COLOR;FLAG OFF;CLEAR SCREEN
20 PLOT 3,30,10:REM POSITION CURSOR

29 REM DRAW A CIRCLE

30 GOSUB 200

39 REM INTERCHANGE FOREGROUND AND BACKGROUND QOLORS

-22-

49 PLOT 6,12

50 pLOT 3,30,13:REM POSITION CURSOR

59 REM PRINT A SQUARE WITH A HOLE IN IT
60 GOSUB 200

78 END

199 REM

200 pLOT 116,117,10,26,26,118,119:RETURN

Special characters can also be used for filling gaps. The square with
a hole in it in the program above is really not very good, since there are
little slices in each side of the square. We can fill up the edges by
putting some special characters around the outside. Add these lines to the
above program:

70 PLOT 6,33:REM INTERCHANGE COLORS AGAIN
80 PLOT 30:REM FLAG ON

90 PLOT 3,30,12:REM POSITION CURSOR

169 prLOT 127,127,190,97,10,26,97

119 PLOT 26,26,26,26,28

120 pPLOT 98,26,10,98

139 PLOT 10,101,101

140 PLOT 29:REM FLAG OFF

150 END

Letters and numbers are set to the right side of the character position,
As a result, some foreground colors on some background colors can cause a
character to be somewhat indistinct at its right edge. Consider the numeral
"2" printed in black on a red background:

5 REM PROGRAM 4.3

6 REM EDGES OF CHARACTERS

10 PLOT 15,12:REM REGULAR HEIGHT; CLEAR SCREEN
20 PLOT 6,8:REM BLACK ON RED

30 PLOT 3,15,15:REM POSITION CURSOR

49 PRINT "2";

50 PLOT 6,2:REM BACK TO A MANAGEABLE COLOR

Now see how much more clear the numeral is if it is followed with a red
space. Change line 40 to:

40 PRINT "2 ";

But that still looks a bit awkward. Instead, let's use the character produced
by shift-A (PLOT 97) (FLAG on). Put line 40 back to its original version
and then add these lines:

42 PIOT 6,1:REM RED ON BLACK
44 PIOT 30:REM FLAG ON
46 PLOT 97

48 PLOT 29:REM FLAG OFF, JUST FOR CONVENIENCE
Important sections of the screen may be set off by borders using a set

of special characters (with the FLAG on) which produce straight or right-angled
lines. While text printed in blue is usually difficult to read, borders in

-23~

blue are often effective.

5 REM PROGRAM 4.4

6 REM BORDERS USING SPECIAL CHARACTERS

10 PLOT 6,4,12:REM BLUE ON BLACK; CLEAR SCREEN
20 PLOT 30:REM FLAG ON

28 REM DRAW A BORDER AROUND A SECTION AT

29 REM THE TOP OF THE SCREEN

30 PLOT 110:REM TOP LEFT CORNER

40 FOR X=1 TO 3@:PLOT 101:NEXT:REM TOP LINE
50 PLOT 111:REM TOP RIGHT CORNER

60 PLOT 26,10:REM BACK ONE SPACE AND DOWN

70 PLOT 27,10:REM VERTICAL MODE

80 FOR Y=1 TO 10:PLOT 98:NEXT:REM RIGHT SIDE
90 PLOT 109:REM BOTTOM RIGHT QORNER

100 PLOT 8,10:REM HOME & DOWN ONE LINE

110 FOR Y=1 TO 1@:PLOT 97:NEXT:REM LEFT SIDE
120 PLCT 198:REM BOTTOM LEFT CORNER

130 PLOT 27,11:REM BACK TO SCROLL MODE

140 PLOT 28,25:REM ONE LINE UP & OVER A SPACE
150 FOR X=1 TO 30:PLOT 127:NEXT:REM BOTTOM LINE
160 PLOT 29:REM FOR CONVENIENCE, TURN FLAG OFF
170 PRINT

Words or phrases may be underlined by setting the FLAG on, and, in the
line under the word to be emphasized, printing the shift-E character. Of
course, nothing else can be printed in these same spaces. In many cases,
however, that will not be cause for concern. Besides, leaving a space
between lines of text is a good way of making text easier to read.

5 REM PROGRAM 4.5

6 REM UNDERLINING

10 PLOT 6,2:REM GREEN ON BLACK

20 PLOT 15:REM SMALL CHARACTERS

30 PLOT 12:REM CLEAR SCREEN

40 PRINT:PRINT

50 PRINT TAB(5) "WHEN BLANK LINES ARE LEFT BETWEEN EACH LINE,"
60 PRINT

70 PRINT TAB(5)"THE DISPLAY IS MUCH MORE PLEASING TO THE EYE,"
80 PLOT 30:REM FLAG ON

90 PRINT TAB(20) "eeee" :REM SHIFT-E

100 PLOT 29:REM FLAG OFF

110 PRINT TAB(5)"AND THE TEXT EASIER TO READ,"

120 PRINT

4.3 LARGER CHARACTERS

When the A7 bit is off (PLOT 15), regular height characters are displayed.
When the A7 is on, double height characters are printed. But you can use
the special characters to produce still larger characters as illustrated
in Appendix C. With the A7 off, these characters are double height and

-24-

double width. With the A7 on, they are quadruple height, double width.

The following program demonstrates four different character sizes by
PLOTting the numbers of the special characters of which they are composed.
(See Appendix A.) Just to liven up the program a bit, lines 10 through 60
will cycle through all the foreground and background color combinations
(except those where the foreground color is the same as the background
color). Save this program; later on we'll add some things to it.

5 REM PROGRAM 4.6

6 REM CHARACTERS IN 4 SIZES

10 BG=16:FG=16:REM START WITH FOREGROUND & BACKGROUND=BLACK
20 FG=FG+1:IF FG=24 THEN FG=16:BG=BG+1

30 IF FG=BG THEN 2@:REM NOTHING WILL BE SEEN IF FG=BG
40 IF BG=24 THEN 10:REM WHEN ALL DONE, DO IT AGAIN

5@ PLOT 29,FG:REM FOREGROUND QOLOR

60 PLOT 39,BG:REM BACKGROUND COLOR

70 PLOT 12:REM CLEAR SCREEN

80 PLOT 15:REM REGULAR CHARACTER HEIGHT

90 GOSUB 700:REM PAUSE BEFORE BEGINNING

100 GOSUB 300:REM PRINT MESSAGE IN REGULAR HEIGHT

119 PLOT 14:REM DOUBLE HEIGHT

120 GOSUB 30@:REM PRINT MESSAGE

13¢ PLOT 15:REM REGULAR HEIGHT SPECIAL CHARACTERS

131 REM NOTE: THE SPECIAL CHARACTERS USED REQUIRE
132 REM THAT THE FLAG BE ON, WHICH IT IS

133 REM BECAUSE OF LINE 60.

140 pPLOT 3,12,15:REM POSITION CURSOR

150 GOSUB 40@:REM PRINT MESSAGE IN LARGE CHARACTERS
160 PLOT 14:REM A7 ON

176 pLOT 3,12,13:REM POSITION CURSOR

180 GOSUB 400

196 GOTO 20

298

299 REM SUBROUTINE FOR REGULAR & DOUBLE HEIGHT

300 PLOT 3,18,15:REM POSITION CURSOR

3190 PRINT "COL OR GRAPHICS"

320 GOSUB 70@0:REM HIDE CURSOR & PAUSE

330 RETURN

398

399 REM SUBROUTINE FOR DOUBLE WIDTH CHARACTERS

400 RESTORE 800

410 FOR C=1 TO 14:REM FOR EACH OF THE 14 CHARACTERS...
420 GOSUB 6@0:REM PRINT TOP HALF OF CHARACTER

430 PLOT 26,26,10:REM RE-POSITION CURSOR FOR BOTTOM HALF
440 GOSUB 6@@:REM PRINT BOTTOM HALF

450 PLOT 32:REM SPACE

460 PLOT 26,28:REM BACK & UP

470 PLOT 32:REM SPACE

480 NEXT

490 GOSUB 7@0@:REM HIDE CURSOR & PAUSE

500 RETURN

598

599 REM SUBROUTINE TO PRINT HALF OF A LARGE CHARACTER
600 READ A:PLOT A:READ A:PLOT A

-25-

610 RETURN

698 .

699 REM SUBROUTINE TO HIDE CURSOR AND PAUSE
709 PLOT 3,64,0

710 FOR T=1 TO 1500:NEXT
720 RETURN

797

798 REM DATA FOR THE 14 LARGE CHARACTERS
799 REM C

800 DATA 116,102,118,105
804 REM O

845 DATA 116,117,118,119
809 REM L

819 DATA 97,32,108,127
814 REM O

815 DATA 116,117,118,119
819 REM R

820 DATA 123,100,97,124
824 REM SPACE

825 DATA 32,32,32,32

829 REM G

830 DATA 116,102,118,125
834 REM R

835 DATA 123,100,97,124
839 REM A

840 DATA 126,124,110,111
844 REM P

845 DATA 123,100,97,32
849 REM H

850 DATA 97,98,110,111
854 REM I

855 DATA 111,101,169,127
859 REM C

860 DATA 116,102,118,105
864 REM S

865 DATA 99,102,103,100

-26-

5. TEST MODE

The test mode will fill the entire screen with any character you wish,
using whatever colors and character height were last specified. The PLOT
27,25 instruction sets up the test mode. The next byte (whether in a PLOT
or a PRINT statement) determines the character. The following two statements
are identical in their results (except that the first will also perform a
carriage return/line feed): they will fill the entire screen with the letter
’lA" .

PLOT 27,25:PRINT "A"
PLOT 27,25,65

The test mode may also be selected from the keyboard by ESC Y, but
BASIC will give you a syntax error message when you finally hit RETURN.

Using the test mode can sometimes be a flashy way of introducing a
program.

5 REM PROGRAM 5.1

6 REM DEMO INTRODUCTION USING THE TEST MODE

10 PLOT 14:REM DOUBLE HEIGHT CHARACTERS

20 PLOT 6,33:REM RED ON BLUE

30 PLOT 27,25:REM TEST MODE

40 PLOT 12:REM SEE CHARACTER CHART, APPENDIX B
50 PLOT 6,2:REM GREEN ON BLACK

60 PLOT 3,26,4:REM POSITION CURSOR

70 PRINT "A MAZE GAME"

Try variations using regular height characters for filling the screen and
double height for the title, or vice-versa. Perhaps spaces surrounding the
title would look better.

Many characters have unique and sometimes unexpected properties when
the entire screen is filled with them.

5 REM PROGRAM 5.2

6 REM DEMO INTRODUCTION #2

10 GOSUB 10@:REM SET UP

20 GOSUB 200:REM FILL THE SCREEN

30 GOSUB 3¢@:REM PRINT A BORDER AROUND THE SCREEN
40 GOSUB 40@:REM SET UP SPACE FOR THE TITLE

50 GOSUB 60@:REM PRINT THE TITLE

60 END

98

99 REM SUBROUTINE TO SET UP

100 PLOT 15:REM REGULAR HEIGHT

110 PLOT 6,2:REM GREEN ON BLACK

120 PLOT 27,24:REM PAGE MODE

1390 RETURN

198

199 REM SUBROUTINE TO FILL THE SCREEN

200 PLOT 27,25:REM TEST MODE

210 PLOT 124:REM SEE CHARACTER CHART, APPENDIX B

=27~

220 RETURN

298

299 REM SUBROUTINE TO ADD A BORDER

309 PLOT 6,16:REM BACKGROUND TO GREEN

310 PLOT 8,11:REM HOME CURSCR & ERASE TOP LINE IN GREEN
320 PLOT 28,11:REM CURSOR UP (=BOTTOM LINE) & ERASE LINE
330 PLOT 27,10:REM VERTICAL MODE

340 GOSUB 390:REM ERASE A QOLUMN (32 LINES)

350 PLOT 26:REM CURSOR LEFT (=RIGHT SIDE OF SCREEN)
360 GOSUB 390:REM ERASE A QOLUMN

370 PLOT 27,24:REM BACK TO PAGE MODE

380 RETURN

388

389 REM SUBROUTINE TO PRINT 32 SPACES IN VERTICAL MODE
399 FOR J=1 TO 32:PLOT 32:NEXT:RETURN

398

399 REM SUBROUTINE TO SET UP SPACE FOR THE TITLE

400 PLOT 6,2:REM GREEN ON BLACK

410 PLOT 30:REM FLAG ON

420 PLOT 3,20,5:REM POSITION CURSOR

430 PLOT 11@0:REM TOP LEFT OORNER

440 FOR J=1 TO 24:PLOT 101:NEXT:REM TOP

450 PLOT 111:REM TOP RIGHT CORNER

460 PLOT 26,10,98:REM BACK ONE & DOWN, THEN PRINT RIGHT SIDE
470 PLOT 3,20,6:REM RE-POSITION CURSOR

480 PLOT 97,26,10:REM LEFT SIDE;CURSOR BACK & DOWN

490 PLOT 108:REM BOTTOM LEFT OORNER

500 FOR J=1 TO 24:PLOT 127:NEXT:REM BOTTOM

510 PLOT 109:REM BOTTOM RIGHT CORNER

520 PLOT 29:REM FLAG OFF FOR FUTURE QONVENIENCE

530 RETURN

598

599 REM SUBROUTINE TO PRINT THE TITLE

600 PLOT 6,3:REM YELLOW ON BLACK

610 PLOT 3,21,6:REM POSITION CURSOR

620 PRINT "ENGINEERING APPLICATIONS"

630 RETURN

The test mode can also be used to erase the screen:
PLOT 27,25,32

Notice, however, that when the screen is erased by a PLOT 12 (or by the
ERASE PAGE key), the cursor is homed, whereas erasing the screen using the
test mode does not disturb the cursor.

Erasing the screen several times in different background colors was
used in Section 2.2 to heighten the effect of an explosion. A similar
technique can be used with the test mode, but since the test mode fills
the screen with any character, not just blanks, some further special effects
can be added to an explosion.

5 REM PROGRAM 5.3

6 REM EXPLOSION EFFECT USING TEST MODE
190 PLOT 14:REM DOUBLE HEIGHT

-28-

20 PLOT 6,56:REM BLACK ON WHITE
30 C$="+":REM FILL CHARACTER

40 GOSUB 20@:REM EXPLOSION

50 PLOT 6,25

60 C$=ll_ll

70 GOSUB 200

80 PLOT 6,15

90 C$="*"

100 GOSUB 200

119 PLOT 6,2

12@ PLOT 12:REM ERASE SCREEN
13¢ END

198

199 REM TEST MODE SUBROUTINE
200 PLOT 27,25:PRINT C$

213 FOR J=1 TO S5@0:NEXT:REM SLIGHT PAUSE
220 RETURN

29

“Iﬂ ofr"

FoR. LAE AT SV2T
NS TR
CEE RNNHEF, Wy

s oRUM

L

6.

PLOT MODES

Each regula;\size character rectangle on the display is composed of 48

small squares, six wide and eight high. (Figure 6.1) In the PLOT mode, the

rectangle is divided into eight smaller rectangles—--plot blocks—-each of
which is three squares wide and two squares high. (Figure 6.2.)

ASCIL CHhid skt
e MOST CHUNPACTERS
THE FIRTT ~pluMN AND
TTRTTTOM Y NRE BLNY
THERERY FORAMG LETTER
ANB LNE SPRCIN G WRUN
VIEWT D o8 TUE SCRTEN.

N
—‘4—\}: CUMANCTER. PicT MODE

T POT 2,354, % 16 355

v Tuki up fudl oo 6XE aguaric,

b —

Re

~

-

FIG. 6.

The PLOT 2 instruction sets the computer up for drawing points, lines
and "characters" composed of these plot blocks. Any subsequent output to
the display will be interpreted as a plot number. The plot number is any
number from 0 through 254. (255 exits the plot mode.) The numbers from 240
through 254 have special significance. Let's start with PLOT 254,

General Plot Mode

Vectors

Y Bar Graph

X Bar Graph

Point Plot

Character Plot

Plot Mode Escape

2 General plot mode introduction.
Unless instructed otherwise, the
computer will automatically be
in the point plot submode.

240 Incremental vector plot

241 Y co-ordinate of vector end point
242 X co-ordinate of vector end point
243 Incremental Y bar graph

244 Y co-ordinate of top of vert. bar
245 X co-ordinate of vert. bar

246 Y co-ordinate of bottom of vert. bar
247 Incremental X bar graph

248 X co-ordinate of right of horiz. line
249 Y co-ordinate of horiz. bar

250 X co-ordinate of left of horiz. bar
251 1Incremental point plot

252 Y co-ordinate of point

253 X co-ordinate of point

254

255
Table 6.1

30

6.1 PLOT 254 — CHARACTER PLOT

After entering the general plot mode with PLOT 2, the PLOT 254 instruction
will take each subsequent number and print a "character" wherever the cursor
is. (After each character is drawn, the cursor will move over a space--or
down if you are in the vertical mode.) Since the number 3 will generate a
character, it cannot be used to control the cursor, as it ordimarily is.
If you wish to move the cursor to a given location, you will have to position
the cursor first and then enter the general plot mode and the character
plot submode. If you then wish to plot a character elsewhere, you will have
to exit the plot mode (PLOT 255), re-position the cursor in the usual way,
and then reenter the general plot mode and the character plot submode (PLOT
2,254).

What are these '"characters" which the character plot produces? As
previously mentioned, each character position on the screen is a rectangle
divided into eight smaller rectangles. Each of these smaller rectangles
has a number associated with it, and the plot number which follows the
character plot submode introduction will determine which one or more of
these rectangles will be printed. For example, according to Figure 6.3,
the instruction PLOT 2,254,1,255 will enter the general plot mode, then
the character plot submode, draw rectangle #l1--that is, the rectangle in
the upper left of the character position--and then exit the plot mode. PLOT

1| 16 !
2 | 32 32
4 | 64 4
8 |128 128
1+32=33 4+128=132
FIG. 6.3 FIG. 6.4

2,254,8+16,255 will produce the lower left rectangle and the upper right
one together. PLOT 2,254,15,255 will produce the four left hand rectangles.
(15=1+2+4+8.) And so on. We can produce a short, slanted line by plotting
the two characters from Figure 6.4 with this instruction:

PLOT 2,254,33,132,255

Remember, the general plot mode is entered with a PLOT 2 instruction, and
the character plot submode is specified by PLOT 254. All further PLOT
instructions will be understood as character plot numbers (except for PLOT
255, which will exit the plot mode).

You can build all sorts of pictures using this character plot mode:
lines, fences, brick buildings, space ships.... What you cannot do, however,
is print an entire space. That is, if you wanted to plot all eight rectangles
at once, you would have to PLOT 255 (=1+2+4+8+16+32+64+128). But 255 is
the plot mode escape. If you wish to fill up an entire space, you will have
to exit the plot mode, put the color you want into the background, print
a space, and then, if you had more characters to plot, change back to the
desired color and reenter the general plot mode and the character plot
submode. (See the chess pieces using the character plot submode in Section
12.6.) The following program, for example, will print the characters in

-31-

V4
U,
2.9

Figure 6.5.

5 REM PROGRAM 6.1

6 REM CHARACTER PLOT

16 PLOT 6,1:REM RED ON BLACK

20 PLOT 2:REM GENERAL PLOT MODE

30 PLOT 254:REM CHARACTER PLOT SUBMODE
40 PLOT 96:REM FIRST PART

50 PLOT 255:REM EXIT PLOT MODE

60 PLOT 6,8:REM BACKGROUND TO RED

70 PLOT 32:REM SECOND PART (A SPACE)
80 PLOT 6,1:REM BACK TO RED ON BLACK
99 PLOT 2:REM GENERAL PLOT MODE

160 PLOT 254:REM CHARACTER PLOT SUBMODE AGAIN
110 PLOT 6:REM THIRD PART

120 PLOT 255:REM EXIT PLOT MODE

In this particular case, however, it would have been easier to have defined
the characters as in Figure 6.6, and which could be accomplished by:

PLOT 6,1,2,254,246,111,255

In the following program, enter color changes from the keyboard as
indicated in brackets: [].

5 REM PROGRAM 6.2

6 REM DEMONSTRATING THE CHARACTER PLOT

19 pLOT 15,30,16,29,22,12:REM SET UP

20 PRINT

30 PRINT TAB(15)"A DEMONSTRATION OF THE CHARACTER PLOT"
40 PRINT

50 PRINT TAB(25) " [yel]PLOT 2,254,N"

99

108 pLOT 3,0,5,11:REM ERASE ANY PREVIOUS INPUT

119 INPUT " [grn]SELECT A NUMBER FROM @ TO 254:[red] ";N$
120 N=VAL(NS) :IF N<B@ OR N<INT(N) OR N>254 THEN 100

138 PRINT

140 PLOT 11:REM ERASE ANY PREVIOUS DISPLAY

150 PRINT " [yel]PLOT 2,254,[red]"N" [yel]GIVES: [red]";
160 pPLOT 2,254,N,255

179 PRINT:PRINT

188 PRINT " [wht]HERE ARE TWO LINES OF IT...[red]"

190 PRINT

2090 PLOT 2,254:FOR J=1 TO 128:PLOT N:NEXT:PLOT 255

219 PLOT 3,10,16:PRINT " [wht]VERTICAL MODE: [red]"

220 PLOT 27,10:REM VERTICAL MODE

238 PLOT 3,30,15:GOSUB 308

32

249 PLOT 3,31,15:GOSUB 300

250 PLOT 27,11:REM RETURN TO SCROLL MODE

260 GOTO 10@:REM BACK FOR MORE

298

299 REM SUBROUTINE TO PLOT A VERTICAL LINE

300 PLOT 2,254:FOR J=1 TO 1@:PLOT N:NEXT:PLOT 255
319 RETURN

In some cases, characters can be plotted faster and more efficiently
by using the PLOT 6,n instruction where n>128. More on that in Section 7.

6.2 PLOT 253 — POINT PLOT

Since there are 32 regular height character lines on the screen, and
since each character is four plot blocks high, the screen is 32x4=128 plot
blocks high. Since there are 64 characters per line, and since each character
is two plot blocks wide, the display is 128 plot blocks wide. As usual,
numbering begins with zero. But whereas the cursor positions are numbered
from left to right, top to bottom, the plot block positions are numbered
from left to right, bottom to top.

After entering the general plot mode with PLOT 2, the PLOT 253 instruction
tells the computer to take the next number as the X co-ordinate of a single
plot block. After the X co-ordinate is given, the Y co-ordinate is
automatically expected, which, if given, will cause the point at that
location to be plotted. The computer will then automatically expect the X
co~ordinate of another point, then the Y co-ordinate, and so on.

5 REM PROGRAM 6.3

6 REM POINT PLOT SUBMODE

190 PLOT 2:REM GENERAL PLOT MODE

20 PLOT 253:REM POINT PLOT SUBMODE

30 PLOT 0,0:REM X,Y OF BOTTOM LEFT CORNER

49 PLOT 127,0:REM X,Y OF BOTTOM RIGHT CORNER
50 PLOT 127,127:REM X,Y OF TOP RIGHT CORNER
60 PLOT 0,127:REM X,Y OF TOP LEFT CORNER

70 PLOT 255:REM EXIT PLOT MODE

Line 20 in the program above is not necessary. Upon entering the general
plot mode, the computer will automatically be in the point plot submode
unless instructed otherwise. (See for yourself by deleting line 20.) The
various plot submodes are entered by a plot number from 240 to 254, so upon
entering the general plot mode with PLOT 2, the next number is automatically
taken to be the X co-ordinate of a point unless that number is equal to or
greater than 240. But this means that the X co-ordinate can be in the range
0-239, yet the display is only 128 blocks wide. What will happen if the X
co-ordinate exceeds the width of the display? Try it. It "wraps around"” to
the other side. That is, if a number greater than 128 is given, 128 is
subtracted from it. Similarly for the Y co-ordinate.

The reason for having the plot number 253 available even though the
computer is automatically expecting the X,Y co-ordinate of a point after
entering the general plot mode, is to allow the point plot submode to be
easily accessed from the other plot submodes without having to exit the

-33-

126
125

124

123
122

120

A1 1~
At 1M
| | | I
| | | | I |

7

6 _ _
s _ _
‘ — -— PR —
3 [— —_— — —
2 —
X - — = -
0

o 1 2 3 §§ 124 125 126 127

FIG. 6.7

plot mode and then reenter it. In fact, all the plot submodes (except the
character plot submode) are directly accessible from any other simply by
specifying its code number.

It is sometimes mnecessary to co-ordinate the printing of characters
(either the ASCII characters or the character plot characters) with the
plotting of point blocks. That is, it would be handy to be able to convert

cursor co-ordinates to point plot co-ordinates, and vice-versa. You might
find these equations useful:

Xp = 2*Xc Xc
Yp 127-4*Yc Yc

INT(Xp/2)
INT((127-Yp)/4)

where Xp and Yp are the X,Y co-ordinates of the top left plot block in a
character position, and Xc and Yc are the X,Y co-ordinates of a cursor
position.

Although you can plot up to eight blocks per character rectangle, the
plotting of a plot block in any character position will erase any ASCII
character there. Similarly, the printing of an ASCII character will erase
any and all plot blocks which happen to be at that location.

The foreground/background colors may be specified as usual for point
plotting (but of course you will have to specify the colors before entering
the general plot mode). However, colors are defined for an entire character

-34-

position. That 1is, if you have plotted a block in, say, red, and you
subsequently plot, say, a green block in that same character position, both
blocks will become green.

5 REM PROGRAM 6.4

6 REM RESOLUTION OF COLORS

1@ PLOT 15,6,6,12:REM SET UP

20 PLOT 6,15:REM WHITE ON RED

3@ PLOT 3,15,15:PRINT "TEST TEST TEST"
40 FOR J=1 TO 700:NEXT:REM PAUSE

58 PLOT 6,2:REM GREEN

60 PLOT 2:REM GENERAL PLOT MODE

69 REM PLOT GREEN BLOCKS AT THE TOP OF THE LINE
78 FOR X=@ TO 64

80 PLOT X,67

99 NEXT

100 PLOT 255:REM EXIT PLOT MODE

110 FOR J=1 TO 708:NEXT:REM PAUSE
120 PLOT 6,3:REM YELLOW

128 REM PLOT YELLOW BLOCKS TWO PLOT POSITIONS DOWN FROM
129 REM THE GREEN ONES

1309 PLOT 2:REM GENERAL PLOT MODE

149 FOR X=@ TO 64

156 PLOT X,65

160 NEXT

170 PLOT 255:REM EXIT PLOT MODE

The RND(x) function in BASIC generates pseudo-random numbers between
0 and 1. The idea of the pseudo-random number generator is to produce
numbers which are evenly distributed over the range 0 to 1. We can test
the computer's pseudo-random number generator by PLOTting points at random
co-ordinates. In that way, we can visually determine whether the numbers
have been more or less evenly distributed. Let's assume that about 2000
PLOTs will be enough. Since the point plot co-ordinates go up to 127 along
both axes, and since the pseudo-random number generator yields numbers less
than 1, we can use this function

X=128*RND(1)

to produce numbers which will go as high as 127.999. Should we also take
the integer of that number before PLOTting it? We could. But the plot mode
will just ignore the fractional part when plotting. 127.9 will be plotted
as 127. So let's not bother with the INT(x) function.

5 REM PROGRAM 6.5

6 REM TESTING THE PSEUDO-RANDOM NUMBER GENERATOR
1¢ PLOT 15,6,6,12:REM SET UP

2¢ PLOT 2:REM GENERAL PLOT MODE

3¢ FOR J=1 TO 2000

48 X=128*RND(1) :Y=128*RND(1)

58 PLOT X,Y

60 NEXT

70 PLOT 255

...35_

6.3 AR ARTILLERY GAME

In order to illustrate further the point plot, and in order to introduce
a new and convenient trick, let's design a very simple artillery game.
Let's put a gun——a pill box--somewhere on the left of the screen and require
the player to shoot projectiles at a target on the right. To represent the
ground we can put the cursor at the bottom of the screen, set the background
color to green, then PLOT 11 (erase line). We can orient the pill box at
some random spot on the ground somewhere on the left and the target at some
random spot on the ground somewhere on the right. Let's draw the pill box
in red and make it a simple one by printing a space with the background
set to red. We can use the rook character (shift-R) in light blue for the
target. For the projectile we will be using the point plot mode.

Now we must deal with the mathematics of projectile motion. Just to
simplify matters, let's not try to be too picky: let's assume there is no
wind or air resistance. And let's assume that the muzzle velocity of the
projectile is constant. Of course, you may refine the game to any degree
you wish. You might even end up with something like Intelligent Systems Cor-
poration's "SHOOT" game.

The only variable which the player may specify is the angle of inclination
of the gun. Now, in order to plot the path of the projectile, we must know
its varying X and Y co—ordinates and PLOT them as they change with time.
We can't vary time continuously, so we'll choose a very small increment
for T (time) so as to produce a smooth curve. If we start by knowing M,
the muzzle velocity, and A, the angle of inclination of the gun, then the
initial problem is to determine the X and Y component vectors in Figure
6.8.

M
Y velocity
A
GUN
X velocity
FIG. 6.8

From trigonometry we learn that SIN(A)=Y/M and COS(A)=X/M. So we may
write

Y=M*SIN(A), X=M*COS(A).

Since wind or air resistance is to be neglected, the X vector will remain
constant, and this means that

X1=X0+VX*T,
where X0 is a given X co-ordinate, VX is the horizontal velocity =M*COS(A),
and T is the time increment for PLOTting. We know where the gun is to start
with, and so we know what X0 is to start with., The program will compute
X1, PLOT the projectile, set X0=Xl1, and go back to figure out the new X1,

-36-

and so on,

The vertical velocity is more complicated, because, due to the pull of
gravity, it does not remain constant. If we let the acceleration due to
gravity be G=-32 ft/sec, then we might use this equation for determining
the vertical component at the end of a time increment:

VY=VY+ 5%G*T*T.

And (fudging things a bit) the new Y co-ordinate of the projectile at the
end of a time increment will be

Y1=YO+VY*T,

where Y0 is the old co-ordinate. As with the X co-ordinate, we start off
knowing the initial Y0, calculate Y1, go back to calculate a new Yl, and
so on.

If we let the time increment, T, be small enough (say, T=.1), then the
plot of the projectile will be fairly even.

Figure 6.9 shows the logic of PLOTting the projectile. The logic of
the whole program is given in Figure 6.10.

ESTABLISH
CONSTANTS
PLOT XO0,YO0
T
K
[DETERMINE
CALCULATE Wiw LOCATIONS
C0-0RDI KATES1 FOR GUN &
nexovxet TARGET
VreyyeTe 806101
Yi=Y0evYeT r

DRAW DISPLAY

STOP
GET ANGLE
PLOT PATH
FOR
X0=x1 PROJECTILE
YO=Y1
________J 4"i!iEiI'> YES
NO

FIG. 6.9 FIG. 6.10

If the projectile passes through the target, then the target will of
course disappear. In Section 8 we will see how to PEEK directly into the
screen memory locations. (If you wish, you may skip ahead to read that
Section, but it will not really be necessary.) For now, you may accept that
lines 70 and 80 of the program really do check to see whether the rook (the

37

target) is still on the screen. If it is not on the screen where it was
first printed, then it must have been erased by a projectile, and we may
then say that it was hit.

A few more details must be cleared up. We know that the ground level
is a green line at the bottom of the screen, and so we know that the
projectile will have hit the ground whenever its newly calculated Y
co-ordinate is less than or equal to 3. (See Figure 6.11.) However, what

Y=7 —[CC T
-—| =—Pill Box ~vZ| «<—Target
Y=3 —>T 75 - - - - J I
——]=- == R -_ _:._ _:._
Y=0 il G OUND‘~_ _ i
FIG. 6.11

if the Y co-ordinate is between 3 and 4? If it is, say, 3.64, then it will
be PLOTted at Y=3. (Remember, the plotting function neglects the fractional
element.) So we had better check to see if the projectile's Y co-ordinate
is less than 4.

Note that although BASIC can handle the necessary trigonometric functions,
it does so in radians instead of degrees. Since we can expect the player
to enter his gun elevation in degrees, we must convert to radians. One
degree is equal to Pi/180 radians, so the player's chosen angle, A, will
convert to A*Pi/180.

Here i1s the program. Some improvements will be offered later, but for
now, type it in and RUN it. As usual, the brackets indicate information
which you should enter from the keyboard.

5 REM PROGRAM 6.6

6 REM AN ARTILLERY GAME

1¢ pLOT 15,30,16,29,22,12,27,24:REM SET UP
20 PRINT TAB(27) "ARTILLERY"

28

29 REM SET UP THE QONSTANTS
30 GOSUB 1009

38

39 REM SET UP THE DISPLAY
40 GOSUB 2009

48

49 REM GET ANGLE FOR EACH SHOT
50 GOSUB 3000

58

59 REM PLOT PRQJECTILE PATH

60 GOSUB 4000

68

69 REM CHECK TO SEE IF TARGET WAS HIT

70 SC=28672+128*TY+TX+TX:REM SCREEN RAM LOCATION FOR TARGET
80 IF PEEK(SC)=114 THEN 5@:REM IT'S STILL THERE

88

89 REM PLAYER HAS HIT TARGET

90 PRINT:PRINT " {mag]GOOD SHOT!":PRINT

109 INPUT "[grn]CARE TO PLAY AGAIN? ";A$

110 AS=LEFTS$(AS,1)

-38-

120 IF AS="Y" OR A$="O" THEN RUN:REM ALLOW ANSWER OF "OK"
139 IF AS<O"N" THEN 100

149 END

997

998 REM ***** SUBROUTINE TO SET UP CONSTANTS *****
999

1008 G=-32:REM GRAVITY

1016 T=.1:REM TIME INCREMENT

1020 M=15:REM MUZZLE VELOCITY (YOU MIGHT WANT TO CHANGE THIS)
1027

1928 REM GET RANDOM X CO—-ORDINATE BEIWEEN

1629 REM 3 AND 25 FOR THE PILL BOX

1030 PX=INT(22*RND(1))+3

1038

1639 REM Y CO-ORDINATE OF PILL BOX IS ALWAYS 30

1040 PY=30

1047

1048 REM GET RANDOM X CO-ORDINATE BETWEEN

1049 REM 40 AND 55 FOR THE TARGET

1050 TX=INT (15*RND(1))+40

1058

1059 REM TARGET Y OO-ORDINATE IS ALWAYS 30

1060 TY=30

1076 RETURN

1996

1997 REM ***** SUBROUTINE TO PRINT THE DISPLAY *****
1998

1999 REM GROUND

2000 PLOT 6,16:REM BACKGROUND TO GREEN

2¢1¢ PLOT 3,0,31,11

2018

2019 REM PILL BOX

2020 PLOT 6,8:REM BACKGROUND TO RED

2030 PLOT 3,PX,PY,32:REM PRINT A SPACE IN RED FOR THE PILL BOX
2039 REM TARGET

2040 PLOT 6,6:REM CYAN ON BLACK

2050 PLOT 3,TX,TY,114:REM USE ROOK FOR THE TARGET
2060 RETURN

2997

2998 REM ***** SUBROUTINE TO GET ANGLE *****

2999

3900 PLOT 6,2

3010 PLOT 3,0,1,11:REM ERASE ANY PREVIOUS INPUT

3020 INPUT "ANGLE? [red] ";:AS

3029 REM IF A<@ THEN ABORT AND START AGAIN

3930 A=VAL(AS):IF A<@ THEN RUN

3939 REM TRANSLATE INTO RADIANS

3048 A=A*3.1415926/180

3049 REM CALCULATE INITIAL X AND Y VELOCITIES OF PRQJECTILE
3050 VX=M*QOS(A)

3060 VY=M*SIN(A)

3070 RETURN

3994

3995 REM ***** SUBROUTINE TO PLOT PATH OF PRQJECTILE ****

-39~

3996

3997 REM FIRST SET UP INITIAL X CO-ORDINATE. LET'S
3998 REM HAVE IT BEGIN JUST ABOVE THE UPPER RIGHT
3999 REM OF THE PILL BOX

4000 X0=2*PX+1

4008

4009 REM INITIAL Y CO-ORDINATE IS ALWAYS 8

4010 YP=8

4019

4020 PLOT 6,7,2:REM COLOR=WHITE; ENTER GENERAL PLOT MODE
4030 PLOT X0,YQ:REM PLOT PROJECTILE

4038

4039 REM CALCULATE NEN X OO-ORDINATE

4040 X1=X0+VX*T

4048

4049 REM CHECK FOR OUT OF BOUNDS

4050 IF X1<@ OR X1>127 THEN 4200

4058

4059 REM CALCULATE NEW Y VELOCITY

4060 VY=VY+ , 5*G*T*T

4068

4069 REM CALCULATE NEW Y CO-ORDINATE

4070 Y1=YQ+VY*T

4078

4079 REM CHECK FOR TOO HIGH

4080 IF Y1>127 THEN 4200

4088

4089 REM CHECK FOR HITTING THE GROUND

4099 IF Y1<4 THEN 4200

4098

4099 REM LET THE NEW CO-ORDINATES NOW BE THE OLD ONES
4100 X0=X1:Y0=Y1

4108

4109 REM BACK FOR NEXT PLOT & NEXT COMPUTATIONS
4110 GOTO 4030

4198

4199 REM END OF PLOT

4200 PLOT 255:REM EXIT PLOT MODE

4210 RETURN

Variations on this game will naturally occur to you. Try varying the
time increment (T) and the muzzle velocity (M). You might even let the
player choose the muzzle velocity for each shot.

Note that the entire projectile path is plotted and remains on the
screen. Each time a new projectile is fired, a new path is plotted. Pretty
soon the display will be a mess of paths. But we will be able to do something
about that. If, before entering the general plot mode, the FLAG is turned
on (PLOT 30), then if a plot block is PLOTted twice, it will disappear.That
is, PLOTting a point will turn it on, and PLOTting it again will turn it
off. This is a most convenient tool for the artillery game. Just before
entering the general plot mode (line 4020), add PLOT 30. And after exiting
the plot mode in line 4200, add PLOT 29 to turn the FLAG off. Now just
before putting the new co-ordinates into X0 and Y0 (line 4100), PLOT the
projectile a second time at the old location. You might add

40~

4095 PLOT X@,YP:REM ERASE PROJECTILE AT LAST LOCATION

That should make the game much better.

Also, now note that if the newest co-ordinates are out of bounds, the
PLOTting routine will be exited. But this can leave the projectile printed
up in the air in its last location before going out of bounds, and that's
no good. To get rid of it, you could change line 4200:

4209 PLOT X0,Y0,255

I hope you will fiddle with this program——adding little goodies, changing
colors, trying out new ideas—-until you have it just the way it ought to
be. You must have an aesthetic appreciation for what goes on the display.
It does not have to be Rembrandt, but it ought to be artful. Later on I
will suggest a few additions to make the game more lively.

6.4 PLOT 251 — INCREMENTAL POINT PLOT

After PLOTting a point, the instruction PLOT 251 will set the computer
up to move that point. Just how it is moved will be determined by what PLOT
number is subsequently issued. It may be anywhere from 0 through 239.
(240-255, remember, are instructions to enter one of the other plot submodes.)
Actually, the number will define two movements of the point. If we interpret
the number as an eight bit binary number, then the four most significant
(i.e. left most) bits determine the increment for PLOTting the first of
the two additional blocks, and the four least significant (i.e. right most)
bits determine the increment for the second block from the first.

Since two bits are used for determining the increment for each co-ordinate,

there are exactly four possibilities for each. They are defined in Table
6.2

If the
binary ...then the
value increment
DECIMAL VALUE: 128 64 32 16 8 4 2 1 of the of that
BIT: 7 6 5 4 3 2 1 0 two bits | co-ordinate
LTI T] is... will be...
X1 Y1 x2 y2
FIRST ImCREMENT SLCOND I CREMEXT
00 None
FIG. 6.12 01 -
10 +
11 None
TABLE 6.2

Let's take an example. Suppose we have PLOTted a point in the point
plot submode and wish to PLOT a second point just to the right of it and
a third point down and to the right of the second. That is, we wish the

-41-

result shown in Figure 6.13. Since the incremental point plot submode will
move the original block twice for us, we needn't PLOT all three points by
separate instructions in the point plot submode. Instead, after having
drawn the first point, we enter the incremental point plot submode with
PLOT 251. For the first increment we wish the X co-ordinate to increase
but the Y co-ordinate to stay the same. According to the Table above, we
want the two bits for X1 to be 10 and the two bits for Yl to be 00. We have
now determined the four most significant bits for the number we want to
use. (See Figure 6.14.) The X co-ordinate for the second block is to have

BIT: 7 6 5 4

110|010
X1 Y1

FIG. 6.13

FIG. 6.14

a positive increment (10), and the Y co-ordinate is to decrease (0l1). The
four least significant bits of the eight bit number can now be added.
(Figure 6.15.) To get the decimal equivalent of this binary number, just
add together the decimal values for all bits containing a 1. (Table 6.3.)

BIT DECIMAL VALUE

7 128

1lololol1]olo]1 3 8

X1 Yi X2 Y2 0 1
FIG. 6.15

Total = 137

TABLE 6.3

So issuing a PLOT 137 will do the job. Suppose the original block is to be
PLOTted at X=63,Y=63. Then the following instruction will do the whole
thing:

pLOT 2,63,63,251,137,255

Note also that you can string any number of incremental instructions
together. After PLOT 251 is given, the computer will automatically take
each subsequent PLOT number to be a plot increment, unless, of course, the
number is greater than 239.

As an exercise, enter this instruction and see if you can determine
why it does what it does.

pPLOT 2,0,15,251:FOR J=1 TO 63:PLOT 169:NEXT:PLOT 255

Another exercise: see if you can determine what this program will do.
Then type it in and RUN it to see if you were correct.

-42-

5 REM PROGRAM 6.7

6 REM MYSTERY PROGRAM USING INCREMENTAL POINT PLOT
16 PLOT 6,6,12

20 pLOT 2,0,127,251

3@ INC=154:GOSUB 100

40 INC=89:GOSUB 1060

50 INC=101:GOSUB 1060

60 INC=166:GOSUB 100

76 PLOT 255

80 END

99

100 FOR J=1 TO 63:PLOT INC:NEXT:RETURN

You can spruce up that program by adding these lines

15 FOR K=1 TO 7:PLOT 6,K

75 NEXT K

Figure 6.16 gives the incremental point plot numbers for incrementing
a block twice in a given direction.

If the four most significant bits of the increment number are zero,
the X and Y co-ordinates of the first block will not change. This allows
you to increment a point only once instead of twice, according to Figure

Incremental values Incremental values Incremental values
for incrementing for incrementing for incrementing
twice in the same only X2,Y2 without plotting
direction. (x1=0, Y1=0). (x2=0, ¥2<0).
34 2 32
NV
AY
68 136 4 8 64 +—— 3 — 128
7N
so=’) s
85 153 5 9 + e
17 1 16
FIG. 6.16 FIG, 6.17 FIG. 6.18

6.17.

If the four least significant bits are zero, then the number for the
first block will determine the increment, but no block will actually be
PLOTted on the screen. This allows you to skip a block in any of eight
directions according to Figure 6.18.

The following instructions will plot a dotted line going up and to the
right from the center of the screen.

PLOT 2,63,63,251:FOR J=1 TO 10:PLOT 160,10:NEXT:PLOT 255

—43—

6.5 SCRIPT

In addition to regular height characters, double height characters
and extra large characters, you can produce script. This will take more
memory and time to create, but it can have an interesting effect. Let's
write "Color Graphics" in script and add it to Program 4.6.

To produce script we could simply PLOT each point in the point plot
submode, but that would require specifying the co-ordinates of each
point., Let's try the incremental point plot submode so that only one
number (the increment value) need be used for each of two new points.
The result will be a substantial savings in memory over the point plot
method. Since Program 4.6 printed the bottom of its message on line 15,
we should, for the sake of good looks, also print the script message
there. Figure 6.19 shows how the first part of the script message looks.
The PLOTting begins at the upper right tip of the capital "C", and the
arrows show the way the rest is PLOTted using incremental plots. These
lines should be added to Program 4.6. (Save the result. We'll add even
more goodies later on.)

184 REM PROGRAM 6.8

185 GOSUB 10@@:REM SCRIPT

997

998 REM SCRIPT SUBROUTINE USING INCREMENTAL FOINT PLOT
999

1000 PLOT 29:REM FLAG MUST BE OFF

1016 PLOT 12:REM CLEAR SCREEN

1026 PLOT 3,64,0:REM HIDE CURSOR

1030 RESTORE 1100

1040 PLOT2:REM GENERAL PLOT MODE

1050 PLOT 16,78:REM FIRST POINT ON THE CAPITAL "C"

1060 PLOT 251:REM INCREMENTAL POINT PLOT SUBMODE

107¢ READ A:PLOT A:IF A<255 THEN 1070

1080 GOSUB 70@:REM PAUSE SUBROUTINE FROM PROGRAM 4.6

1099 RETURN

1096

1097 REM DATA FOR INCREMENTAL POINT PLOT

1098

1099 REM C

1106 paTA 38,100,68,85,81,17,17,17,17,25,25,24,136,138,42
1104 REM O

1165 DATA 130,34,34,162,130,20,21,17,17,25,25,136,162,162,34,34,98
,100,81,153,136

1169 REM L

1110 DATA 170,40,490,34,34,101,17,17,17,17,17,17,17,154,170
1114 REM O

1115 DATA 162,34,42,40,65,81,17,17,145,152,138,42,34,34,38,38,69,2
5,152,138

1119 REM R

112¢ DATA 138,170,33,24,152,17,81,17,17,152,138,42

1124 REM SPACE

1125 DATA 160,160,160,160,160,160,160,160,160,160,160
1129 REM G

113¢ paTa 139,102,68,69,85,17,17,17,17,17,145,145,136,136,162,162,
34,34,36,69,25,136,138

44

1134 REM R

1135 paTA 179,179,33,24,152,17,81,17,17,152

1139 REM A

11409 DATA 138,42,130,34,34,170,168,152,79,69,85,17,17,25,25,136,13
8,162

1145 DATA 34,34,34,34,17,17,17,17,17,152

1149 REM P

1150 DATA 170,42,34,34,34,33,17,17,17,17,17,17,17,17,17,34,34,34,3
4,34,34,34,34

1155 paTA 179,168,153,25,17,21,21,84,79,152,136,136,138

1159 REM H

1160 DATA 162,162,34,34,34,34,34,34,17,17,17,17,17,17,17,17,34,34,
34

1165 DATA 42,170,136,145,17,17,17,17,152,162

1169 REM I

1170 paTA 162,42,34,34,17,17,17,17,25,162

1174 REM C

1175 pATA 162,162,34,162,168,137,150,100,69,21,17,17,17,153,136,13
6,170

1179 REM S

1180 DATA 42,42,42,42,42,165,25,25,17,17,81,85,192,153,136,138,170
1184 REM SKIP BACK TO DOT THE I

1185 DATA 253,102,77

1189 REM PLOT MODE ESCAPE

1199 DATA 255

6.6 PLOT 250 — X BAR GRAPH

A horizontal line may be drawn from a given point, X0,Y0, to another
point, X1,Y0, by using the PLOT 250 instruction (after entering the general
plot mode). After this instruction, your computer is expecting three
numbers (less than 240) in this order: X0,Y0,Xl. For example,

pLOT 2,250,0,63,127,255

will draw a horizontal line across the screen, halfway up. Only after Xl
is givenwill the line be drawn. Moreover, the computer will then automatically
take the next two numbers as the Y0,Xl1 of another line (unless, of course,
either of those numbers is greater than 239). That is, the same value for
X0 will be assumed. If you wish to give it a different X0, you will have
to respecify the X bar graph submode with PLOT 250.

This program will draw a large, solid triangle near the center of the
screen:

-45-

5 REM PROGRAM 6.9

6 REM A TRIANGLE USING X BAR GRAPH

19 PLOT 6,6,12:REM SET UP

20 PLOT 2:REM GENERAL PLOT MODE

30 PLOT 25@:REM X BAR GRAPH SUBMODE

40 PLOT 30:REM X0

50 FOR Y=30 TO 97

60 PLOT Y,127-Y:REM Y@,X1 OF BAR GRAPH
70 NEXT

80 PLOT 255

6.7 PLOT 247 — INCREMENTAL X BAR GRAPH

After plotting an X bar graph, the instruction PLOT 247 sets the computer
up to take all subsequent numbers (less than 240) as incremental values.
The incremental values will do for the bar graph what they did for the
point plot, and they refer to the X1,Y0 co-ordinate of the bar graph. Thus,

PLOT 2,250,0,63,127
will draw a horizontal line across the screen, and if it is followed by

PLOT 247,85,255

two more lines will be drawn, the first just under the original but with
its end point shifted to the left one block, and the second just under the
first with its end point shifted one block more. As with the incremental
point plot submode, an increment number whose four least significant bits
are zero will increment without actually drawing the line.

This program will draw the same triangle as the previous program, but
this time the incremental X bar graph submode is employed.

5 REM PROGRAM 6.10

6 REM TRIANGLE USING INCREMENTAL X BAR GRAPH
18 PLOT 6,6,12:REM SET UP

20 PLOT 2:REM GENERAL PLOT MODE

30 PLOT 250:REM X BAR GRAPH SUBMODE

49 PLOT 30,30,97:REM BOTTOM LINE OF TRIANGLE
50 PLOT 247:REM INCREMENTAL X BAR GRAPH SUBMODE
60 FOR J=1 TO 33

79 PLOT 192:REM INCREMENT

80 NEXT

99 PLOT 255

See if you can determine what this program will do. Then type it in
and RUN it to see if you were correct.

5 REM PROGRAM 6.11
6 REM MYSTERY PROGRAM
10 PLOT 6,6,12,3,64,0

20 PLOT 2 <
A , e
SOle LI
Gﬁﬂ deun cosoon. ay Tw
NLeOR
GONY e =f6—

LT HMaNE

(pp 45-46 insert)

184 REM PROSRAM 6.8
185 GOSUB 1000: REM SCRIPT

998 REM
999 REM SCRIPT SUBROUTINE USING INCREMENTAL POINT PLOT
1000 PLOT 29: REM FLAG MUST BE OFF
1010 PLOT 12: REM CLEAR SCREEN
1020 PLOT 3,64,0: REM HIDE THE CURSOR
1030 RESTORE 1100 .
1040 PLOT 2: REM GENERAL PLOT MODE
1050 PLOT 24,72: REM FIRST POINT OF CAPITAL "C"
1060 PLOT 251: REM INCREMENTAL POINT PLOT SUBMODE
1070 READ A: PLOT A: IF A< 255 THEN 1060
1080 GOSUB 7C0: REM PAUSE
1090 RETURN
1097 REM
1098 REM DATA FOR INCREMENTAL POINT PLOT
1099 REM C
1100 DATA 100,68,69,65,81,17,25,152,136,138,170
1104 REM O
1105 DATA 170,136,68,81,17,152,136,162,34,100,17,152,138
1109 REM M
1110 DATA 170,129,17,17,34,34,168,145,17,18,34,42,137,17,17,136
1114 REM P
1115 DATA 42,42,33,17,17,]7 17,34,34,34,42,168,137,17,85,68,136,
]36 108
1119 REM U
1120 DATA 162,34,17,17,152,138,34,34,17,17,24,138
1124 REM ¢ |
1125 DATA 170,42,136,137,100,68, 81 17,152,136,138
. MNM29REM O . o o

1130 DATA 162, 170 136, 68 85 17, 152 136, 162 34 101 ,25,136
1134 REM L

1135 DATA 138,162,34,42,129,21,21,17,25,138

1139 REM 0 :

1140 DATA 170,42,136,68,81,17,152,138,162,38,81,152,136
1144 REM R

1145 DATA 162,162,25,129,81,152,10

1149 REM SPACE (INCREMENT WITHOUT PLOTTING)

1150 DATA 160,160,160,32,32,32

1154 REM 1 '

1155 DATA 168,136,136,68,81,17,17,21,72,136,136

1159 REM SPACE (INCREMENT WITHOUT PLOTTING)

1160 DATA 1€60,160,32,32,32,32,32

1164 REM 1

1165 DATA 168,136,136,68,81,17,17,21,72,136,136

1169 REM PLOT HOBE 'ESCAPE

1170 DATA 255

-45-

Owner
Text Box
(pp 45-46 insert)

-~ « X=24, Y=72
1 ¢ 2. ¢ PR T TN SN TEN S S TN SR Y B R B 2K R R BT K B SRR B IR I IR R ¢ ¢ & ¢ ¢ e T T T v_: - ¢ 0__:_:
}/, .1E] W
L 25 B A] o . o 4 q L] o | ¢ & _ooa o - v P ¢ ¢ ol ¢ Jo 0 4G+ L3
! i I

'/ f ” n 0 -)¢ ‘ .' . -
Q_' * 0 * ¢ ¢ 0 4] ¢ 0 L }‘ i k Iy . , 7 r} (_} £} q—} ,o ‘) G/O

11'01009"000400"00“04‘00&&0"000100'0"”’0001'0

FIG. 6.19

6.6 PLOT 250--X BAR GRAPH

A horizontal line may be drawn from a given point, X0,Y0, to another
point, X1,Y0, by using the PLOT 250 instruction (after entering the gen-
eral plot mode). After this instruction, the Compucolor II is expecting
three numbers (less than 240) in this order: XO0,Y0,X1. For example, PLOT
2,250,0,63,127,255 will draw a horizontal line across the screen, halfway
up.

X0,Y0 X1,Y0
FIG. 6.20

&

Only after the X1 number is given will the line be drawn. Moreover, the
computer will then automatically take the next two numbers as the YO0,X1 of
another line (unless, of course, either of those numbers is greater than
239) That is, the same value for X0 will be assumed. If you wish to
give it a dlfferent X0, you will have to respecify the X bargraph submode
with PLOT 250.

~——— ———Fhis-program will draw a large, solid triangle near the center of the
screen:

5 REM PROGRAM 6.9 o

6 REM A TRIANGLE USING X BAR GRAPH

10 PLOT 6,6,12: REM SET COLOR & CLEAR SCREEN
20 PLOT 2: REM GENERAL PLOT MODE

30 PLOT 250: REM X BAR GRAPH SUBMODE

40 PLOT 30: REM X0

50 FOR Y=30 TO 97

60 PLOT Y,127-Y: REM Y0,X] OF BAR GRAPH
70 NEXT

80 PLOT 255

6.7 PLOT 247--INCREMENTAL X BAR GRAPH

After plotting an X bar graph, the instruction PLOT 247 sets the com-
puter up to take all subsequent numbers (less than 240) as incremental val-
ues. The incremental values will do for the bar graph what they did for
the point plot, and they refer to the X1,Y0 co-ordinate of the bar graph.

-46-

. 39
40
50
60
79

80
99
100
110
120

\1301

139

149

149

| 150

169

170

180

190

200

210

219

220

230

239

240

Msor

o s bree

¢ 5=l
Mow TN RiveY)
e L paa Lt Cvedd

valrad 16 elng

Lk doR 1y

PLaT BLasws BT A
(SR IR SRSV YR

s SR T R O

4f: Pl aedteod f 1B

*’H’?

w‘m)
vE (b

4 Ay 2 w«’ﬂ’"\'(Hy

mode,

©3MR Gt M)

PLOT 250 XA
PLOT 34,0,125
PLOT 247— :
FOR Y=¢ TO 63._
PLOT 34<_
NEXT
PLOT 2
PLOT 255.
PLOT 6,4
PLOT 2.
s=0._

ENT

/X’J PR

INERORET
LLE

ST W)

B T

PENR S

o VELE Gbnld 1T PR

hRS cel STRTVG Bk FiKevaury
N GOn NECEes. 2oV WIE

FOR Y=g TO 112 STEP 16

FOR X=30 TO 114 STEP 24

PLOT 250

30!0 00\ 0
x / X v
roar IR 1

WY palTT LT WITH NS

{
i

X PR GRAPK

PLOT x+12*s Y, x+12*s+1l

’*ﬁ >

PLOT 247--

N GRMTIAL SRR Gl

FOR J=1 TO 7: PT(H'34 NEXT
PLOI' 2\@’

NEXT

NEXT

PLOT 255 o

Tl owvs

S=1+(S=1) :REM TOGGEF

DIV 0 s 2d
oy ox ¥
VIIEW Y 3
ot ~ 0

\‘ »

L

happen with a bar graph? Try this experiment:

5 REM
6 REM

19
20
30
40
50
60
61
79
8o

One wa
line at a

PLOT
PLOT
PLOT
PLOT
PLOT
PLOT
REM

PLOT
PLOT

30@0:REM
2:REM
250 :REM

y to
time:

PROGRAM 6.12
X BAR GRAPH WITH FLAG ON
6,6,12:REM
FLAG ON
GENERAL PLOT MODE
X BAR GRAPH SUBMODE
9,63,127:REM
63,127:REM
NOTE THAT THE INITIAL VALUE GIVEN TO X@ IS ASSUMED
255:REM EXIT PLOT MODE
29:REM FOR CONVENIENCE, TURN FLAG OFF

SET UP

DRAW THE
AND AGAIN

BAR

PLOT 8:FOR J=1 TO 32:PLOT 11,10:NEXT

Or you could plot a horizontal (or vertical,

104 Pt gk vt

»
N c*‘:‘. r}qr
|
|

<o f
R

MT oL SY

Recall that if the FLAG bit is set prior to entering the general plot

PLOTting a point twice will turn that point on, then off. Will that

erase the screen is to use PLOT 12, You could also erase a

see next section) bar graph

in black (or whatever color the screen is to be erased in) and move it down

(or up,

Or across)

the

screen.,

This

can sometimes

"cinemagraphic" touch to your programs,

-47-

give

a bit of a

— s RWE

5 REM PROGRAM 6.13

6 REM ERASE SCREEN USING X BAR GRAPH

19 PLOT 6,2:REM SET COLOR

17

18 REM NOW, FOR THE. SAKE OF THE DEMONSTRATION,

19 REM USE THE TEST MODE TO FILL THE SCREEN WITH SOMETHING

20 PLOT 27,25:REM TEST MODE

30 PLOT 65:REM FILL THE SCREEN WITH "A"

39

40 PLOT 3,64,0:REM HIDE THE CURSOR

50 PLOT 6,0:REM QOLOR=BLACK

59

60 PLOT 2:REM GENERAL PLOT MODE

70 PLOT 25@:REM X BAR GRAPH SUBMODE

80 PLOT @:REM X0=0

88

89 REM ERASE THE SCREEN

99 FOR Y=@ TO 125 STEP 4

109 PLOT Y,127:REM Y@ AND X1

110 NEXT

119

120 PLOT 255

130 PLOT 6,2:REM RETURN TO SOME COLOR

Note that the FOR~NEXT loop in line 90 has a step value of 4. This will

guarantee that one bar graph line will go across each character line on
the screen; if a PLOTted block or line goes into a character position, any
ASCII character there will disappear. So we need not PLOT the bar graph
for all four blocks within the height of a character position. On the other

hand, you could do so if you wished the erasing to go slightly slower.
Change line 90 to

99 FOR. Y=0 TO 127

You could also use the incremental bar graph mode. Establish the first bar
by changing line 80 to

8¢ PLOT 0,0,127

Enter the incremental bar graph submode with

85 PLOT 247

Line 100 will then contain the increment number:

100 PLOT 34

Remember that the bar graph increments twice each time through the loop,
so if you leave line 90 as a loop from Y=0 to 127, the lines will pass the
top edge of the screen, "wrap around" to the bottom, and erase the screen
a second time. A loop from Y=0 to 61 will just be sufficient.

—48—

Still another variation is to use the regular bar graph, but have the
FLAG bit set so that you can PLOT a line and then go back and rePLOT (=erase)
the previous one. This way, you can use a bar graph in some color other
than black, and the result will be a colored line moving up the screen,
erasing as it goes.

5 REM PROGRAM 6.14

6 REM ERASE SCREEN WITH X BAR GRAPH & FLAG ON
1¢ PLOT 30:REM FLAG ON

20 PLOT 6,2:REM CHOOSE QOLOR

30 PLOT 27,25:REM TEST MODE

40 PLOT 65:REM FILL THE SCREEN WITH SOMETHING
50 PLOT 3,64,0:REM HIDE THE CURSOR

60 PLOT 6,6:REM CHOOSE A COLOR FOR THE ERASING BAR
70 PLOT 2:REM GENERAL PLOT MODE

80 PLOT 25@:REM X BAR GRAPH

99 PLOT 0,0,127:REM FIRST BAR

99

100 FOR Y=1 TO 127

119 PLOT Y-1,127:REM ERASE LAST BAR

126 PLOT Y,127:REM PLOT NEW BAR

13p NEXT

139

149 PLOT Y-1,127:REM ERASE VERY LAST BAR

150 PLOT 255:REM PLOT MODE ESCAPE

160 PLOT 29:REM FLAG OFF, FOR CONVENIENCE

Or, if you wish to go faster, use STEP 4 in the loop. But in that case
you will have to make some slight changes elsewhere:

100 FOR Y=4 TO 125 STEP 4
119 PLOT Y-4,127:REM ERASE PREVIOUS BAR

140 PLOT Y-4,127:REM ERASE VERY LAST BAR

You could also use the incremental X bar graph by choosing increment
values so that you first PLOT a bar, increment it to PLOT a new one,
decrement it to rePLOT (=erase) the previous one, increment without PLOTting,
and so on.

If there are plot blocks already on the screen, then using the moving
bar graph with the FLAG on to erase the screen will erase those blocks and
then immediately rePLOT them in the color of the moving bar. The following

lines provide a variation on the incremental method. Add them to Program
6.8 (which has been added to Program 4.6):

-49-

1085

1996
1997
1998
1999
2000
2010
2020
2030
2040
2050
2059
2060
2079
2080
2090
2099
2100
2110
2120
2139
2138
2139
2140
2150
2160
2170
2180
2188
2189
2190
2200
2210
2220
2230
2239
2240
2250
2259
2260
2270
2280
2281
2290

GOSUB 2000:REM MOVING X BAR WITH FLAG ON

REM ***** SUBROUTINE TO PLOT MOVING X BAR GRAPH *****

REM FIRST DRAW A BLUE BORDER AROUND THE SCRIPT

PLOT 6,4:REM BLUE

PLOT 2:REM GENERAL PLOT MODE

PIOT 0,89:REM X,Y OF TOP LEFT CORNER OF BORDER

PLOT 242:REM VECTOR PLOT SUBMODE (SEE SECTION 6.9)
PLOT 9,50,127,50,127,89,08,89:REM PLOT REST OF BORDER
PLOT 255:REM PLOT MODE ESCAPE

PLOT 30:REM FLAG ON

GOSUB 700:REM PAUSE ROUTINE IN PROGRAM 4.6
C=FG-16+(BG-16) *8:REM PUT (COLOR INTO CCI FORMAT
PLOT 6,C

PLOT 2:REM BACK TO GENERAL PLOT MODE

PLOT 25@0:REM X BAR GRAPH SUBMODE

PLOT 2,52,125:REM X@,Y0,X1 OF FIRST BAR BAR
PLOT 247:REM INCREMENTAL X BAR GRAPH SUBMODE

REM NOW MOVE BAR UP THROUGH SCRIPT
FOR Y=52 TO 86
PLOT 2:REM INCREMENT ONCE & PLOT
PLOT 1:REM DECREMENT AND ERASE PREVIOUS BAR

PLOT 32:REM INCREMENT WITHOUT DRAWING THE BAR
NEXT

REM MOVE BAR BACK DOWN THROUGH MESSAGE
FOR Y=86 TO 52 STEP -1

PLOT 1:REM MOVE ONCE & DRAW NEW BAR

PLOT 2:REM ERASE PREVIOUS BAR

PLOT 16:REM MOVE WITHOUT DRAWING
NEXT

PLOT 255:REM EXIT PLOT MODE
C=C+1:IF C=64 THEN RETURN:REM ALL DONE

PLOT 6,C:REM NEW QOLOR
PLOT 2:REM GENERAL PLOT MODE AGAIN
PLOT 247:REM INCREMENTAL BAR GRAPH WILL PICK UP
REM FROM WHERE IT LEFT OFF. (SEE SECTION 6.12)
GOTO 2140:REM REPEAT IN THE NEW QOLOR

-0~

6.8 PLOT
PLOT

Everyt
graph plot

246 -~ Y BAR GRAPH and
243 —- INCREMENTAL Y BAR GRAPH

hing which applied to the X bar graph now applies to the Y bar
submode. Just make the necessary switches from horizontal lines

to vertical lines.

The fo

llowing program will plot the area under a sine functionm.

5 REM PROGRAM 6.15
6 REM SINE FUNCTION IN Y BAR GRAPH MODE

10
22
30
40
49
50
60
79
80
89
90

The fo
what, with
industrial

PLOT 6,6,12:REM SET UP

PLOT 2:REM GENERAL PLOT MODE
PLOT 246:REM Y BAR GRAPH SUBMODE
PLOT @:REM Y@ OF Y BAR GRAPH

FOR X=@ TO 127

PLOT X:REM X OF Y BAR GRAPH

PLOT 63+40*SIN(X/10) :REM SCALE THE Y1
NEXT

PLOT 255:REM EXIT PLOT MODE

llowing program uses the incremental Y bar graph mode to produce
some imagination, might be... um... "modern art" impressions of

plants.

5 REM PROGRAM 6.16
6 REM INCREMENTAL Y BAR GRAPH DEMO

10
20
30
40
49
50
60
68
69
70
79
80
90
98
99
100
110
119
120
130
140
150
159
160
169
178

DEF FN R(R)=INT(R*RND(1))+1

YP=25:REM Y@ IS KEPT QONSTANT, JUST FOR LOOKS

PLOT 6,FN R(63) ,12:REM ERASE SCREEN IN A RANDOM OOLOR
PLOT 3,64,0:REM HIDE CURSOR

FOR J=1 TO FN R(20)+5:REM RANDOM NUMBER OF FIGURES
PLOT 6,FN R(63) :REM CHOOSE RANDOM (OLOR FOR EACH

REM RANDOMLY SET THE FLAG ON OR OFF
PLOT 29:IF RND(1)>.5 THEN PLOT 30

PLOT 2:REM GENERAL PLOT MODE
PLOT 246:REM Y BAR GRAPH SUBMODE

REM CHOOSE RANDOM X AND Y1, BUT NOT TOO CLOSE TO BORDERS
X=FN R(80)+20

Y1=FN R(80)+20

PLOT Y0,X,Y1:REM DRAW A VERTICAL BAR

PLOT 243:REM INCREMENTAL Y BAR GRAPH SUBMODE

INC=FN R(239) :REM RANDOM INCREMENTAL VALUE

T=FN R(20) :REM RANDOM NUMBER OF THOSE INCREMENTS

FOR K=1 TO T:PLOT INC:NEXT

PLOT 255:REM PLOT MODE ESCAPE

-51-

180 NEXT

189

198 FOR J=1 TO 25@@:NEXT:REM PAUSE
199

200 GOTO 30

6.9 PLOT 242 — VECTOR PLOT

The vector plot submode is more versatile than either X or Y bar graph
submodes because a line (vector) may be drawn from any point to any other
point on the screen. The computer will plot the closest approximation to
a straight line between the points., The first point of the line is specified
by PLOTting a point in the point plot mode. Then, after receiving a PLOT
242 instruction, the computer will take the next two numbers to be the X,Y
co-ordinates of the other end of the vector and draw the line. It 1is then
automatically set up to receive two more numbers as the end point of another
line to be drawn from the end of the first, and so on. Thus,

eLor 2,0,9,242,127,9,127,127,9,127,0,0,255

will draw a line around the screen.

A combination of point plots and vector plots in several colors will
allow us to create an animated explosion effect for the artillery game
developed earlier. The explosion will shoot out colored vectors from the
site of the explosion, but to avoid having any of these vectors try to go
off the screen, the explosion site for this particular explosion routine
must be no closer than six plot blocks (three character positions) from
either edge of the screen. If we use the explosion only when the target
has been hit, then we need be sure only that the target is sufficiently in
from the side of the screen. (Notice that the artillery game program already
does that.)

As always, to change colors you must exit the plot mode, change the
color and then reenter the plot mode. The explosion will not look very good
if the flag is on, so we must make sure it is off. X and Y are the PLOT
co-ordinates of the explosion site. (If you wish to incorporate this routine
into the artillery game, use only the lines 5000-5201 in the following
program, and in the artillery program add 85 X=2*TX:Y=4:GOSUB 5000.)

5 REM PROGRAM 6.17

6 REM EXPLOSION USING VECTOR PLOT SUBMODE

10 pLOT 15,6,6,12:REM SET UP

20 PLOT 27,24:REM PAGE MODE

29

30 PLOT 6,16:REM BACKGROUND = GREEN

40 pLOT 3,0,31,11:REM ERASE BOTTOM LINE IN GREEN
50 Y=4:REM EXPLOSION IS ALWAYS AT GROUND LEVEL
99

168 PLOT 6,6

116 PLOT 8,11:REM ERASE ANY PREVIOUS INPUT

120 INPUT "X QO—-ORDINATE (6-120)7? [red] ";X$

130 X=VAL(XS)

52

14¢ IF X<6 OR X>120 THEN 100

149

150 GOSUB 5006
160 GOTO 100

4997
4998
4999
5000
5010
5020
5029
5030
5038
5039
5040
5049
5050
5058
5059
5060
5068
5069
5070
5079
5080
5088
5089
5090
5099
5100
5108
5109
5110
5118
5119
5120
5130
5139
5140
5149
5150
5160
5169
5170
5179
5180
5190
5199
5200
5201

REM ***%* SUBROUTINE TO PLOT EXPLOSION ****%

PLOT 29:REM FLAG OFF

PLOT 19:REM YELLOW

PLOT 2:REM GENERAL PLOT MODE

PLOT X,Y,242:REM FIRST POINT, THEN ENTER VECTOR PLOT

REM SOME VECTORS
P]-_D'I' X—2 'Y+21 ,253 ,X'Y, 242 'X+3 ,Y+7 '253 ,X’Y' 242 ,X_3 'Y+15

FOR J=1 TO 15@0:NEXT:REM SLIGHT PAUSE

NOW FOR A FEW POINTS
PLOT 253,X,Y+13,X-2,Y+7,X+2,Y+20

REM ANOTHER VECTOR
PLOT X,Y,242,X+5,Y+20

PLOT 255,16:REM CHANGE QOLOR TO BLACK

REM ERASE ONE OF THE VECTORS
PIO‘I‘ 2 ,X,Y, 242 ,X_3 ,Y+15

PLOT 255,23:REM NEW COLOR = WHITE

REM SOME MORE POINTS

REM SOME MORE VECTORS

P[OP X,Y, 242 'X+2 ,Y+ll '253 ,X,Y, 242 ,X—l ,Y+3g

PLOT 253,X,Y,242,X+1,Y+8

PLOT 255,16:REM BLACK AGAIN TO ERASE EVERYTHING

PLOT 2,X,Y,242,X+2,Y+11,253,X,Y,242,X+5,Y+20
PIOT 253 ,X,Y, 242 'X+1 ,Y+8 ,253 ,X,Y, 242 ,X_l ,Y+3ﬂ

FOR J=1 TO 50:NEXT:REM SLIGHT PAUSE

PLOT 253 'X,Y+13 ,X_2 'Y+7 'X+2 ,Y+20 ,X,Y, 242 ,X—2 ,Y+21

RETURN:REM NOTE THAT THIS SUBROUTINE RETURNS WITH
REM OOLOR=BLACK AND THE FLAG OFF

Try specifying several explosions right next to each other. What happens?
The explosions become more '"chunky". The reason is not hard to discover.

The routine

PLOTs points and vectors in yellow and white, then erases them

53

by rePLOTting them in black. The result is that all those points and vectors
are still there, but now they are perfectly camouflaged, since the background
is also black. Now, when another explosion near the same site PLOTs its
vectors and points, there will be some character positions with plot blocks
in them (in black) as a result of the previous explosion. Recall that colors
are defined for an entire character position. Thus, when the new explosion
PLOTs a block in white or yellow, any other plot blocks in that same
character position will also turn white or yellow.

The problem 1is avoided by clearing the entire screen before each
explosion. Clearing the screen makes each character position a space (ASCII
32), thus wiping out any plot blocks. If you change line 160 to

160 GOTO 1@

then the explosions will always be cleanly PLOTted.

To the list of interesting ways to erase the screen we can add the
following. Draw a black vector which travels around the screen in smaller
and smaller rectangles, erasing as it goes.

5 REM PROGRAM 6.18

6 REM ERASE SCREEN USING VECTOR PLOT -- I

19 PLOT 6,2:REM SET COLOR

20 PLOT 27,25,65:REM FILL THE SCREEN USING TEST MODE

30 PLOT 3,64,0,6,0:REM HIDE CURSOR & SET COLOR FOR VECTOR
39

40 PLOT 2:REM GENERAL PLOT MODE

50 PLOT 0,0:REM FIRST POINT

60 PLOT 242:REM VECTOR PLOT SUBMODE

70 Y=—4

79

80 FOR X=@ TO 3¢ STEP 2
90 Y=Y+4

91 REM THUS, 1ST TIME THRU THE LOOP, X=0, Y=0.
92 REM X GOES BY 2'S AND Y BY 4'S BECAUSE A VECTOR
93 REM WHICH GOES THRU A CHARACTER POSITION WILL
94 REM ERASE ANY ASCII CHARACTER THERE

100 PLOT X,Y:REM BOTTOM LEFT (NEW)

110 PLOT 127-X,Y:REM BOTTOM RIGHT

120 PLOT 127-X,127-Y:REM TOP RIGHT

130 PLOT X,127-Y:REM TOP LEFT

140 PLOT X,Y:REM BOTTOM LEFT (OLD)

150 NEXT

159

160 PLOT 255:REM PLOT MODE EXIT

170 PLOT 6,2:REM BACK TO SOME COLOR

The program can erase in slightly different proportions by changing
the amount by which Y is incremented in the loop. But you'll have to make
appropriate changes in lines 70 and 80. Try this:

70 Y==2
80 FOR X=0 TO 60 STEP 2
90 Y=Y+2

~54—

Still

another possibility presents itself., PLOT a series of black

vectors from the center of the screen out to each point along the edge.

5 REM PROGRAM 6.19
6 REM ERASE SCREEN USING VECTOR PLOT -- II

10
20
30
40
49
50
58
59
60
69
70
78
79
80
89
90
98
99
100
199
110
118
119
120
129
139
139
140
150
160
197
198
199
200
210
220
230

PLOT 29:REM FLAG OFF

PLOT 6,2:REM SET CQOLOR TO GREEN

PLOT 27,25,65:REM FILL SCREEN USING TEST MODE

PLOT 3,64,9,6,0:REM HIDE CURSOR AND SET OOLOR=BLACK
PLOT 2:REM GENERAL PLOT MODE

REM UPPER TRIANGLE OF SCREEN
Y=127

FOR X=0 TO 127:GOSUB 200:NEXT

REM RIGHT TRIANGLE OF SCREEN
X=127

FOR Y=127 TO @ STEP -1:GOSUB 200 :NEXT

REM LOWER TRIANGLE OF SCREEN

Y=¢

FOR X=127 TO @ STEP -1:GOSUB 200:NEXT

REM LEFT TRIANGLE OF SCREEN

X=0

FOR Y=0 TO 127:GOSUB 20@:NEXT

PLOT 255:REM EXIT PLOT MODE

PLOT 6,2:REM BACK TO SOME COLOR

END

REM **%** SUBROUTINE TO DRAW A VECTOR *****

PLOT 253,63,63:REM FIRST POINT OF VECTOR IS CENTER OF SCREEN
PLOT 242:REM VECTOR PLOT SUBMODE

PLOT X,Y:REM END POINT OF VECTOR AT EDGE OF SCREEN
RETURN

Experimenting with the computer's graphics can often lead to some

unexpected
program in

and sometimes beautiful results. Suppose we alter the previous
a few simple ways. First, set the FLAG on instead of off. Erase

the display using a black vector as in the above progam. Then erase the
screen again using a blue vector. Finally, erase the screen a third time
using a red vector. I think you'll find the results to be very interesting.
These are the changes you might make:

-55-—~

10 PLOT 30:REM FLAG ON

49 PLOT 3,64,0,6,0:GOSUB 50:REM HIDE CURSOR; BLACK VECTOR
42 PLOT 6,4:GOSUB 50:REM BLUE VECTOR

44 PLOT 6,1:GOSUB 50:REM RED VECTOR

46 PLOT 29:END

150 RETURN

The final pattern which is produced could be achieved immediately by erasing
the screen the first time using some color other than black for the vector.
(With the FLAG on, the two patterns toggle.) But the final red pattern
emerging over the blue presents an especially interesting effect. We have
a tendency to see blue objects as though they were further in the distance
when compared to red objects (in this case, the emerging pattern). You
might also try different X1,Y1 values for the vectors in line 200. (If you
set X1=0 and Y1=0 then lines 100-130 will not be necessary.) Finally, try
using different background colors for one or more of the vector sweeps.
(Blue might be a good choice, because red on blue has that special effect.)

6.10 PLOT 240 —— INCREMENTAL VECTOR PLOT

Like points and bar graphs, vectors can be PLOTted and then incremented.
The incremental codes are nearly identical to the codes for incrementing
points and bar graphs. The difference is that if the four most significant
bits of the increment number are zero, then the X1,Yl co-ordinate of the
vector will be incremented, but the vector will not be drawn, whereas for
the incremental point plot and the incremental bar graph modes, the point
or bar will be incremented but not drawn only if the four least significant
bits are zero. (If the four most significant bits are zero, the first of
the two increments of the point or bar will remain unchanged, giving the
point or bar only one increment, whereas for vectors there is always only
one increment at most.) Furthermore, if the four least significant bits of
the vector increment number are zero, the vector will be neither incremented
nor drawn., (This is contrary to the account given in ISC's "Compucolor II
Programming and Reference Manual", Rev. 2, p. 80.)

A vector, unlike a bar graph, may have different increments for its
two end points. This allows a vector to be rotated about an axis and to be
propelled this way or that even while being rotated. Suppose we wish to
rotate a vector counterclockwise about its midpoint. (Figure 6.20.) X1
should be increased while Yl is decreased, but vice-versa for X2 and Y2.
Recall the numbers necessary to make these changes. (See Figure 6.21 and
Table 6.4.) The number we wish is therefore 128+16+4+2=150. This instruction
will draw a vector from X=40,Y=63 to X=80,Y=63 and increment it 20 times:

-56—

\ X2,Y2

1f the
binary |...then the
value increment
of the of tha?
DECIMAL VALUE: 128 64 3216 8 4 2 1 two bits|co-ordinate
BIT: 7 6 5 4 3 2 10 fs... |will be...
Xl,Yl [gj_Jgi_Jci_J_l_J 00 None
\ X111 ox2 y2 0l -
10 +
n None
FIG. 6.20 FIG. 6.21 TABLE 6.4

PLOT 2,40,63,242,80,63,240:FOR J=1 TO 28:PLOT 150:
NEXT:PLOT 255

The missing blocks in the resulting display are caused by the "best fit"
line drawing routine from one end point to the other; an absolutely straight
line cannot always be drawn, so the rotation of the vector, incrementing
a plot block at a time, causes some plot blocks to be passed over.

6.11 FLYING WEDGES

If you PLOT a certain vector and then increment its X1 co-ordinate
while decrementing the other three co-ordinates, after a number of such
changes the result will be what I am calling a "flying wedge". Here's a
simple one.

5 REM PROGRAM 6.20

6 REM A FLYING WEDGE

10 PLOT 6,6,12:REM SET UP

20 PLOT 2:REM GENERAL PLOT MODE

30 PLOT 63,63:REM X1,Y1 OF VECTOR

40 PLOT 242:REM VECTOR PLOT SUBMODE

5¢ PLOT 93,93:REM X2,Y2 OF VECTOR

60 PLOT 240:REM INCREMENTAL VECTOR PLOT
69

70 FOR J=1 TO 30

80 PLOT 149:REM INCREMENT X1, DECREMENT THE OTHERS

90 NEXT
99
108 PLOT 255

Now try adding:
15 PLOT 38:REM FLAG ON.
Flying wedges are to me interesting shapes and illustrate what can be
accomplished with very simple instructions. For variations, change the

number of times the program increments the vector (line 70 in the program
above). The following program draws random flying wedges in random colors.

-57-

5 REM PROGRAM 6.21

6 REM RANDOM FLYING WEDGES

10 C=63*RND(1)+1:REM CHOOSE RANDOM QOLOR
20 PLOT 6,C

30
40
49

PLOT 12:REM ERASE SCREEN
PLOT 3,64,0:REM HIDE CURSOR

50 N=5*RND(1)+2:REM 2 TO 6 FLYING WEDGES

59

60 FOR J=1 TO N

70 GOSUB 200:REM DRAW IT

80 NEXT

89

90 FOR J=1 TO 25@@:NEXT:REM PAUSE

99

109 GOTO 1@:REM BACK FOR SOME MORE

194

195

196 REM ***** GSUBROUTINE TO DRAW A FLYING WEDGE *****
197

198 REM DON'T GET TOO CLOSE TO EDGES OF SCREEN, AND,
199 REM JUST FOR LOOKS, USE 50 AS MINIMUM Y

200 X1=75*RND(1) :Y1=25*RND(1) +50

210 X2=X1+10*RND(1)+40:Y2=Y1+1@*RND (1) +40

219

220 PLOT 29,8*RND(1)+16:REM CHOOSE RANDOM FOREGROUND OOLOR
230 IF RND(1)>.5 THEN PLOT 3@:REM FLAG RANDOMLY ON
239

249 PLOT 2,X1,Y1,242,X2,Y2:REM DRAW A VECTOR

250 PLOT 240:REM INCREMENTAL VECTOR PLOT SUBMODE
259

260 FOR K=1 TO 45

270 PLOT 149:REM INCREMENT

280 NEXT

289

290 PLOT 255:REM PLOT MODE ESCAPE

300 RETURN

6.12 REENTERING PLOT SUBMODES

Exclud

ing the character plot submode, you may enter any plot submode

directly from any other plot submode simply by issuing the proper PLOT
number (253 for point plot, 242 for vector plot, and so on). For example,
you may draw a vector and then immediately enter the incremental point plot
submode. The point which will be incremented is the X2,Y2 of the last vector.

5 REM PROGRAM 6.22
6 REM REENTRY TO PLOT SUBMODES

10
20
28
29

PLOT 6,6,12:REM SET UP
PLOT 2:REM GENERAL PLOT MODE

REM DRAW A VECTOR FROM 0,0 TO 63,63

_.58..

»

3¢ PLOT 0,0,242,63,63

39

40 PLOT 251:REM INCREMENTAL FOINT PLOT SUBMODE
49

50 FOR J=1 TO 10

60 PLOT 96:REM INCREMENT WITHOUT PLOTTING
70 PLOT 6:REM INCREMENT ONLY ONCE

80 NEXT

89

98 PLOT 255

You may even exit the plot mode entirely in order to change colors or
to print text, then reenter any plot submode and continue where you left
off. Add to the above program these lines:

100 PLOT 6,1:REM RED

110 PLOT 2:REM GENERAL PLOT MODE AGAIN

12¢ PLOT 251:REM BACK TO INCREMENTAL POINT PLOT SUBMODE
129

130 FOR J=1 TO 10

140 PLOT 96,6:REM CONTINUE THE DOTTED LINE

150 NEXT

159

160 PLOT 255

169

170 PLOT 6,2:REM GREEN

180 PLOT 2:REM REENTER GENERAL PLOT MODE

190 PLOT 242:REM VECTOR PLOT MODE

200 PLOT 0,0:REM DRAW A VECTOR BACK TO STARTING POINT
209

216 PLOT 255

If a program does not specify the staring co-ordinatesfor a point or
line, the starting point defaults to the last co-ordinates,which will be
0,0 if no other value has previously been used since the computer was turned
on (or since you hit CPU RESET). Type in this:

pPLOT 2,0,0,255.

Now type in this program:

5 REM PROGRAM 6.23

6 REM PLOT MODE DEFAULT CO-ORDINATES

16 PLOT 6,6,12:REM SET UP

20 PLOT 2:REM GENERAL PLOT MODE

30 PLOT 251:REM INCREMENTAL POINT PLOT SUBMODE
39

40 FOR J=1 TO 20

50 PLOT 10:REM INCREMENT UP AND TO THE RIGHT
60 NEXT

69

70 PLOT 255

Now RUN it. RUN it again. And again. And again. Now hit CPU RESET, ESC E
(BASIC reset) and RUN it again. Interesting. Or try adding these lines:

-50-

15 pLoT 2,0,0,255
17 FOR K=1 TO 6

.

80 PLOT 12
93 NEXT

The following program uses these features for reentering the Y bar
graph submode in order to draw bar graphs for the production history of a
fictitious company, Widgeco.

5 REM PROGRAM 6.24

6 REM GRAPHING WIDGECO PRODUCTION

19 DIM EC(30) ,DE(30) :REM 30 YEARS PRODUCTION OF ECONOMY
11 REM AND DELUXE MODEL WIDGETS
19

20 PLOT 14:REM DOUBLE HEIGHT

3¢ PLOT 36,16,29,19:REM SET COLORS; FLAG OFF
49 PLOT 12,27,24:REM ERASE SCREEN & SET TO PAGE MODE
50 PRINT TAB(33) "WIDGEQO"

60 PLOT 15,18:REM REGULAR HEIGHT; COLOR=GREEN
70 PRINT TAB(27) "PRODUCTION HISTORY"

78

79 REM SET UP GRAPH BORDERS

80 GOSUB 3000

88

89 REM LABEL VERTICAL AXIS

90 GOSUB 2200

98

99 REM PRINT LEGEND

100 GOSUB 2000

108

109 REM GIVE INSTRUCTIONS

110 GOSuB 1700

118

119 REM GET DATA

120 GOSUB 4000

298

299 REM GET STARTING YEAR DESIRED

300 GOSUB 1600

308

309 REM CHECK FOR INPUT ERRORS

310 IF SY>1949 AND SY<1980 THEN 500

319

320 PLOT 28,11:REM ERASE BAD INPUT

330 PLOT 6,65:REM BLINK RED

340 PRINT TAB(17) "DATA NOT AVAILABLE"

359 PLOT 6,1,3,64,0:REM BLINK OFF; HIDE CURSOR
359

360 FOR T=1 TO 10@@:NEXT:REM PAUSE

369

370 GOTO 300

—-60-

498

499 REM ERASE GRAPH AREA & YEARS

500
508
509
510
518
519
520
997

GOSUB 1500

REM DISPLAY NEW DATA
GOSUB 1000

REM BACK FOR MORE
GOTO 300

998 REM ***** SUBROUTINE TO DISPLAY NEW DATA *****

999

1000
1010
1020
1030
1039
1040
1049
1050
1060
1069
1070
1080
1090
1100
1101
1162
1110
1120
1130
1140
1150
1160
1169
1170
1180
1197
1198
1199
1200
1219
1229
1230
1240
1259
1260
1497
1498
1499
1500
1510
1519
1520

PLOT 2:REM GENERAL PLOT MODE
PLOT 246,28:REM Y@ OF Y BAR GRAPH
PLOT 34:REM X OF Y BAR GRAPH
PLOT 255:REM EXIT PLOT MODE

PLOT 3,16,26:REM POSITION CURSOR

FOR X=f TO 8:REM FOR EACH OF THE 9 YEARS DISPLAYED...
IF SY+X>1979 THEN X=8:GOTO 1160

PLOT 23:REM WHITE

PRINT SY+X;:REM PRINT THE YEAR

PLOT 21:REM MAGENTA

Y1=EC (SY+X-1949) *4+27:REM HEIGHT OF Y BAR FOR
REM ECONOMY MODEL

GOSUB 1200:REM PLOT THE BAR

PLOT 19:REM YELLON FOR DELUXE MODEL

Y1=DE (SY+X-1949) *4+27

GOSUB 1200

PLOT 2,243,128,128,255:REM SKIP OVER & EXIT PLOT MODE
NEXT

PRINT
RETURN

REM *%*%* SUBROUTINE TO PLOT A BAR ****%

PLOT 2:REM GENERAL PLOT MODE

PLOT 244,Y1:REM HEIGHT OF THE BAR

PLOT 243:REM INCREMENTAL Y BAR GRAPH SUBMODE
PLOT 136:REM INCREMENT TWICE TO THE RIGHT
PLOT 128,128:REM SKIP WITHOUT PLOTTING

PIOT 255:REM EXIT PLOT MODE

RETURN

REM *%*%* SUBROUTINE TO ERASE GRAPH ARFA & YEARS *****

PLOY 3,0,26,11:REM ERASE YEARS
PLOT 3,64,0,16:REM HIDE CURSOR; COLOR=BLACK

PLOT 2:REM GENERAL PLOT MODE

-61-

1530
1540
1550
1560
1569
1579
1579
1580
1590
1596
1597
1598
1599
1600
1609
1610
1620
1630
1697
1698
1699
1700
1710
1720
1730
1749
1750
1760
1779
1780
1799
1800
1819
1820
1847
1848
1849
1859
1997
1998
1999
2000
2010
2020
2030
2040
2050
2059
2060
2070
2080
2099
2099
2100

PLOT 246,28:REM Y@ OF Y BAR GRAPH

PLOT 32:REM X OF Y BAR GRAPH

PLOT 111:REM HEIGHT OF Y BAR GRAPH

PLOT 243:REM INCREMENTAL Y BAR GRAPH SUBMODE

FOR X=1 TO 47:PLOT 136:NEXT

PLOT 255:REM EXIT PLOT MODE
RETURN

REM ***** SUBROUTINE TO GET STARTING YEAR ***%%

REM FIRST ERASE ANY PREVIOUS INPUT
pLOT 3,9,390,11

INPUT " [cyn]STARTING YEAR?[wht] ";SY$
SY=VAL (SYS)
RETURN

REM ***** SUBROUTINE TO GIVE INSTRUCTIONS ***x*

PLOT 18:REM GREEN

Y=8:REM INITIAL CURSOR Y POSITION LESS 2

GOSUB 1858:REM POSITION CURSOR FOR NEXT LINE OF TEXT
PRINT "FIGURES FOR WIDGECO'S PRODUCTION ARE AVAILABLE"
GOSUB 1859

PRINT "FOR THE YEARS 1950-1979. WHEN REQUESTED, PLEASE"
GOSUB 1859

PRINT "INDICATE THE STARTING YEAR FOR WHICH GRAPHS OF"
GOSUB 1850

PRINT "THOSE FIGURES ARE DESIRED, THAT YEAR AND UP TO"
GOSUB 1850

PRINT "EIGHT ADDITIONAL YEARS' DATA WILL BE DISPLAYED."
RETURN

REM **** SUBROUTINE TO SKIP A LINE & REPOSITION CURSOR ****
Y=Y+2:PLOT 3,16,Y:RETURN
REM ***** SUBROUTINE TO PRINT THE LEGEND ***x*

PLOT 3,21,28:REM POSITION CURSOR

PLOT 18:REM GREEN

PLOT 30,21:REM FLAG ON; BACKGROUND=MAGENTA

PLOT 32,32,32:REM THREE SPACES IN MAGENTA

PLOT 16:REM BACKGROUND=BLACK (FOREGROUND IS STILL GREEN)
PRINT " ECONOMY MODEL ";

PLOT 19:REM FLAG IS STILL ON, SO BACKGROUND BECOMES YELLOW
PLOT 32,32,32:REM THREE SPACES IN+ YELLOW

PLOT 16,29:REM BACKGROUND TO BLACK; FLAG OFF

PRINT " DELUXE MODEL "

RETURN

-62—-

2197

2198 REM ***** SUBROUTINE TO LABEL, VERTICAL AXIS *****
2199 .
2200 PLOT 23:REM WHITE

2209

2210 FOR Y=5 TO 20 STEP 5

2220 PLOT 3,11,25-Y:REM POSITION CURSCR

2230 PRINT Y

2249 NEXT

2249

2250 PLOT 22:REM CYAN

2269 PLOT 3,08,9:REM POSITION CURSCR

2269

2279 PRINT " NUMBER"
2289 PRINT

2259 PRINT " OF"
2379 PRINT

2319 PRINT " WIDGETS"

2329 PRINT

2330 PRINT "(X1000)"

2239

2349 RETURN

2597

2398 REM *¥*** SUBROUTINE TO SET UP GRAPH BORDERS *****
2999

3008 PLOT 22:REM CYAN

3010 PLOT 3@:REM FLAG ON FOR SPECIAL CHARACTERS
3920 PLOT 27,10:REM VERTICAL MODE
3039 PLOT 3,14,5:REM POSITION CURSOR
3038

3939 REM DRAW VERTICAL AXIS

3040 FOR Y=5 TO 24:PLOT 98:NEXT

3049

3950 PLOT 27,24:REM BACK TO PAGE MODE
3069 PLOT 3,15,25:REM POSITION CURSOR
3268

3069 REM DRAW HORIZONTAL AXIS

3970 FOR X=15 TO 63:PLOT 101:NEXT

3979

3089 PLOT 29:REM ' FLAG OFF

3098 RETURN

3997

3998 REM ***** SUBROUTINE TO GET DATA ****%
3999

4009 RESTORE 4100

4999

4919 FOR J=1 TO 30

4920 READ EC(J),DE(J)

4039 NEXT

4939

449 RETURN

4096

4097 REM **** THE DATA *****

4098

-63-

4099 REM 1950-1959

4190 DATA 5,3,7,4,7,5,6,5,8,5,9,6,8,5,10,5,11,5,12,6

4104 REM 1960-1969

4105 pAaTA 12,7,13,9,14,10,15,11,15,12,14,11,9,7,8,5,9,4,10,6
4109 REM 1970-1979

411¢ pATA 11,7,13,9,17,15,16,14,16,10,15,8,16,8,17,8,16,8,16,10

6.13 PLOTTING CHARACTER STRINGS

After entering the general plot mode with PLOT 2, all subsequent output
to the screen will be PLOTted. The PRINT instruction is one way of sending
information to the screen, and so any instruction to PRINT will be PLOTted,
one byte (character) at a time, according to the ASCII values of the
characters, That is, PRINT "AA" is accomplished also by PLOT 65,65,13,10.
(65 is the ASCII value for "A"; and don't forget the carriage return/line
feed sequence, which, however, can be suppressed with a semicolon after
whatever is to be PRINTed.) Thus,

PLOT 2:PRINT "AA";:PLOT 255

will put a plot block at X=65,Y=65.

This will allow you to predefine certain graphics as character strings.
Some of the lower numbers will not be available, however, since you won't
find characters equivalent to ASCII 0 through 13 for use in character
strings. (But ISC's FREDI, the BASIC Text Editor, may help you out.) Nor
will you be able to use characters with values greater than 191 unless you
have the deluxe keyboard with the special function keys. (See Appendix G.)
(By the way, the use of those keys in character strings will produce a
nearly undecipherable program listing.) Thus, the instruction

pLOT 2,32,32,242,99,32,61,90,32,32,255

will produce a triangle. So will

TR$="Z =Z ":PLOT 2,32,32,242:PRINT TRS;:PLOT 255

5 REM PROGRAM 6.25

6 REM PLOTTING CHARACTER STRINGS

19 PLOT 6,6,12:REM SET UP

20 PLOT 30:REM FLAG ON

29

30 FOR J=1 TO 500

490 PLOT 6,64*RND(1) :REM SELECT ARBITRARY COLOR
50 PLOT 2:REM GENERAL PLOT MODE

60 PLOT 251:REM INCREMENTAL POINT PLOT SUBMODE
79 PRINT 1000*-COS(RND(1));

80 PLOT 255

90 NEXT
99
169 GOTO 3¢

-6 4=

7. PLOT 6,128 AND ABOVE

The CCI codes (PLOT 6,n) from 0 through 63 represent the 64 possible
foreground/background color combinations. If 64 is added to such a number,
the foreground will blink. (See Section 2.7.) That accounts for the numbers
from 0 through 127. But an eight bit binary number, which is what the CCI
code is, can go up to 255. What results with PLOT 6,128 and PLOT 6,129 and
... PLOT 6,2557 ’

Such numbers will do two things. First they will specify the fore-
ground/background colors. Subtract 128 to get the usual number. That is,
PLOT 6,129 will select red on black, because 129-128=1, and PLOT 6,1 selects
red on black. If the resulting number is greater than 64, the foreground
color will blink. Second, output to the screen will be in the form of
character plot. Now, although things will appear to be in the character
plot mode, you ought to issue all subsequent instructions as though you
were not in the character plot mode. This may be a bit confusing. Just
imagine that PLOT 6,129 (for example) is a way not only of setting the
color to red, but also of translating English into Plot-English, a new
language spoken by the computer. Consequently, if you type in

PLOT 6,129

the result will be as shown in Figure 7.1. That's Plot-English for "READY".

ﬂ []
IIG. ;-1

(If the A7 bit was on, you got a double row of Plot-English.) Now type in
PLOT 6,1, and you will get "READY". (That's English-English.) You can verify
that "READY" was correctly translated into Plot-English by wusing the
character plot mode and PLOTting the ASCII values of those five letters.
(See Table 7.1.)

Letter ASCII Value

82
69
65
68
89

<oOPrmx

TABLE 7.1

5 REM PROGRAM 7.1

6 REM VERIFYING PLOT MODE OUTPUT

10 PLOT 2,254:REM CHARACTER PLOT SUBMODE
2¢ PLOT 82,69,65,68,89:REM R,E,A,D,Y

3@ PLOT 255

65

Notice that if you are in the (ordinary) plot mode, the plot mode will
automatically be exited if the program ends or if it is interrupted. Type
in this:

PLOT 2,254

You still get the "READY" prompt back. BASIC automatically exited the plot
mode., It will do the same when you're in Plot-English as well.

PLOT 6,129,2,254

will also come back with "READY". That is, if you are in Plot-English, you
will stay in Plot-English unless you issue an appropriate CCI code (like
PLOT 6,1) or you enter the general plot mode. Hence, line 60 in the following
program is not necessary.

5 REM PROGRAM 7.2

6 REM PLOT MODE

10 PLOT 6,129:REM ENTER PLOT
20 PRINT "THIS IS PLOT-ENGLISH"
29

30 PLOT 2:REM GENERAL PLOT MODE
40 PLOT 63,63:REM PLOT A POINT
50 PLOT 255:REM EXIT PLOT MODE
59

60 PLOT 6,1:REM BACK TO ENGLISH-ENGLISH
70 PRINT " BACK TO NORMAL"

In Plot-English, all the regular plot codes apply as usual, but you
will always end up in Plot-English (unless, to repeat, you escape it with
a PLOT 6,n instruction, where n is less than 128, or unless you enter the
general plot mode), and all letters and characters will appear as character
plots——except for those in the blind cursor.

5 REM PROGRAM 7.3

6 REM BLIND CURSOR IN PLOT MODE

10 PLOT 6,131:REM YELLON AND PLOT

20 PLOT 3,15,11:REM POSITION CURSOR

30 PRINT "TEST #1";:REM SUPPRESS THE CR/LF
40 PLOT 10:REM CURSOR DOWN

50 PLOT 25,25:REM CURSOR TO THE RIGHT TWICE
60 PRINT "TEST #2"

69

70 PLOT 3,127:REM BLIND CURSOR

80 PLOT 15,19:REM X,Y

90 PLOT 1:REM CCI QODE

109 PRINT "BLIND CURSCR"

114 PLOT 27,27:REM EXIT BLIND CURSOR

119

120 PRINT:PRINT

130 PRINT "TEST #3"

140 PLOT 6,2:REM GREEN; BACK TO NORMAL

150 PRINT "TEST #4"

-66—

€y

The blind cursor has its own CCI code. You may use Plot-English in the
blind cursor mode, too, if you wish, by specifying the appropriate CCI code
there. Change line 90 in the program above to:

90 PLOT 129:REM BLIND CURSOR CCI QODE

Experiment with this:

5 REM PROGRAM 7.4

6 REM PLOT A BORDER AROUND THE SCREEN
10 PLOT 12:REM ERASE SCREEN

20 PLOT 6,134:REM CYAN AND PLOT

30 PLOT 27,24:REM PAGE MODE

39

40 N=8:REM FOR THE LOOP IN LINE 200
50 GOSUB 20@:REM PLOT TOP BORDER
59

60 PLOT 3,0,31:REM POSITION CURSOR
70 GOSUB 20@0:REM PLOT BOTTOM BORDER
79

80 PLOT 27,10:REM VERTICAL MODE

99 PLOT 8:REM HOME CURSOR

100 N=4

110 GOSUB 200:REM PLOT LEFT BORDER
119

120 pLOT 3,63,0

130 GOSUB 200:REM PLOT RIGHT BORDER
139

140 PLOT 27,11:REM SCROLL MODE

150 PLOT 6,2:REM REGULAR GREEN

159

160 END

198

199

200 FOR J=1 TO N

219 PRINT "A BORDER";

220 NEXT

229

230 PRINT

240 RETURN

Notice that in the program above the screen must be cleared before
entering plot, because to clear the screen is to put ASCII 32 into all the
character positions; but when the computer is speaking Plot-English, 32
shows up as in Figure 7.2. On the other hand, if the test mode is used (see

FIG. 7.2 FIG. 7.3

Section 5) and zero is specified, each character position on the screen
will be filled with nothing (provided the A7 is off--i.e., regular character

-67-

height), thereby clearing the screen.

5 REM PROGRAM 7.5

6 REM ERASE PAGE IN PLOT MODE

190 PLOT 15:REM A7 MUST BE OFF

20 PLOT 6,129:REM PLOT MODE; RED ON BLACK
30 PLOT 27,25:REM TEST MODE

40 PLOT @:REM FILL SCREEN WITH NOTHING

50 PLOT 6,2:REM BACK TO NORMAL

If you have some characters which are built up of plot blocks, and if
you can manage to divide each of those characters into two-by-four rectangles
(= one character position; or a double row of them if the A7 is on) such
that the values of eachwill be equivalent to some printable ASCII character,
then you may be able to PRINT these special characters using the Plot-English
mode. For example, you could, in Plot-English, PRINT the two blocks shown
in Figure 7.3. The value is 65 and is therefore equivalent to "A", which
is a printable character if ever there was one. But you could not PRINT
the upper left block alone, for that would be equivalent to PLOT 1, which
is the instruction to LOAD a "Menu" program from disk. Nor could you PRINT
all eight of the blocks, for that would be the plot mode escape (255). In
fact, you cannot plot the lower right rectangle at all, either by itself
or with others, for once the numbers reach 128, 128 is subtracted from
them. (See Appendix A.) Thus, 128 is equivalent to PLOT 0, and 129 will
LOAD the '"Menu".

In general, what you can print with Plot-English is far more limited
than what you can do in the character plot mode. On the other hand, everything
else being equal, the character plot mode is usually slower and more costly
in terms of memory. In addition, characters PLOTted in the character plot
mode require the use of the cursor; if you wish to eliminate it and still
print plot characters, you will have to use the blind cursor and a blind
cursor CCI code greater than 127.

-6 8-

8. SCREEN REFRESH

Anything on the screen is held in a certain part of memory-—the screen
refresh memory. If you change what is in that memory you change what is on
the screen. The screen refresh begins at decimal 28672 and goes through
32767. This area of the Compucolor II computer's memory was originally
intended to be a "slow" refresh, and the locations from 24576 through 28671
to be a '"fast" refresh. The reason is not clear; but anyway it was not
implemented. As a result, the Compucolor II computer's, "fast" refresh memory
actually maps to the same physical memory locations as its "slow" refresh,
even though the addresses seem to specify otherwise.

Screen refresh locations do not always coincide with character positions
on the screen, If the screen is cleared, then 28672 will be the location
in memory of the character at the top left of the screen. But if the screen
scrolls up one line, 28672 will be at the bottom left. Each time the screen
is scrolled up one line, 28672 will move up, too, until it reaches the top
and "wraps around" once more to the bottom.

Just to make sure you know which position on the screen coincides with
which location in refresh memory, you ought first to clear the screen. Now
28672 will be in the top left character position. In order to keep it there,
set the display to page mode (PLOT 27,24).

Each character position on the screen is associated with two locations
in refresh memory. The first contains the character which is on the screen,
and the second contains the CCI code for that character.

5 REM PROGRAM 8.1

6 REM PEEKING SCREEN REFRESH MEMORY

160 PLOT 15:REM SMALL CHARACTERS

20 PLOT 6,6,12:REM COLOR=CYAN; CLEAR SCREEN
30 PRINT "A":REM THIS WILL APPEAR AT X=0, Y=0
39

40 PRINT "THE CHARACTER # IS"PEEK(28672)

50 PRINT "THE CCI CODE IS"PEEK(28673)

The result of this program will tell you that "A" is equivalent to ASCII
65, and the CCI code for cyan is 6. Well, you already knew that.
If we can PEEK at memory to see what's on the screen, we can also POKE

numbers into memory to put characters on the screen. Since the CCI code
for green is 2,

POKE 28673,2

should turn that cyan "A" into a green "A".

Since there are 64 characters per line, and since there are two memory
locations per character, there are 128 memory locations per line of the
screen display. So the memory location for the character at X=0,Y=1 will
be 28672+128=28800. Let's put a yellow "B" there:

POKE 28800,ASC("B"):POKE 28801,3

In general, the memory location corresponding to any cursor X,Y position
is given by this formula: 28672+128%Y+X+X

-€9-

Thus,

PLOT 3,15,5:PRINT "A"

could also be accomplished by

POKE 28672+128*5+15+15,65

Ordinarily when you wish to change the color of something which is
already on the screen, you will specify the new color and redraw (or rePRINT)
whatever it is. An alternative is now available: POKE the new CCI code into
the memory locations associated with the display. (This will be slower than
PRINTing, but it can in many cases be more elegant. Besides, you won't have
to know just what is on the screen in order to change its color by POKEing
into the screen memory.)

5 REM PROGRAM 8.2

6 REM POKEING INTO SCREEN RAM

18 PLOT 15:REM REGULAR HEIGHT CHARACTERS

20 PLOT 6,0,12:REM CQOLOR=BLACK; ERASE SCREEN

29

3B X=15:Y=19:REM X,Y OF TOP LEFT OF DISPLAY TO BE DRAWN

49 GOSUB 20@:REM DRAW IT

49

58 S5C=28673+128*Y+X+X:REM SCREEN RAM LOCATION FOR CCI CODE OF
51 REM TOP LEFT CHARACTER OF WHATEVER
52 REM WAS DRAWN

59

60 FOR C=1 TO 127:REM FOR EACH CCI CODE THRU BLINK

69

78 FOR J=0 TO 9:REM FOR EACH LINE OF THE DISPLAY...

89 P=SC+128*J:REM SCREEN RAM FOR START OF NEW LINE

89

99 FOR K=f TO 18 STEP 2:REM FOR EVERY OTHER RAM LOCATION...
109 POKE P+K,C:REM PUT IN THE NEN CCI CODE

119 NEXT

119

128 NEXT

129

139 NEXT

139

149 PLOT 6,2

149

150 END

159

198 REM **** SUBROUTINE TO PRINT SOMETHING (10X10) IN BLACK ****
199

200 FOR J=Y TO Y+10

219 PLOT 3,X,J:REM POSITION CURSOR AT START OF EACH LINE
219

220 FOR K=1 TO 10:REM 10 CHARACTERS PER LINE

230 PLOT 96:REM HATCH CHARACTER (IF FLAG IS OFF)

240 NEXT

..70._.

249

250 NEXT

259

260 PLOT.3,X+2,Y+2:PRINT "THIS IS"
270 PLOT 3,X+2,Y+3:PRINT "A TEST "
28¢ PLOT 3,64,0:REM HIDE THE CURSOR
290 RETURN

Here are some interesting changes to that program:

60 delete this line

95 C=128*RND(1) :REM PICK A RANDOM COLOR FROM @ THRU 127

130 GOTO 70

The ASCII characters begin at 32 (space) and go through 95 ("_"). If
we POKE one of these numbers into the screen memory, we get the corresponding
character on the screen. But what about the numbers from 0 to 31? And what
about the numbers from 96 to 255? (We can't go higher than 255 using an 8
bit binary number.)

5 REM PROGRAM 8.3

6 REM POKE ANY CHARACTER INTO SCREEN MEMORY
1¢ PLOT 6,6,12:REM SET UP

19

20 PLOT 3,9,5:REM POSITION CURSOR

30 PLOT 11:REM ERASE ANY PREVIOUS INPUT
40 INPUT "POKE WHAT NUMBER? ";N$:N=VAL(NS)
50 IF N<@ OR N<INT(N) OR N>255 THEN 20
59

60 PLOT 11:REM ERASE NEXT LINE

70 PRINT "CHARACTER ="N

80 POKE 28672,N

89

99 GOTO 20

You will discover that POKEing values from 0 through 31 gives some of the
computer's special characters--those, namely, associated with shift-@,
shift-A, shift-B, etc., with the FLAG on. And values from 96-127 yield the
special characters you would get with the FLAG off. (See Appendix B.)

But what about the other 128 numbers, from 128-255? You will get the
same characters as before, but now each character will be a double height
character. However, since each double height character requires two lines
of the display, if you POKE such a character's number into line 0 (28672,
for example), you will get only the top half of the character. If you POKE
that same value into 28800 (one line down) you will get that character's
bottom half. Consequently, you now have available a number of "new" special
characters which you can place on the screen. The drawback, of course, is
that half of them can appear only on even numbered lines and the other half

-71-

on odd numbered lines. (See Section 1.5 on double height characters.) Even
with this restriction you might be able to make use of some of these
characters. For example, some Greek symbols are available: the top half of
the double height "&" (=166) gives a pretty good "g". "#'" is available with
the bottom half of the double height "#" (=163), and "y" comes from the
top half of the double height "*" (=170).

5 REM PROGRAM 8.4

6 REM HALF CHARACTER COLOR CHANGES
10 PLOT 14:REM DOUBLE HEIGHT

20 PLOT 6,2,12:REM SET UP

29

30 PLOT 3,18,15:REM POSITION CURSOR
40 PRINT "COLOR GRAPHICS"

49

50 PLOT 3,64,0:REM HIDE CURSCR

59

60 C=0:REM CCI CODE

69

70 FOR Y=14 TO 15:REM FOR EACH OF THE TWO

71 REM (REGULAR HEIGHT) LINES...

79

80 FOR X=18 TO 44:REM FOR EACH OF THE 26 CHARACTERS,..
90 C=C+l:IF C=8 THEN C=1:REM NEXT CCI QODE

100 POKE 28673+128*Y+X+X,C:REM POKE IT INTO SCREEN
114 NEXT

119

1200 NEXT

129

139 GOTO 70

The CCI code associated with each character in screen memory 1is the
same CCI code we have been dealing with all along. Thus, if PEEK(28673)=65,
then the character at 28672 is blinking red on black. If the CCI code is
greater than 127, then the character is a plot character and not an ASCII
character. Thus,

POKE 28672,66

will place a "B" on the screen unless 28673 holds a CCI code greater than
127, in which case the 66 represents the plot character shown in Figure

1 _~16
B
4 —64
FIG. 8.1

8.1. (See Section 7.) A program such as 8.2 might go awry if it tries to
change colors of portions of the screen which contain plot characters.
Statements will have to be included to determine whether the CCI code at
a given address is greater than 127. (If the display is entirely ASCII or
entirely plot, there is, of course, no need for such additional checking.)
The following program plots a series of vectors in green and then POKEs
129 into the screen memory as a CCI code in order to change the vectors to

-72-

red. Notice what happens.

5 REM PROGRAM 8.5

6 REM POKEING CCI CODES GREATER THAN 127

10 PLOT 6,2:REM SELECT COLOR=GREEN

20 PLOT 15,12:REM ERASE SCREEN

30 PLOT 3,64,0:REM HIDE CURSOR

37

38 REM DRAW SEVERAL VECTORS FROM TOP LEFT CORNER
39 REM OUT FOR ABOUT 15 PLOT BLOCKS

40 PLOT 2,0,127:REM FIRST POINT

50 PLOT 242:REM VECTOR PLOT

60 PLOT 15,125:REM DRAW A VECTOR

70 PLOT 253,0,127,242,15,120:REM ANOTHER VECTOR
8¢ PLOT 253,0,127,242,15,115:REM A THIRD

90 PLOT 255:REM EXIT PLOT MODE

99

%gg FOR Y¥Y=0 TO 4:REM FOR 1ST 4 LINES OF DISPLAY...
116 FOR X=§ TO 7:REM FOR 8 CHARACTERS/LINE...
120 POKE 28673+128*Y+X+X,129:REM RED AND PLOT
130 NEXT

139

140 NEXT

How did those new plot blocks manage to appear? The answer is given in
Section 7. The action of the PLOT 12 in line 20 is to fill each character
position with 32, the ASCII code for space. But if the CCI code is greater
than 127, 32 will be interpreted as a plot number--i.e., one of the eight
plot blocks per character position. The problem is solved using the test
mode. (See Section 5.) Leave in line 20, because it sets the beginning of
screen memory to the top left character position. But now clear the screen
again using the test mode with a CCI code greater than 127 (and the A7
off). You might add these lines:

22 PLOT 6,128:REM BLACK AND PLOT

24 PLOT 27,25:REM TEST MODE

26 PLOT @:REM FILL SCREEN WITH NO PLOT BLOCKS
28 PLOT 6,2:REM EXIT PLOT

The ability to know at any time what is on the screen can be used in
a variety of ways. The "Display Create/Edit/Dup'" program in Section 9.5
makes use of this for printing a message and then replacing it with the
user's display. The following program prints a random display and then
moves a "*" (ASCII 42) across the screen, replacing those parts of the
display it erased as it moves.

5 REM PROGRAM 8.6 '

6 REM MOVE A "*" ACROSS THE SCREEN

9

10 PLOT 15:REM SMALL CHARACTERS

19

20 PLOT 6,63*RND(1)+1:REM RANDOM COLOR

30 PLOT 12,27,24:REM ERASE SCREEN & SET TO PAGE MODE

-73-

39

40 FOR J=1 TO 300:REM 300 RANDOM CHARACTERS

50

60

70

80

90

100
109
110
119
120
130
139
140
150
159
160
170
179
180
190
200
209
210
220
229
230
240
249
250
260
269
270
280
289
290

If the "*"

255

X=64*RND (1)

Y=32*RND(1)

COLR=63*RND(1) +1

CHAR=95*RND(1) +32:REM RANDOM ASCII CHARACTER
pPLOT 6,QO0LR,3,X,Y,CHAR:REM PRINT THE CHARACTER
NEXT

PLOT 3,64,0:REM HIDE CURSOR

Y=INT(32*RND(1)) :REM PICK A RANDOM LINE
SC=28672+128*Y:REM SCREEN RAM AT START OF THAT LINE

C1=PEEK(SC) :REM GET CHARACTER THERE
R1=PEEK(SC+1) :REM GET ITS CCI CODE

POKE SC,42:REM DISPLAY THE "*"
POKE SC+1,1:REM MAKE IT RED ON BLACK

FOR X=1 TO 63:REM FOR EACH CHARACTER POSITION ON THE LINE...
C2=PEEK (SC+X+X) :REM GET NEXT CHARACTER
R2=PEEK (SC+X+X+1) :REM GET ITS CCI CODE

POKE SC+X+X,42:REM DISPLAY THE "*" AT THE NEW SPOT
POKE SC+X+X+1,1:REM MAKE IT RED

POKE SC+X+X-2,C1:REM PUT BACK PREVIOUS CHARACTER
POKE SC+X+X-1,R1:REM PUT BACK ITS CCI CODE

C1=C2:R1=R2:REM NEW BECOMES OLD
NEXT

POKE SC+126,C1:REM PUT BACK VERY LAST CHARACTER
POKE SC+127,R1:REM PUT BACK ITS CCI CODE

GOTO 20:REM REPEAT

moves too fast for you, add this line:

FOR T=1 TO 50:NEXT:REM SLIGHT PAUSE

Note that sometimes the "*" will seem to be preceded by a faint flash. That

is because
at its new

the "*" will appear in whatever foreground/background color is
location, and then it will be turned red. Although the flash is

usually barely noticable, it can be cured by interchanging lines 210 and

220.

=74~

9. CRT MODE

Pressing ESC CRT takes you out of BASIC and lets you draw anything you
wish on the screen: almost anything you can program to draw, you can do
from the keyboard in the CRT mode. You can control the cursor, color,
character height, and so on. These sequences may be important aids:

ESC K Scroll Mode

ESC J Vertical Mode

ESC X Page Mode

ESC B Character Plot Mode
ESC ESC Plot Mode Exit

CONTROL B Plot Mode (special function keys only)
F15 Plot Mode exit (special function keys only)

9.1 CRT PLOTTING

If you have the color key pad, then, in plot mode (ESC B), pressing
one of those keys will turn on the corresponding plot block in the character
position wherever the cursor is presently 1located: the eight color keys
are taken to represent the eight plot blocks in a character position. If
you don't have the color key pad, you must use the CONTROL key along with
Q for red, W for white, and so on, according to Figure 9.1. Pressing the

(P) Black Blue (T)

(Q) Red Magenta (U)

(R) Green Cyan (V)

(S) Yellow White (W)
FIG. 9.1

same key a second time will turn the plot block off--just as though the
FLAG were on. While you are in the plot mode, you may still use the cursor
controls, print text, etc., but you may not change colors unless you exit
the plot mode (ESC ESC).

9.2 SPECIAL FUNCTION KEYS

If you have the deluxe model keyboard with the special function keys
along the top, you may use them to enter the various plot submodes. First
you will have to enter the general plot mode with CONTROL B. You may consider
that to be equivalent to the PLOT 2 instruction in BASIC. This automatically
puts you in the point plot mode unless you specify otherwise by means of
one of the special function keys. The ASCII values of the next two keys
will determine the X,Y co-ordinates of a point plot. So, for example,

_75..

pressing AA in the point plot mode will plot a plot block at X=65,Y=65.
Pressing the F2 key is equivalent to issuing PLOT 242 in BASIC (vector
plot), so the next two keys will determine the end points of a vector drawn
from 65,65. The F15 key (plot escape) is equivalent to PLOT 255 in BASIC.
For each number from 0 through 255 there is some key, either by itself or
with the shift key, or with the CONTROL key, or with both shift and CONTROL
keys together (i.e., the COMMAND key) which will output that number to the
CRT. (See Appendix G.) As an example of the use of these keys, perform the
following key strokes:

KEY COMMENT

ESC CRT ...enter CRT mode. You could also hit
CPU RESET, which has the advantage
of clearing the screen and resetting
the screen refresh memory.

BG ON ...set colors.

BLUE

FG ON

RED

ERASE PAGE ...clear the screen in blue.

CONTROL B ...enter general plot mode.

Fi3 ...point plot submode. Just as in BASIC,
this is optional.

CONTROL @ e..=0.

DELETE CHAR «..=127. A plot block now appears at
X=0,Y=127.

F2 ...enter vector plot submode.

DELETE CHAR ce.=127.

DELETE CHAR ...=127. A vector is now drawn from 0,127
to 127,127.

FO ...enter incremental vector plot submode.

SHIFT/MAGENTA ...or SHIFT/CONTROL/U. =149, which incre-
ments the vector down and in at both
ends.

(Continue SHIFT/
MAGENTA until the
vector reaches the
bottom of the
screen,)

~-76-

F1l5 ...exit plot mode.

9.3 SAVING DISPLAYS

The drawing of displays used by a program will often be done in the
program itself. But you can also draw the display in the CRT mode and save
it on disk. This way, your program need only load the display from disk
rather than take up memory space (and time) required to draw it.

The business of saving a display is done in FCS by saving the contents
of the screen refresh memory. This simple command will suffice:

FCS> SAVE SCREEN.DSP 7600 1000

The file type ".DSP" indicates to you when you read the disk directory that
the file is a screen display. You needn't use ".DSP", however; you could
use ".PIC" for "picture", or anything else you felt appropriate. The "7000"
specifies (in hexadecimal) the starting location in memory where the file
should be loaded, and the "1000" (hex again) indicates the byte count. The
screen refresh memory begins at decimal 28672 (=7000 hex) and contains
decimal 4096 (=1000 hex) bytes. Since 28672 is the starting location, you
should make sure to clear the screen (and perhaps set it to page mode)
before drawing and saving the display, otherwise the display might be loaded
into the wrong part of the screen.

Saving the display will save everything on the screen. (Unless you
specify otherwise. You could save part of the display by specifying a
different starting address or a different byte count. For example, SAVE
SCREEN.DSP 7000 7FF would save only the top half of the display.) If you
go into FCS by ESC D after drawing your picture, and if you type in the
command to save your display, then the FCS> and your command will appear
on the screen, and so they will be part of the display as saved. That is
not, I presume, what you wish to happen. One answer to the problem is to
first write a program in BASIC:

10 PLOT 27,4:REM ENTER FCS
20 PRINT "SAVE SCREEN.DSP 7000 1000"
30 PLOT 27,27:REM EXIT FCS

Then go into the CRT mode, draw the picture, go back into BASIC with ESC
E (BASIC reset), and RUN the program. Unfortunately, when you reenter BASIC,
a carriage return/line feed will automatically happen, the "READY" prompt
will appear, and then two more CR/LF's will occur. In addition, you will
have to type in "RUN". Your display will contain the words "READY" and
"RUN". However, if, before reentering BASIC, you set the foreground and
background colors so that "READY" and "RUN" will be camouflaged, and then
move the cursor so that when reentering BASIC those two (now invisible)
words will not write over any part of your display, then you can save your
display intact.

Of course, if you don't have any space at the left of your display for
the "READY" and "RUN'", then you've got troubles. (The solution is to use
the "DISPLAY CREATE/EDIT/DUP" program in Section 9.5 below.)

Loading displays can be done in FCS or in BASIC. In FCS just type in:

-77-

FCS> [erase page]
FCS> LOAD SCREEN.DSP

And in BASIC it will be:

10 PLOT 12:REM ERASE PAGE & RESET SCREEN MEMORY
20 PLOT 27,4:REM ENTER FCS

30 PRINT "LOAD SCREEN.DSP"

40 PLOT 27,27:REM EXIT FCS

9.4 DUPLICATING DISPLAYS

You can take a display stored on one disk and duplicate it to another
disk. If a DUP instruction is available in your FCS, and if you have two
disk drives, then you can duplicate an entire disk. Of course, you will
also copy over all other programs on that disk. If you have but one disk
drive, you may use ISC's "COPY" program (on older machines, a COPY instruction
in available in FCS), or else you may write your own:

5 REM PROGRAM 9.1
6 REM DUP A SCREEN DISPLAY
19 PLOT 12:REM ERASE SCREEN & RESET SCREEN MEMORY
19
20 PLOT 27,4:REM FCS
» 30 PRINT "LOAD SCREEN.DSP"

39

40 PLOT 27,27:REM EXIT FCS
49

5@ INPUT "";AS:REM WAIT

51

52 REM AT THIS POINT, SNITCH DISKS AND THEN PRESS
53 REM "RETURN". DOING SO WILL PRINT NOTHING ON
54 REM THE SCREEN,

55

60 PLOT 27,4:REM BACK TO FCS

70 PRINT "SAVE SCREEN.DSP 7¢00 1000"

79

80 PLOT 27,27:REM EXIT FCS

0f course, you could alter one or both of lines 30 and 70 to LOAD or SAVE
the display on a different drive.

9.5 EDITING DISPLAYS

How will you alter a display you have previously saved? First write
the BASIC program to save the display, then LOAD the display into the
screen. Then type ESC CRT to enter the CRT mode, make the necessary changes,
and finally save the display as previously described. This procedure involves

78

problems in addition to the usual ones of having to set the foreground and
background colors so that the "READY" prompt is invisible, and so on. For
when you enter the CRT mode, a whole line of your display is erased.

The following program will aid you in saving, editing and duplicating
screen displays. The main idea is to mimic the CRT mode by using a no-echo
routine written by Ben Barlow and published in DATACHIP, Vol.l, No.3, March,
1979. (DATACHIP is the newsletter of the Compucolor Users' Group of Rochester,
NY and is available by writing to the editor, Ben Barlow, 161 Brookside
Dr., Rochester, NY 14618.) While the echo is turned off, the program takes
all inputs from the keyboard and PLOT's them instead of echoing them. It's
about that simple. You can change colors, move the cursor, change character
size, blink, and so on. ESC B (plot) lets you use the color key pad (or
CONTROL with the appropriate color key) to plot character plots. (Remember
to use ESC ESC to exit that plot mode.) If you have the deluxe keyboard,
you can still use the special function keys. In short, you're in a pseudo-CRT
mode, and you probably won't be able to tell it from the genuine CRT mode.

When you are done creating or editing the display, you type in a
predefined character (in my version it is "!"), and a message appears asking
whether you wish to continue editing or whether you wish to now save the
display. To save the display, mount the appropriate disk, type "S", and
press "RETURN". The message will be replaced with that section of your
display which it erased when it was printed, and the display will be saved.
As usual, the brackets, [], in the following program indicate information
which you should enter from the keyboard.

5 REM PROGRAM 9.2
6 REM DISPLAY CREATE/EDIT/DUP

7

10 REM NOTE: INPUT ERROR CHECKING IS

11 REM NOT FULLY IDIOT PROOF

12

13 REM MAJOR VARIABLES

14

15 REM KB......LOCATION OF KEYBOARD CHARACTER.

16

17 REM KF......LOCATION OF KEYBOARD CHARACTER FLAG.

18

19 REM SC......2 LESS THAN START OF SCREEN REFRESH.

20

21 REM STP.....ASCII VALUE OF WHATEVER CHARACTER YOU WISH
22 REM TO USE TO STOP THE DRAW (EDIT) ROUTINE AND
23 REM BEGIN THE SAVE DISPLAY ROUTINE. I'VE

24 REM CHOSEN THE "!",

25

26 REM ODS.....NAME OF OLD DISPLAY.

27

28 REM OVS.....VERSION OF OLD DISPLAY,

29

30 REM NDS.....NAME OF NEW DISPLAY,

31

32 REM NVS.....VERSION OF NEW DISPLAY,

33

34 REM CH()...CHARACTERS PEEKED FROM SCREEN (SEE LINE 940).
35

-79-

36
37
38
39
40
49

REM CO()...CCI CODES PEEKED FROM SCREEN (SEE LINE 940).

REM POKE IN THE NO-BECHO PATCH
GOTO 63000

50 DIM CH(49),C0(49)

60
70
79
80
90
100
109
110
120
129
130
139
140
l"
150
2"
160
3"
170
180
190
200
210
298
299

KB=33278:KF=33247:5C=28670
STP=ASC("!")

PLOT 14:REM LARGE CHARACTERS
PLOT 30,16,29,22,12:REM SET COLORS; FLAG OFF; CLEAR SCREEN
PLOT 27,11:REM SCROLL MODE

PRINT:PRINT TAB(2¢) "DISPLAY CREATE/EDIT/DUP"
PRINT TAB(20)"[grn]DAVID B. SUITS, 12 A.L.":PRINT

PLOT 15: REM SMALL CHARACTERS

PRINT:PRINT TAB(15)"[yel]CREATE A NEW DISPIAY [red]
PRINT:PRINT TAB(15)" [yel]EDIT AN OLD DISPLAY [red]
PRINT:PRINT TAB(15)"[yel]DUP A DISPLAY TO ANOTHER DISK. . [red]
PRINT

PRINT TAB(35);:INPUT "[mag]YOUR CHOICE? [yel]";CHS

CH=VAL (CHS)

IF CH<1 OR CH<>INT(CH) OR CH>3 THEN PLOT 28,11:GOTO 180

ON CH GOTO 300,400,400

REM

GET FILE NAME FOR THE DISPLAY

300
308
309
319
397
398

EDI

399
400
410
419
420
430
440
450
459
460

TS="NBWN" :GOSUB 70@:NDS$=DS$:NVS=V$

REM CREATE AND SAVE THE DISPLAY
GOTO 800

REM
T/DUP A DISPLAY
REM GET FILE NAME OF OLD DiSPLAY
PRINT
INPUT "PLEASE MOUNT DISK WITH DISPLAY AND PRESS RETURN ";AS$
PLOT 18:REM GREEN
PLOT 27,4:REM FCS
PRINT "DIR"
PLOT 27,27:REM EXIT FCS

T$="OLD" :GOSUB 708:0D$=DS:0VS$=VS$

-80-

468

469 REM GET FILE NAME FOR NEW DISPLAY
470 TS="NEW":GOSUB 700:NDS=D$:NVS=V$
478

479 REM DOES USER WISH TO EDIT THE DISPLAY?
480 IF CH=2 THEN 800

488

489 REM NO, SO JUST DUP THE DISPLAY
490 GOTO 870

698

699 REM

GET NAME OF DISPLAY

700 PRINT:PRINT " [mag]WHAT IS THE SIMPLE NAME OF THE [wht]"T$"[mag]
DISPLAY?"

71¢ PRINT " (MAXIMUM 6 CHARACTERS. DO NOT INCLUDE '.DSP' OR THE"
720 INPUT "VERSION NUMBER):[yel] ";D$

729

730 IF LEN(DS)>6 OR LEFT$(DS,1)<"A" OR LEFTS(D$,1)>"2Z" THEN 700
740 PRINT

750 INPUT " [mag] VERSION NUMBER?[yel] ";V$

760 RETURN

798

799 REM

CREATE/EDIT THE DISPLAY

800 PRINT:PRINT:PRINT

810 PRINT TAB(15)"***** DPSEUDO—-CRT MODE *****"

820 PRINT:PRINT

830 PRINT " [mag]USE THE KEYBOARD JUST AS YOU WOULD IN CRT MODE."
840 PRINT "TYPE [yel]";:PLOT STP:PRINT " [mag] WHEN YOU'RE FINISHED.
n

850 PRINT

860 INPUT "PRESS RETURN TO BEGIN ";AS

868

869 REM ERASE SCREEN AND SET TO PAGE MODE
870 PLOT 12,27,24:1F CH=1 THEN 900

879

880 PLOT 27,4:PRINT "LOA "ODS$".DSP;"OV$:PLOT 27,27
889

890 IF CH=3 THEN 900

898

899 REM

MIMIC THE CRT MODE

900 POKE KF,31:REM NO-ECHO

910 POKE KB, 0

919

920 A=PEEK(KB):IF A=0 THEN 920

929

930 IF A<>STP THEN PLOT A:GOTO 910

81

935
936 REM

END OF PSEUDO-CRT MODE

937 REM GET 1ST 49 CHARACTERS & CCI OODES OF SCREEN FOR

938 REM REDRAWING THE DISPLAY AFTER THE MESSAGE BELOW

939 REM IS PRINTED

940 FOR J=1 TO 49:CH(J)=PEEK (SC+J+J) : 00 (J) =PEEK (SC+J+J+1) :NEXT
947

948 REM SMALL CHARACTERS (& TURN OFF POSSIBLE BLINK)

949 REM SET COLORS; HOME CURSOR

95¢ pLOT 15,306,16,29,21,8

959

960 PRINT " TYPE [wht] E[mag] TO EDIT, OR MOUNT DISK & TYPE[wht] S[m
ag] TO SAVE[wht] ";

970 PLOT 26:INPUT "";AS

978

979 REM DOES USER WISH TO SAVE THE DISPLAY?

980 IF AS$="S" THEN 1100

988

989 REM NO, SO JUST GIVE REMINDER INSTRUCTION

998 PLOT 8:PRINT " [grn]TYPE[wht] ";:PLOT STP

1000 PRINT " [grn}WHEN YOU'RE DONE EDITING"SPC(16)""
1008

1009 REM NO-ECHO WHILE DELAYING FOR MESSAGE

1019 POKE KF,31:FOR J=1 TO 2000:NEXT

1818

1019 REM REPLACE MESSAGE WITH DISPLAY & GOTO PSEUDO-CRT MODE
1620 GOSUB 1206:GOTO 910

1098

1099 REM REPLACE MESSAGE WITH DISPLAY

1100 GOSUB 1200

1108

1109 REM SAVE THE DISPLAY

1110 PLOT 27,4:PRINT "SAVE "NDS".DSP; "NVS$" 7000 1008":PLOT 27,27
1119

1120 pLOT 27,11:REM RACK TO SCROLL MODE

1128

1129 REM PUT TOP OF MEMORY BACK WHERE IT WAS

1130 TM=256*PEEK (32941)+PEEK (32940) +7

1140 HI=INT(TM/256) : POKE 32941 ,HI

1150 POKE 32940 ,TM-256*HI

1159

1160 END:REM (OR ELSE LOAD "MENU" & RUN)

1197

1198

1199 REM REPLACE THE 49 CHARACTERS PEEKED FROM SCREEN
1200 FOR J=1 TO 49

1210 POKE SC+J+J,CH(J) :POKE SC+J+J+1,00(J)

1220 NEXT

1229

1230 RETURN

—~-82-~

62998
62999 REM

BEN BARLOW'S NO-ECHO PATCH Piess N2 Kelgo ([iuck se A jowed)

63000 DATA 245,175,50,255,129,241,201

A A N’-lf*m«v mperter ! Ra WA

Jhl|FE® 83

63010 TM=256*PEEK (32941) +PEEK (32940) -7 e oliw GAnEy attacad & Tt
63020 RESTORE 63000 Ghes’ deok—

63030 FOR X=1 TO 7 Pdfk/b‘lt-d o~ GF off ‘m.sm /iW'?-.ltrm
63040 READ D:POKE TM+X,D Wbisollord any anpils 15 Ay Acrcen
63050 NEXT vndless prowpEA v INDVT
63060 BR=INT (TM/256) Aaborant o1 Jo Aprwardiaid Ky o

63070 POKE 33221,195:POKE 33222,TM-BR*256+1 END Cowtngadd.:
63080 POKE 33223,BR:POKE 32941,BR:POKE 32940 ,TM-BR*256
63090 CLEAR 50:GOTO 50

63091

63092 REM FOR NO-ECHO, POKE 33247,31

63093 REM TO RETURN TO ECHO, POKE 33247,12.

63094 REM (AN INPUT STATEMENT OR THE END

63095 REM OF THE PROGRAM WILL ALSO DO IT.)

-83-

10. QUAD-DIRECTIONAL SCROLLING PATCH

When the screen is in the scroll mode, new information may be continually
printed out under whatever was printed before; the old part of the display
rolls up like a sheet of paper in a typewriter. For many applications,
however, you will wish to retain a great deal of old information without
scrolling it up and off the screen. This is one reason for setting the
display to page mode. But there is a drawback to page mode, namely, old
information which you do not want to retain must be erased. That can be
done as long as your program remembers exactly where that old information
was printed.

The best of these two modes can be combined in a convenient manner by
using a special machine language routine which will scroll only a certain
portion of the screen while leaving the remainder undisturbed. The routine
which I am presenting here is a modified version of the scrolling patch
which was published in COLORCUE, Vol 1, No. 1.

10.1 WHAT THE PATCH DOES

The action of the routine is quite straightforward: you specify any
rectangular area as the special scrolling area. Suppose you have chosen a
seven character wide by three line high area whose top 1left character
position is at cursor address X,Y. (This is a very small area indeed. I'm
using it only as an illustration.) Now suppose you have printed three lines
of characters in that rectangle (Figure 10.l1) and you wish to scroll the

X,Y X,Y X,Y
]] NG
“ABCDEFG \rj;qlgEFG HIJKLMN
HIJKLMN HIJKLMN OPQRSTU
OPQRSTU OPQRSTU OPQRSTU
FIG. 10.1 FIG. 10.2 FIG. 10.3

whole thing upwards one line and print a new line at the bottom of the
rectangle, just as though the rectangle by itself were an ordinary display
screen set to scroll mode. The machine language routine would, in effect,
PEEK at the screen memory location one line down from the top left character
position, take whatever was there and copy it into the character position
above. Then it would move over to the right one character, PEEK at that
location and copy that character into the line above, and so on for the
entire line. Then it would go back down to the start of the next line and
begin over again. And so on for all the lines. Figure 10.2 shows the state
of affairs when the routine is about halfway along the first line. Figure
10.3 shows the final result. Notice that the bottom line is unaffected.
You will have to explicitly erase this by a statement in your BASIC program.
(More on this later.)

It ought to be easy to see how scrolling down instead of up can also
be accomplished: just copy each character in a line into the line below.

-84

Similarly, scrolling to the right or to the left is accomplished by moving
all the characters in a given column to the right (or left).

The Quad-Directional Scolling Patch sets up a machine language routine
which is CALLed from your BASIC program to scroll a pre-selected area of
the screen in any of four directions. In addition, you may specify whether
or not you wish the color--that is, the CCI codes which follow each character
in the screen refresh memory-—to be scrolled as well.

By the way, you can also write a routine to do this in BASIC. (An
interesting programming exercise.) But beware of the results. Compared to
machine language, BASIC is incredibly slow. The machine language routine
will scroll an area of the screen in the wink of an eye, whereas you will
have time to whistle "Dixie" waiting for BASIC to do the same thing.

10.2 THE PATCH

There are three parts to the implementation of this scrolling routine:
(1) the BASIC program to POKE the required numbers into the top 34 bytes
of memory; (2) the BASIC routine to decide on the variables—-—the size and
placement of the screen area to be scrolled, and so on; and (3) the BASIC
routine for PRINTing whatever you want in the scrolling area and for CALLing
the machine language routine at the appropriate times to scroll that area.

Part (1) should be done at the very beginning of your program, and it
need be done only once. Part (2) can be done at any time prior to CALLing
the machine language routine, and need be done only once, unless you wish
to change the position or direction of the scroll. Part (3) will be used
each time you wish to PRINT something in the scrolling area.

First, then, to part (1). Here is the patch itself. (After you have
verified that it is working properly with the examples I will give below,
you might wish to save it on disk.)

frReE¢ 0.1

@ GOTO 65000:REM POKE IMN THE PATCH
REM THERE MUST BE A LINE #1 BECAUSE THERE IS A
REM "GOTO 1" IN LINE 65140.

REM NOW SPECIFY X,Y,W,H,C,D AND GOSUB 64000.

REM X,Y = CURSOR POSITION FOR TOP LEFT OF SCROLLING AREA.
REM W = WIDTH OF SCROLLING AREA,

REM NOTE: W MUST BE >1 FOR SCROLLING LEFT OR RIGHT.
REM H = HEIGHT OF SCROLLING AREA,

190 REM NOTE: H MUST BE >1 FOR SCROLLING UP OR DOWN.

Lo~ WND -

11 REM C = 1 IF THE QOLOR IS ALSO TO BE SCROLLED, @ IF NOT.
12

13 REM D = 1 SCROLL UP,

14 REM D = 2 SCROLL DOWN.

15 REM D = 3 SCROLL RIGHT.

16 REM D = 4 SCROLL LEFT.

the rest of your program goes here

-85-

61997

61998 REM BEFORE ENDING THE PROGRAM, PUT THE TOP

61999 REM OF MEMORY BACK WHERE IT WAS.

62000 GOSUB 65410

62010 AD=ER:Z=TM+34:GOSUB 65400

62019

62020 END

62021

63999 REM QUAD-DIRECTIONAL SCROLLING PATCH

64000 GOSUB 65410

64010 Z=28672+X+X:IF D<>2 THEN Z=Z+128*Y:IF D=3 THEN Z=Z+WHW-(2-C)
64015 IF D=2 THEN Z=7+128* (Y+H-1)

64020 AD=TM+2:GOSUB 65400

64030 POKE TM+5,H+(D<3) :POKE TM+7,W* (C+1)+(D>2) * (1+C)
64040 POKE TM+9,128+126* (D=4)-126* (D=3) :POKE T+1@,-255* (D=2 OR D=3
)

64050 POKE TM+14,128+126* (D=3)~-126* (D=4) :POKE TM+15,-255* (D=1 OR D=
4)

64060 POKE TM+19,-(2-C)* (D<>3)~-(254+C)* (D=3) :POKE TM+20,-255* (D=3)
64079 IF D=1 OR D=4 THEN Z=13@+(2* (D=1))-W~W:GOTO 64080
64075 Z=128+2* (D=3) +W+W:IF D=2 THEN Z=256-2

64080 POKE TM+27,Z:POKE TM+28,-255* (D=2)

64085 RETURN

64999

65000 GOSUB 65410:RESTORE 65010

6501¢ paTA 33,-1,-1,6,-1,14,-1,17,-1,-1,25

65020 DATA 126,17,-1,-1,25,119,17,-1,-1,25,13

65030 DATA 194,-1,-1,17,-1,-1,25,5,194,~1,-1,201

65040 IF TM>655¢1 THEN TM=TM-34:GOTO 65080

65050 FOR J=1 TO 34:READ A

65060 IF A=>0 AND A<>PEEK (TM+J) THEN J=34:TM=TM-34
65070 NEXT

65080 RESTORE 65010

65090 FOR J=1 TO 34:READ A:POKE TM+J,A-(A<@) :NEXT

65100 Z=TM+1:AD=33283:GOSUB 65400

65110 Z=TM:AD=ER:GOSUB 65400

65120 Z=TMH+6:AD=TM+32:GOSUB 65400

65130 Z=TM+8:AD=TM+24:GOSUB 65400

65140 CLEAR 100:GOTO 1

65399

65400 ZZ=INT(Z/256) : POKE AD,Z-256*%%:POKE AD+1,7Z:RETURN
65410 ER=32940:TM=256*PEEK (ER+1) +PEEK (ER) : RETURN

Now for part (2) of implementing the routine, in which you will determine
the variables to be used. Let X and Y be the cursor co-ordinates of the
top left character position of the scrolling area. (See Figure 10.4.) Let
H be the height, or number of lines, in the scrolling area. (NOTE: H must
be greater than 1 for scrolling up or down.) Let W be the width, or the
number of characters per line, of the scrolling area. (NOTE: W must be
greater than 1 for scrolling right or left.) Let C=1 if you wish the CCI
codes to be scrolled with the characters, and C=0 if you do not. Finally,
let D=1 for scrolling up, D=2 for scrolling down, D=3 for scrolling right,

-86-

FIG. 10.4

and D=4 for scrolling left.

After setting all these variables, GOSUB 64000 to give them to the
machine language routine. For example:

@ GOTO 650060
1 X=16:Y=8:W=32:H=16:C=1
2 D=1:GOSUB 64000

Now the scrolling routine is set up and ready to go. Each time your BASIC
program encounters a CALL statement, the designated area will be scrolled.

10.3 SCROLLING UP

How do we make use of this nifty device? First of all, we note that
many different parts of a program may wish to PRINT messages in the scrolling
area, so we'll set up a subroutine to position the cursor and then return.
But in addition we want to keep track of which line of the scrolling area
we're on in order to PRINT each succeeding message one line down in the
scrolling area and to scroll the whole area once the bottom line has been
reached.

The top line of the area is at cursor position X,Y, and the bottom line
is at cursor position X,Y+H-1. If we initialize a variable, L, to keep
track of what line we are on, our subroutine might look something like this
(for convenience, since the program will probably have to GOSUB to it often,
we'll give it a small number):

L=Y-1:REM L STARTS ONE LINE ABOVE TOP OF SCROLLING AREA
GOTO 10@:REM MAIN PROGAM STARTS AT 100

REM SCROLLING ROUTINE

L=I+1:IF L<Y+H THEN PLOT 3,X,L:RETURN

Z2Z=CALL (@) :PLOT 3,X,Y+H-1:PRINT SPC(W)""

PLOT 3,X,Y+H-1:RETURN

oot w

100 REM THE PROGRAM

87

Line 7 CALLs the machine language routine which scrolls everything up. But
remember, the last line is left on the screen and must be explicitly erased.
(The CALL function returns a value for ZZ. That doesn't concern us at all,
except that it might change the value of ZZ, so we should not use that
variable elsewhere in the program.) Each time you wish to PRINT a message
in the scrolling area, simply GOSUB 6 first. For example:

100 PLOT 12

119 FOR J=1 TO 50

120 GOSUB 6:PRINT "TEST LINE #"J
130 NEXT

140 GOSUB 6

150 GOSUB 6:PRINT "THAT'S ALL"

160 GOTO 6200@:REM END

By the way, line 140 is there merely in order to skip a line in the scrolling
area. An easier way to do this is to have another line, say:

5 GOSUB 6

Now if you GOSUB 6 you will move down to the next line before printing,
but if you GOSUB 5 you will move down two lines.

10.4 SCROLLING DOWN
Scrolling down merely involves a bit of fiddling.

GOTO 65000

X=16:Y=8:W=32:H=16:C=1

D=2:GOSUB 64000

L=Y+H:REM L BEGINS ONE LINE BELON BOTTOM OF SCROLLING AREA
GOTO 1@@:REM TO MAIN PROGRAM

GOSUB 6

L=L~1:IF L=>Y THEN PLOT 3,X,L:RETURN

Z2Z=CALL(Q) :PLOT 3,X,Y:PRINT SPC(W)""

PLOT 3,X,Y:RETURN

OO W =S

10.5 SCROLLING RIGHT AND LEFT

If you wish, you may scroll right or left to make an electronic billboard
effect using only one line of text. (If the text is to be PRINTed in double
height characters, then you must specify the height of the scrolling area
as H=2. And remember that the bottom half of a double height character 1is
printed on odd numbered lines.) In this case we want to PRINT not one line

-88-

at a time, but only one character at a time. This can be handled in BASIC
by the MID$ function.

@ GOTO 65000

1 X=16:Y=8:W=32:H=1:C=1

2 D=4:GOSUB 64080:REM SCROLL LEFT

3 GO0 19¢

4

6 ZZ=CALL(0) :PLOT 3,X+W-1,Y,32,26:RETURN

99

168 MS(1)="THIS IS A TEST OF THE SCROLLING PATCH, "
110 MS$(2)="SCROLL LEFT FOR FLECTRONIC BILLBOARD, "

119

12¢ pLOT 15,6,6,12:REM SET UP
129

130 FOR J=1 TO 2

139

140 FOR K=1 TO LEN(MS$(J))
150 GOSUB 6:PRINT MIDS (M$(J),K,1)
160 NEXT

169

170 NEXT

179

180 GOTO 620@@:REM END

In this example it was not necessary to keep track of where in the scrolling
area a character was, since the message begins at the far right side and
scrolls immediately and continuously.

Let's make a slight alteration for double height characters. Line 120
becomes:

120 pLOT 14,6,6,12:REM SET UP; DOUBLE HEIGHT

And H must equal 2, since there are two lines to be scrolled (= one double
height line). So,

1 X=16:Y=8:W=32:H=2

The machine language routine is instructed to scroll two lines, at Y=8 and
Y=9. That's just what we want, since the double height characters will be
PRINTed on those two lines. Notice that even though Y=8 and the subroutine
at 6 positions the cursor at Y=8, the bottom of the double height characters
will be printed at Y=9. We could not specify Y=9 in line 1, for then the
machine language scrolling routine would take its instructions to mean
scrolling the two lines at Y=9 and Y=10. Try it and see for yourself.

The electronic billboard would look better if only that cursor could
be got out of the way. Why not use the blind cursor?

@ GOTO 65600

1 X=16:Y=8:W=32:H=2:C=1
2 D=4:GOSUB 64000

3 GOTO 100

4

6 ZZ=CALL(@) :PLOT 3,128:REM BLIND CURSOR, DOUBLE HEIGHT

-89~

7 PLOT X+W-1,Y,1:REM X,Y; CCI CODE = RED

8 PLOT 32:REM ERASE LAST CHARACTER

9 PLOT 3,128,X+#1,Y,1:REM SET UP BLIND CURSOR FOR NEXT LETTER
10 RETURN

99 :
100 M$ (1)="ELECTRONIC BILLBOARD IN BLIND CURSOR"
109

116 FOR J=1 TO 32

120 M$(2)=MS$S(2)+"."

130 NEXT

139

140 M$(3)="EAT AT JOE'S"

150 MS(4)=M$(2)

159

160 PLOT 6,6,12,14:REM SET UP

169

176 FOR J=1 TO 4

179

18 FOR K=1 TO LEN(MS(J))

199 GOSUB 6:PLOT ASC(MIDS (MS(J) ,K,1))

200 NEXT

209

210 NEXT

219

220 PLOT 27,27:REM EXIT BLIND CURSOR
229

230 GOTO 62000:REM END

Of course, the same thing can be done with regular height characters by
specifying H=1 and introducing the blind cursor mode with PLOT 3,127.

The cursor can be effectively hidden by setting the background color
to white. The following program uses the vertical mode to print columns of
the hatch character in random colors.

@ GOTO 65000

1 X=8:Y=16:W=32:H=8:C=1

2 D=4:GOSUB 64000

3 I=X-1:REM L BEGINS ONE SPACE LEFT OF THE SCROLLING AREA
4 GOTO 100

5

6 L=I+1:IF L<X+W THEN PLOT 3,L,Y:RETURN

7 Z2Z=CALL(Q) :PLOT 3,X+W-1,Y:PRINT SPC(H)""

8 PLOT 3,X+W-1,Y:RETURN

99

100 PLOT 15,29:REM SMALL CHARACTERS; FLAG OFF
110 PLOT 6,56,12:REM CLEAR SCREEN IN WHITE
120 pPLOT 27,19:REM VERTICAL MODE

129

139 FOR J=1 TO 106

140 GOSUB 6

149

150 FOR K=1 TO H

160 PLOT 6,64*RND(1) :REM RANDOM COLORS
170 PLOT 96:REM HATCH CHARACTER

-90~-

182 NEXT

189

190 NEXT

199

200 PLOT 27,11:REM SCROLL MODE

219 PLOT 6,2:REM BACK TO A MANAGEABLE COLOR
219

220 GOTO 62000:REM END

You will see that in this case the second statement in line 7 serves no
purpose, since each successive line fills up an entire column and replaces
whatever was there before. There is a need to erase a column (or limne, if
you are scrolling up or down) only if it is not known whether the next
column (or line) will print its message into all the character positionms.

It is just as easy to scroll right as it is to scroll left. The following
program PRINTs random characters (ASCII 32-127) in random colors. This
time, however, let's set C=0 so that the CCI codes do not scroll.

@ GOTO 65000

1 X=8:Y=16:W=32:H=8:C=0

2 D=3:GOSUB 64000:REM SCROLL LEFT

3 L=XHW:REM L STARTS ONE SPACE TO RIGHT OF SCROLLING AREA
4 GOTO 10¢

5

6 L=L~1:IF I=>X THEN PLOT 3,L,Y:RETURN

7 ZZ=CALL(9) : PLOT 3,X,Y:RETURN

99

100 PLOT 15

119 PLOT 6,56,12:REM CLEAR SCREEN IN WHITE
120 PLOT 27,10:REM VERTICAL MODE

129

130 FOR J=1 TO 160

146 GOSUB 6

149

154 FOR K=1 TO H

160 PLOT 6,64*RND(1) :REM RANDOM COLORS

170 PLOT 96*RND(1)+32:REM RANDOM ASCII CHARACTER
180 NEXT

189

199 NEXT

199

209 PLOT 27,11:REM SCROLL MODE

210 PLOT 6,2:REM BACK TO A MANAGEABLE COLOR
219

220 GOTO 62000:REM END

If we use the electronic billboard idea but scroll right instead of
left, we can have messages roll by going backwards, printed backwards. This
might be a cute game. First, load the patch. Next ask the player for the
message to be printed. Then ask the speed at which the message should be

printed. The other player then watches as the message goes by backwards
and must identify what it says.

-9]~

? GOTO 65000

1 CLEAR 300

2 X=16:Y=8:W=32:H=1:C=1

3 D=3:GOSUB 64000

4

5 REM PROGRAM 10.2

6 REM BACKWARDS TEXT GUESSING GAME

19 pLOT 15,6,6,12:REM SET UP

18

19 REM DRAW A BORDER ARCUND THE MESSAGE DISPLAY AREA
2¢ pLOT 2,31,97,242,31,90,97,90,97,97,31,97,255

28

29 REM GET THE MESSAGE

30 PLOT 8,6,2:INPUT"MESSAGE: ";MS$:IF MS="END" THEN 62000:REM END
37

38 REM ADD 32 SPACES TO THE MESSAGE SO THAT IT

39 REM WILL SCROLL OFF ENTIRELY

40 FOR J=1 TO 32

50 MS$=MS+" "

60 NEXT

67

68 REM HOME CURSOR AND ERASE 2 LINES, JUST IN CASE THE
69 REM PREVIOUS MESSAGE WAS MORE THAN 1 LINE LONG

76 pLOT 8,11,10,11

78

79 REM NOW GET THE SPEED

80 PLOT 8:INPUT "SPEED (1=FAST, 100=SLOW)? ";SP$

90 SP=VAL(SPS):IF LEFTS(SPS$,1)="E" THEN 62000:REM END
98

99 REM CHECK FOR ERRORS

109 IF SP<1 OR SP>10@¢ THEN PLOT 28,11:GOTO 80

108

199 REM NOW PRINT THE MESSAGE IN RED FOR GOOD QONTRAST
110 PLOT 6,1

119

12¢ FOR J=1 TO LEN(MS)

1380 ZZ=CALL(0Q)

140 PLOT 3,X,Y

150 PRINT MIDS (MS,J,1)

158

159 REM DELAY

160 FOR K=1 TO SP:NEXT

170 NEXT

179

186 pLOT 6,2,3,9,1

1990 INPUT "SAME MESSAGE OR A NEW ONE (S/N)? ";AS

200 IF LEFTS$(AS,1)="S" THEN 70

210 IF LEFTS(AS,1)="E" THEN 62000:REM END

220 IF LEFTS (A$,1) <>"N" THEN PLOT 28,11:GOTO 190

23¢9 pLOT 8,11,10,11:GOTO 39

92

11. MISCELLANEOUS NOTES

11.1 A NOTE ON MENRU PROGRAMS

Your MENU programs introduce both you and others to the existence of
a number of other programs. Many programs, once they have rum, return to
the MENU. Your MENU programs, then, ought to look good and at the same time
perform some housekeeping chores. Some programs leave the display in page
mode, or end up with the FLAG on. Or a program which has set the display to
page mode or has turned the FLAG on might be interrupted by the user who
wishes to return to the MENU. In such cases the MENU program itself can be
the main housecleaner, although it is of course good programming practice
to have each of your programs take nothing for granted.

The following program is a "blank" menu. You might save it (or an
altered version) on disk for easy preparation of a MENU when you need one.
As usual, color changes made from the keyboard are indicated with brackets:

[1.

5 REM PROGRAM 11.1
6 REM BLANK MENU
9

10 CLEAR 2000

20 DIM F$(27):REM MAXIMUM OF 27 FILES

29

3@ FOR J=1 TO 52:D$=D$+". " :NEXT

33

34 REM ENTER THE FILE NAMES STARTING AT LINE 40. FOR EXAMPLES:
35

36 REM F$ (1) ="SUPER-HYPER REAL TIME SPACE OPERA"
37 REM F$(2)="SANSKRIT — LESSON II"

38 REM ETC.

39

499

500 PLOT 15:REM SMALL CHARACTERS; POSSIBLE BLINK OFF
510 PLOT 6,3,29:REM SET QOLORS; FLAG OFF

520 PLOT 12,27,11:REM ERASE SCREEN; SET TO SCROLL MODE
528

529 REM FIND OUT HOW MANY FILES THERE ARE

530 K=0

539

540 FOR J=27 TO 1 STEP -1

550 IF F$(J)<>"" THEN K=J:J=1
560 NEXT

569

570 IF K<6 THEN PLOT 14:REM DOUBLE HEIGHT IF THERE'S ROOM
579

580 PRINT TAB(27)"M E N U[grn]": PRINT
589

590 IF K=0 THEN PRINT:PRINT "NO FILES AVAILABLE!":END
597

598 REM PRINT THE FILE NAMES
599

600 FOR J=1 TO K

610 PRINT TAB(2)LEFTS (F$(J)+DS$,52)J

618

619 REM SPACE BEIWEEN SELECTIONS IF THERE'S ROOM
620 IF K<15 THEN PRINT

630 NEXT

638

639 REM SKIP A LINE AFTER ALL FILE NAMES HAVE BEEN PRINTED
640 IF K>14 THEN PRINT

649

650 PRINT TAB(2)" [cyn]ENTER YOUR SELECTION NUMBER AND “;
660 INPUT "PRESS [wht]RETURN [cyn]....... [red]";AS$
670 F=VAL (AS)

678

679 REM CHECK FOR INPUT ERROR

680 IF F<1 OR FOINT(F) OR F>K THEN PLOT 28,11:GOTO 650
686

687 REM REPRINT CHOSEN FILE NAME IN RED

688

689 REM FIRST GET Y CO-ORDINATE OF FILE NAME

690 IF K<6 THEN Y=4*F+1

700 IF K>5 AND K<15 THEN Y=2*F

710 IF K>14 THEN Y=F+1

719

72¢ PLOT 3,2,Y:PRINT LEFTS(FS(F)+DS$,52)F

729

730 PLOT 3,64,0:REM HIDE THE CURSCR

739

746 ON F GOTO 801,802,803,804,805,806,807,808,809,810
750 ON F-1¢ GoTO 811,812,813,814,815,816,817,818,819,820
760 ON F-2¢ GOTO 821,822,823,824,825,826,827

799

800 REM ENTER LOAD AND RUN INSTRUCTIONS BEGINNING AT 801

11.2 A NOTE ON DISPLAYING TEXT

Type in the program below and RUN it. (The arrow in line 40 is pointing
to an extra space which must not be omitted.)

5 REM PROGRAM 11.2

6 REM DISPLAYING TEXT

10 PLOT 15:REM REGULAR HEIGHT

20 PLOT 6,33:REM RED ON BLUE

30 PLOT 12:REM ERASE PAGE

39 5

40 PRINT "WHEN YOU HAVE A LOT OF TEXT TO DISPLAY--INSTRUCTIONS TO
rIHE"

50 PRINT "USER, FOR EXAMPLE--YOU WILL WANT TO PRINT THE TEXT IN SUC
H A"

60 PRINT "WAY THAT THE DISPLAY IS BOTH PLEASING AND LEGIBLE. USING

THEII

70 PRINT "DOUBLE HEIGHT CHARACTERS (PLOT 14) CERTAINLY MAKES THE WO
RDS"

80 PRINT "EASIER TO SEE--AN IMPORTANT CONSIDERATION IF THE USER'S E
YE_ "

90 PRINT "SIGHT IS VERY BAD. ON THE OTHER HAND, THE COMPACTNESS OF
'IHE"

100 PRINT "SMALLER CHARACTERS MAKES THEM LESS 'RAGGED' THAN THE DOU
BLE-"

110 PRINT "HEIGHT CHARACTERS."

The text has been right and left justified. A nice touch if you can manage
it. And it's not very hard: add an extra space here or there; change the
wording slightly; leave only one space between sentences instead of the
usual two; and so on.

Yet the display could be improved. Legibility can be enhanced by leaving
a blank line between each line of text. Add lines 45, 55, 65 and so on,
all of which are only PRINT statements.

With backgrounds other than black the display looks much better when
the text is surrounded by margins. Add line 35 PRINT to give a margin at
the top. Then add a space at the beginning of each line of text. Or else
add lines 39, 49, 59 and so on, all of which are

PRINT "nn ;
The choice of colors is also important. Experiment with line 20. In
particular, try using blue on black and black on blue. The blue-black

combination can be quite "soft", but for that very reason it should be
avoided; legibility requires a higher contrast.

-95-

The follow
in this book,
own work.

12.1 VARIATIO

12. MISCELLANEOUS PROGRAMS

ing programs further illustrate various techniques described
I hope they will provide you with ideas you can use in your

NS ON A THEME

5 REM PROGRAM 12.1 :

6 REM CONVERGING BORDERS

10 DEF FN R(X)=INT(48*RND(1))+1
20 pLOT 15,6,6,12,27,24

29

30 FOR J=1 TO 15
49 GOSUB 100
50 NEXT

59

60 GOTO 30

98

99

100 PLOT 6,FN R(X)

109

119 prOT 3,J,J
120 PRINT SPC(64-J-J)""

129

140 PRINT SPC(64-J-J)""

149

1560 pLOT 27,10
160 pLOT 3,d,J
170 PRINT SPC(32-J-J)""

179

180 pLOT 3,63-J,J
199 PRINT SPC(32-J-J)""

199

200 PLOT 27,24
210 RETURN

VARIATION #1:
VARIATION #2:

VARIATION #3:
VARIATION #4:
VARIATION #5:

Change lines 120 and 140 to PLOT 1l1.

Same as #1, but also change lines 170 and 190 to PRINT
SPC(32)"".

Same as #2, but change line 30 to FOR J=0 TO 31.

Same as #3, but add line 155 PLOT 6,FN R(X).

Same as #4, but change lines 170 and 190 to PRINT SPC(64)"".

-96-—

12.2 SIMULATING A RADAR SCOPE

Let us write a program to simulate a radar scope. First we must be able
to plot a circle. Since the computer deals with radians and not degrees,
we might as well leave everything in radians. (If you wish to make the
necessary changes to degrees, you will have to do so explicitly. One degree
is equal to 3.1415926/180 radians.)

X2,Y2

SIN(A)=b/c
‘ — COS(A)=a/c

FIG. 12.1

According to Figure 12.1, if the center of a circle is at co—ordinates
X1,Yl, then any point on the circumference will be at X2,Y2, where
X2=X1+4C*COS(A) and Y2=Y1+C*SIN(A). Let's plot a circle in the center of
the screen: X1=63,Y1=63. Since there are 2*3.1415926 radians in a circle,
all we need is a loop of the form:

FOR J=0 TO 2*3.1415926
plot a point
NEXT

However, since J will range from 0 to just a little over 6, we would be
PLOTting only 6 or 7 points on the circumference, so we'll have to STEP
that loop down. A STEP size of .05 will yield almost all the points of the
circumference. A smaller STEP size would be more accurate, but the smaller
the STEP size, the slower the radar beam will make its sweep.

We can now write a program just for a circle.

5 REM PROGRAM 12.2

6 REM PLOTTING A CIRCLE

9

18 PLOT 6,6,12:REM SET UP

19

20 R=2*3.1415926:REM NUMBER OF RADIANS IN A CIRCLE
30 S=.05:REM STEP SIZE

-97-

40 C=30:REM CIRCLE RADIUS

49

50 PLOT 2:REM GENERAL PLOT MODE
59

60 FOR J=@ TO R STEP S

78 PLOT 63+C*COS(J) ,63+C*SIN(J)
80 NEXT

89

90 PLOT 255

This program will plot some sort of oval, and not a circle as planned. What
went wrong? There's nothing wrong with the mathematics. It is the computer's
screen which is the culprit., Eachplot block is not a square, but a rectangle.
So, while there are the same number of plot blocks horizontally as there
are vertically, the horizontal dimension is greater., When we PLOT each
successive plot block of the circle's circumference, we move a greater
distance in the horizontal direction than we do in the vertical direction.
We'll have to squeeze the oval into a circle by increasing the factor by
which we multiply SIN(J) (or by decreasing the factor of C0S(J)). I have
found 40 to be about right, but you might want to try other numbers. If we
define F=40, then line 70 will become:

70 PLOT 63+C*COS(J) ,63+F*SIN(J)

To have a radar scope you have to have a beam which sweeps the circle.
We can use the vector plot for that. Each time through the loop, we'll draw
a vector from the center of the circle to the computed point on its
circumference. We need only add to the above program this line:

65 PLOT 253,63,63,242

But this does not give rise to a single beam. To get a single beam sweeping
around, we could try something like Figure 12.2. Well? Try it. Or, we could
set the FLAG on so that PLOTting a vector a second time will erase it.
(Figure 12.3.) The second method seems to me a bit easier, so let's try
that.

L, set FLﬁG on AAJ

‘ set Cofij to green J [: set color to greengij
\
PLOT next vector AJ Fgf PLOT a vector AJ

L set color to black ’
|
go back & PLOT]ﬁ PLOT next vector]

previous vector -
rePLOT previous vectogj

FIG. 12.2 FIG. 12.3

-98-

5 REM PROGRAM 12.3

6 REM SIMULATING A RADAR SQOPE

9

16 pPLOT 6,2,12,30:REM QOLOR=GREEN; CLEAR SCREEN; FLAG ON
19

20 R=2*3,1415926:REM RADIANS IN A CIRCLE

30 S=.05:REM STEP SIZE

40 C=30:REM CIRCLE RADIUS

50 F=40:REM SCALING FACTOR FOR Y CQO—-ORDINATE

59

60 X1=63:Y1=63:REM INITIALIZE A "PREVIOUS VECTOR" OF LENGTH=0
69

70 PLOT 2:REM GENERAL PLOT MODE

79

80 FOR J=@ TO R STEP S

90 PLOT 253:REM FOINT PLOT

1080 PLOT 63,63:REM CENTER OF CIRCLE

116 PLOT 242:REM VECTOR PLOT

118

119 REM GET NEXT VECTOR'S POINTS & PLOT IT
120 X2=63+C*COS(J) :Y2=63+F*SIN(J)

130 PLOT X2,Y2

138

139 REM ERASE PREVIOUS VECTOR

149 PLOT 253,63,63,242,X1,Y1

148

149 REM NEW VECTOR BBECOMES "PREVIOUS VECTOR"
150 X1=X2:Y1=Y2

160 NEXT

169

170 GOTO 89:REM BACK FOR ANOTHER SWEEP

12.3 RADAR SCOPE SIMULATION USING INCREMENTAL VECTOR PLOT

Just for the sake of exercise, let's take a different approach to the
simulation of a radar beam. This time we'll use the incremental vector plot
submode. We are handicapped at the outset, however, because we cannot easily
increment the vector in such a way as to have its end points mark out the
circumference of a circle. So we'll invent a rectangular screen for the
radar scope and have the vector follow the perimeter of that rectangle.

A spot near the center of the screen will be the axis for the sweep.
The beam will follow the four sides of the rectangle back around to the
starting point, where it will begin the process again. A sweep of about 60
units per side ought to look good. And just for the sake of nicety, we'll
PLOT a rectangular border to outline the sweep area. We'll have to PLOT
the sweep vector (radar beam) in four separate quadrants, because the X
and Y increments will change as the beam moves.

We will PLOT the first vector from the center point to the upper left
corner of the sweep area. As the beam sweeps around, one point of the vector
remains constant at the center of the screen. Since that is the X1,Yl

-QQ~

SWEEP VECTOR
31,96 4 94,96

BORDER SWEEP AREA

63,63

31,31 —— — 7 94,31

SWEEP AREA

FIG. 12.4

co-ordinate of the beam, the increment numbers we use in the incremental
vector plot will have to indicate that there is no change to these
co-ordinates. But we cannot use zero for the increment number because,
remember, if either the four most significant bits or the four least
significant bits are zero, the vector will not be drawn. (See Section 6.10.)
How can we indicate '"no change" without using zero? Use binary 11. That is
a non-zero number, and it, too, indicates no change, so it is just what we
need., Since it is the X1,Yl co~ordinate which is to be unincremented, we
must use binary 11 for X1 or for Yl or for both. But notice that if we make
both X1 and Yl equal to binary 11, the resulting increment number will be
at least 240 (more, depending on the values for X2 and Y2). But the numbers
from 240-255 are instructions for entering other plot submodes (or for
exiting the plot mode altogether). If we make the two Yl bits equal to
binary 11, and the two X1 bits equal to binary 00, then the increment number
will not be too large, and we still satisfy the requirements of having the
four most significant bits not all equal to zero, yet indicating no change.

How should the vector be incremented? Figure 12.5 divides the sweep

X=+ Y=0
I
X=0 X=0
IV II
Y=+ 111 Y=-
X=- Y=0
FIG. 12.5

area into four quadrants. If the beam moves clockwise, then in quadrant I
its X2 co~ordinate must be incremented while its Y2 co-ordinate is unchanged.
The increment number must accordingly be:

DECIMAL: 128 6432 16 8 4 2 1
BIT: 7 6 5 4 3 2 1 0
0fof1[1]1]0]0[0] 32+16+8 = 56
X1

A little thought yields the increment numbers for the other three quadrants:

II 49
IIT 52
Iv 50

In order to create a single beam which sweeps around, let us PLOT a
vector, then increment it backwards and PLOT the previous vector once again.
If the FLAG is on, then the previous vector will disappear. Then we will
increment the vector without drawing it, and continue the cycle anew. The
decrement numbers work out to be:

QUADRANT I 52
II 50

IITI 56

IV 49

And the numbers for incrementing without drawing will be:

QUADRANT I 8
II1 1

III 4

Iv 2

Now we can write the program.

5 REM PROGRAM 12.4

6 REM RADAR SOOPE USING INCREMENTAL VECTOR PLOT
9

10 PLOT 6,6,12:REM QOOLOR=CYAN; CLEAR SCREEN
20 PLOT 3,64,8:REM HIDE CURSOR

30 PLOT 30:REM FLAG ON

39

40 PLOT 2:REM GENERAL PLOT MODE

48

49 REM DRAW BORDER AROUND SWEEP AREA

5¢ pLoOT 31,96,242,94,96,94,31,31,31,31,95

51 REM THAT LAST NUMBER MUST BE 95. IF THE VECTOR

52 REM WENT BACK TO 96, THE FIRST PLOT BLOCK OF THE
53 REM BORDER WOULD BE ERASED BECAUSE THE FLAG IS ON.
59

60 PLOT 255,6,2:REM SET COLOR TO GREEN

68

69 REM DRAW FIRST VECTOR
70 PLOT 2,63,63,242,32,95

79

80 PLOT 240:REM INCREMENTAL, VECTOR PLOT SUBMODE
86

87 REM NOW THE 4 QUADRANT SWEEP

88

89 REM QUADRANT I
90 FOR J=0 TO 60
106 PLOT 56:REM INCREMENT & PLOT

~101-

119 PLOT 52:REM DECREMENT & PLOT
120 PLOT 8:REM INCREMENT WITHOUT DRAWING
130 NEXT

138

139 REM QUADRANT II

140 FOR J=0 TO 62

1590 pPLOT 49,50,1

160 NEXT

168

169 REM QUADRANT III

170 FOR J=0 TO 60

180 PLOT 52,56,4

190 NEXT

198

199 REM QUADRANT IV

209 FOR J=0 TO 62

210 PLOT 50,49,2

2200 NEXT

229 ‘

230 GOTO 90:REM (QONTINUE

12.4 SOME CIRCLES

5 REM PROGRAM 12.5
6 REM CIRCLES ABOUT THE CQORNERS

gﬂ R=2%*3.1415926:REM RADIANS IN A CIRCLE
%g PLOT 6,6,12,3,64,0:REM SET UP

gg C=5*RND(1)+1:REM C IS RADIUS OF CIRCLE
23 PLOT 6,7*RND(1)+1:REM RANDOM COLOR

g% FOR X=@ TO 127 STEP 127

60 FOR Y=@ TO 127 STEP 127
79 GOSUB 200:REM DRAW A CIRCLE AROUND A CORNER

80 NEXT
89

90 NEXT
99

100 C=C+10*RND(1)+1:REM INCREASE RADIUS OF NEXT CIRCLE
110 IF C<60 THEN 40:REM MORE CIRCLES UNTIL THEY INTERSECT
119

120 FOR T=1 TO 200@:NEXT:REM PAUSE
129

130 GOTO 20:REM START OVER
197

198
199 REM SUBROUTINE TO DRAW A CIRCLE

-102-

200 PLOT 2

209

219 FOR J=@ TO R STEP .1

220 X1=X+C*COS(J) :IF X1<@ OR X1>127 THEN 250

230 Y1=Y+1.3*C*SIN(J) :IF Y1<@ OR Y1>127 THEN 250
249 PLOT X1,Y1

250 NEXT

259

260 PLOT 255:RETURN

12.5 AN ANIMATED JOKE

The following program uses some of the computer's special characters
obtained with shift-A, shift-B, and so on. They are given in the program
listing as lower case letters.

5 REM PROGRAM 12.6
6 REM AN ANIMATED JOKE

8

9 REM SET UP

10 GOSUB 109

18 .

19 REM PAUSE

20 GOSUB 200

28

29 REM BIG BIRD

30 GOSUB 300

38

39 REM PAUSE

40 GOSUB 200

48

49 REM LITILE BIRDS
50 GOSUB 500

58

59 REM FIRST MESSAGE
60 GOSUB 700

68

69 REM SECOND MESSAGE
70 GOSUB 800

78

79 REM PAUSE

80 GOSUB 200

88

89

9¢ PLOT 6,2:END

95

96

97 REM ***xk%xkkxkx GUBROUTINES ***kkkkkk
98

99 REM -———— GSET UP

190 PLOT 15,30,22,12:REM SMALL CHARACTERS; CLEAR SCREEN IN CYAN

-103-

119 pLOT 18,3,0,31,11:REM ERASE BOTTOM LINE IN GREEN
1290 PLOT 22,29,17:REM BG=CYAN, FG=RED; FLAG OFF
1390 RETURN

198

199 REM ———— PAUSE

200 PLOT 8:FOR T=1 TO 200@:NEXT:RETURN
298

299 REM -~——— BIG BIRD

300 X=40

309

310 FOR Y= TO 29

320 PLOT 3,X,Y:PRINT " __iidii "
330 PLOT 3,X,Y:PRINT " _ iiggfdfggii "
339

340 GOSUB 470:REM SLIGHT PAUSE

349

350 PLOT 3,X,Y:PRINT "iiiggggggdggggggiii"
360 PLOT 3,X,Y:PRINT "iggggggggdggggggggi”
376 PLOT 3,X,Y:PRINT "ffggiiiiidiiiiiggff"
380 PLOT 3,X,Y:PRINT "eeffggiiidiiiggffee"
398

390 GOSUB 47@:REM SLIGHT PAUSE

399

400 PLOT 3,X,Y:PRINT "9g99999999dgggg9ggggaq”
4190 PLOT 3,X,Y:PRINT "iiigggfffdfffgggiii”
419

429 PLOT 28,11

430 X=X-1

440 NEXT

449

450 PLOT 3,X+9,3@:PRINT "d"

459

460 RETURN

468

469 REM -——- SLIGHT PAUSE

470 FOR T=1 TO 30:NEXT:RETURN

498

499 REM -———— LITTLE BIRDS

500 FOR J=29 TO 3 STEP -2

510 X=J:R=30*RND(1)

519

520 FOR Y=2 TO 31

530 IF Y<30 THEN PLOT 3,X,Y:PRINT "ggggsgggg"

540 PLOT 3,X-3,Y-2:PRINT " igfsfgi"

550 IF Y<30 THEN PLOT 3,X,Y:PRINT " igfsfgi"
559

560 FOR T=1 TO R:NEXT

569

570 PLOT 3,X-3,Y-2:PRINT "ggggsgggg"

580 IF ¥<30 THEN PLOT 3,X,Y:PRINT "ggggsgggg"
590 PLOT 3,X-3,Y-2:PRINT "efgisigfe"

600 IF Y<3@ THEN PLOT 3,X,Y:PRINT "efgisigfe"

610 PLOT 3,X~3,Y-2:PRINT "ggggsgggag"
620 IF Y<38 THEN PLOT 3,X,Y:PRINT SPC(9)""

-104-

630 PLOT 3,X-3,Y-2:PRINT SPC(9)""

649 IF Y=29 THEN PLOT 3,X+5,30:PRINT "a"
649

650 X=X+1

660 NEXT

669

670 PLOT 3,X+1,30:PRINT "a"

679

680 FOR T=1 TO 25@@*RND(1) :NEXT
689

699 NEXT:RETURN

698

699 REM FIRST MESSAGE

700 PLOT 16:REM FOREGROUND=BLACK

71¢ PLOT 2,37,15,242,34,25,255

719

728 PLOT 3,18,24:PRINT "YOU MAY WONDER WHY I'VE"
739 PLOT 3,8,25:PRINT "BROUGHT YOU ALL HERE TODAY"
739

740 GOSUB 200:REM PAUSE

749

750 GOSUB 930:REM ERASE MESSAGE

759 '

760 RETURN

798

799 REM SECOND MESSAGE

809 PLOT 2,85,17,242,83,24,253,100,20,242,90,30
81¢ PLOT 253,110,20,242,110,29,255

820 PLOT 14:REM DOUBLE HEIGHT CHARACTERS

829

830 PLOT 3,40,24:PRINT "YES"

840 PLOT 3,43,22:PRINT "YES!"

849

850 PLOT 15:REM REGULAR HEIGHT

860 PLOT 30:REM FLAG ON FOR QUADRUPLE HEIGHT CHARACTERS TO FOLLOW
870 PLOT 3,53,23

880 PLOT 124,126,32,123,101,32,99,102

899 PLOT 3,53,24

99¢ PLOT 98,32,32,108,127,32,103,100

91¢ PLOT 29:REM FLAG OFF

919

92¢ GOSUB 200:REM PAUSE

928

929 REM ERASE MESSAGE

93¢ FOR Y=22 TO 29:PLOT 3,8,Y,11:NEXT

939

940 RETURN

=105-

12.6 CHESS PIECES USING THE CHARACTER PLOT SUBMODE

Program 6.11, you will have discovered, draws a chess board. Now let's
add some chess pieces. (You are left to your own devices to write the chess
playing program!)

Each of the board squares drawn by Program 6.11 is 12 plot blocks wide
and 16 plot blocks high; this corresponds to 6 character positions wide
and 4 character positions high. The board appears on the display at the
cursor positions shown in Figure 12.6.

X=15,Y=0 2» iy & A T .5 X=62,Y=0
1 2 1??}{

1‘
:
.
.

- = - -

X=15,Y=311»ri; BREE R » « X=62,Y=31
FIG. 12.6

The player must be able to refer to board squares, and, instead of the
English, or descriptive, system, an algebraic notation can easily be used
here. The columns are labeled "A" through "H", and the rows are numbered
1 through 8 (beginning at White's side of the board). We can use the columns
on both vertical edges of the board for the numbers. Where can the letters
go? They can be printed in the squares themselves: "A"-"H" will be printed
in the top left character position of the top row of squares and in the
bottom left character position of the bottom row of squares. In cyan squares,
the letters will be printed in blue on cyan, and in blue squares the letters
will be printed in cyan on blue. The numbers on each side of the board
might be in white,

The chess pieces will be drawn (using the character plot submode) on
the right 5x4 block of characters within each square. This will allow them
to be drawn and erased as necessary without interfering with the board
square reference letters, It also provides ample spacing between the pieces
for the sake of good looks. The pieces themselves are shown in Figure 12.7,
and the 20 character plot numbers for each of the six kinds of pieces are
given in Table 12.1

Notice that except for the pawn, each chess piece has one or more
character positions which are completely filled in. This is impossible to
do using the character plot submode. The number 255 in Table 12,1 is used
to represent such a completely filled in character. When the chess piece
drawing routine in your program encounters the 255, it will exit the
character plot submode, print a space in the appropriate color, and then
return to the character plot submode to continue drawing the piece.

Instead of black and white pieces, it is suggested that black and red

-106-

(=]
2OOO

NOOCO

132

102

0
192
50
100

200
169
240
119

140
217
240
119

PAWN

0
206
63
103

BISHO

134
191
255
119

QUEEN

140
223
255
119

0 0 0
0 0 236
2 0 16
68 0 102
p
12 0 136
9 0 247
0 0 0
103 6 118
140 4 0
9 0 128
0 0 0
103 6 102
TABLE 12.1

128
239
200
19

128
254
255
119

68
238
240
119

KNIGHT 0
204 206 8 .
255 255 1§ .
254 63 1 :
M9 103 6 i
ROOK
136 128 8
255 254 7
255 15 0 . .
M9 119 6 :
[3 — [
KING "o be-
78 4 0 - b
239 142 0 !
2% 0 0 see -
M9 103 6

FIG. 12.7

be used. These colors provide sufficient contrast and definition against

either cyan or blue backgrounds (squares). You might wish to experiment
with other colors, but the choices are rather limited.

5 REM PROGRAM 12.7

6 REM CHESS PIECES USING CHARACTER PLOT

9

10 DIM P(6,20) :REM 20 DATA FOR DRAWING EACH OF 6 PIECES
98

99 REM DRAW THE BQARD

100 GOSUB 1000

108

109 REM GET DATA FOR THE 6 PIECES

119 GOSUB 1508

118

119 REM GET PLAYER'S CHOICE OF COLORS

120 GOSUB 1300

128

129 REM DRAW THE PIECES

130 GOSUB 1609

138

139

140 PLOT 27,11:REM FOR QONVENIENCE, RETURN TO SCROLL MODE
150 END

151

996

997 REM ***kkxkxkxx** GURBROUTINES ****kkkkk*
998

999 REM DRAW THE BOARD

-107-

1000
10068
1069
1010
1019
1020
1029
1039
1038
1639
16490
1050
1060
1069
1079
1679
10680
1690
1109
1116
1120
1129
1130
1149
1149
1156
1158
1159
11690
1lel
1169
1176
1180
1190
1199
1200
1219
1220
1239
1240
1250
1259
1260
1269
1279
1297
1298
1299
1360
1318
1320
133¢
1349
1359

pLOT 6,6,12,15,3,64,0:REM SET UP

REM DRAW THE WHCLE BOARD IN CYAN
pLOT 2,250,30,0,125,247

FOR Y=0 TO 63:PLOT 34:NEXT

PLOT 2,255
REM NOW ADD THE BLUE SQUARES
PLOT 6,4
S=0
PLOT 2
FOR Y=0 TO 112 STEP 16
FOR X=3§ TO 114 STEP 24
PLOT 250,%+12*%S,Y,X+12%5+11,247
FOR J=1 TO 7:PLOT 34:NEXT
PLOT 2
NEXT
S=1+(s=1)
NEXT
PLOT 255
REM ADD REFERENCE LETTERS

C=52:REM START WITH BLUE ON CYAN, BUT THIS WILL
REM TOGGLE IMMEDIATELY TO CYAN ON BLUE

FOR Y= TO 31 STEP 31
L=64:REM ASCII VALUES, BEGINNING WITH 1 LESS THAN "A"
C=52+14* (C=52) :REM TOGGLE QOLORS

FOR X=15 TO 57 STEP 6
C=52+14*(C=52) :REM TOGGLE COLORS
PIOT 6,C
I=I+1:REM NEXT LETTER
PLOT 3,X,Y,L

NEXT

NEXT

RETURN

REM GET PLAYER'S CHOICE OF COLORS AND
REM ADD REFERENCE NUMBERS.

PIOT 6,3,8:REM (QOLOR = YELLOA; HOME CURSOR
PRINT "DO YOU WISH TO"

INPUT “"PLAY WHITE? ";AS

AS=LEFTS (AS /1)

IF AS="Y" THEN N1=56:N2=49:5=-1:G0T0 1370

IF AS$="N" THEN N1=49:N2=56:S=1:GOT01370

-108-

1360 PLOT 28:PRINT SPC(15)"":PLOT 28:GOTO 1320

1369

1376 PLOT 6,7:REM WHITE ON BLACK

1380 PLOT 27,10:REM VERTICAL MODE

1389

1390 FOR X=14 TO 63 STEP 49

1409 PLOT 3,X,1

1409

1410 FOR N=N1 TO N2 STEP S:REM ASCII VALUES OF NUMBERS 1-8
1420 PLOT N,32,32,32

1439 NEXT

1439

1440 NEXT

1449

1450 pPLOT 27,24,8:REM PAGE MODE; HOME CURSOR
1458

1459 REM ERASE INPUT

1460 PRINT SPC(14)"":PRINT SPC(14)""

1469

1470 wW=(AS$="Y"):REM W WILL NOW BE A FLAG
1471 REM IS PLAYING BLACK AND
1472 REM IS PLAYING WHITE
1473

1480 RETURN

1498

1499 REM -——— GET DATA FOR THE 6 KINDS OF PIECES
1500 FOR P=1 TO 6

1509

151¢ FOR N=1 TO 20:READ P(P,N) :NEXT

1519

1520 NEXT

1529

1530 RETURN

1536

1537 REM -——— THE DATA
1538

1539 REM PAWN

1540 DATA 0, @, 0, 0,
1542 DATA 9,192,206, 0,
1544 pATA 9, 50, 63, 2,
1546 DATA 64,100,103, 68,
1548

1549 REM KNIGHT

155¢ pATA 0,128,204,206,
1552 DATA 236,239,255,255, 15
1554 DATA 16,200,254, 63,
1556 DATA 102,119,119,103,
1558

1559 REM BISHOP

1560 DATA ©,200,134, 12,
1562 DATA 9,169,191, 9,
1564 DATA 0,240,255, 0,
1566 DATA 162,119,119,103,
1568

@ IF PLAYER
-1 IF PLAYER

[0] SIS IS RS

[SRS IS

-109-

1569
1570
1572
1574
1576
1578
1579
1580
1582
1584
1586
1588
1589
1590
1592
1594
1596
1598
1599
1600
1610
1611
1612
1620
1630
1640
1650
1660
1668
1669
1670
1678
1679
1680
1690
1698
1699
1700
1710
1718
1719
1720
1729
1730
1746
1750
1760
1770
1780
1788
1789
1799
1799
1800

REM ROOK

DATA 136,128,136,128,
DATA 247,254,255,254,
DATA 0,255,255, 15,
DATA 118,119,119,119,

-

[e) IS IR N eo)

REM QUEEN

DATA 132,140,140,140,
DATA 0,217,223, 9,
DATA 0,240,255, O,
DATA 102,119,119,103,

[e) SRS

REM KING

DATA 0, 68, 78, 4,
DATA 128,238,239,142,
DATA 0,240,255, O,
DATA 102,119,119,103,

aaaw

REM ~——-- DRAW BEGINNING POSITION

BG=22:FG=17+W:REM SET COLORS FOR ROOK AT TOP LEFT.

PLOT 3,16,0:REM POSITION CURSOR AT TOP LEFT OF
REM BOARD AND ONE SPACE IN FROM EDGE

P=4:GOSUB 200@:REM DRAW A ROOK
P=2:GOSUB 200@:REM KNIGHT
P=3:GOSUB 200@:REM BISHOP
P=6+W:GOSUB 2000:REM QUEEN OR KING
P=5-W:GOSUB 2000:REM KING OR QUEEN

REM NOW THE RIGHT BISHOP, KNIGHT & ROOK
P=3:GOSUB 2000 :P=2:GOSUB 2000 :P=4:GOSUB 2000

REM NOW FOR A RON OF PAWNS AT THE TOP
BG=20:PLOT 3,16,4
P=1:FOR K=1 TO 8:GOSUB 2000 :NEXT

REM NOW FOR THE PIECES AT THE BOTTOM
BG=22:FG=16-W:REM SET COLORS FOR BOTTOM RON OF PAWNS
PLOT 3,16,24:REM POSITION CURSOR

REM DRAW BOTTOM RON OF PAWNS
P=1:FOR K=1 TO 8:GOSUB 2000 :NEXT

BG=20:PLOT 3,16,28

P=4:GOSUB 2000:REM ROOK

P=2:GOSUB 200@:REM KNIGHT
P=3:GOSUB 20@00:REM BISHOP
P=6+W:GOSUB 2000:REM QUEEN OR KING
P=5-W:GOSUB 200@:REM KING OR QUEEN

REM NOW FOR THE RIGHT 3 PIECES N
P=3:GOSUB 2000:DP=2:GOSUB 2000:P=4:GOSUB 2000

PLOT 6,2,8 :

-110-

1810 RETURN
1995
1996 REM
1997
1998 REM BG AND FG ASSUMED ASSIGNED.

1999 REM P=PIECE #(1-6). CURSOR IS ASSUMED POSITIONED,
2009 PLOT 30,BG,29,FG:REM SET QOLORS

2009

2019 FOR Y=0 TO 3

2020 PLOT 2,254:REM CHARACTER PLOT

DRAW A PIECE

2029

2030 FOR X=1 TO 5

2040 PLOT P(P,5*Y+X):IF P(P,5*Y+X)<255 THEN 2080

2049

2050 PLOT 30,FG,32:REM PRINT A SPACE IN THE FG CQOLOR
2060 PLOT BG,29:REM RETURN ORIGINAL BG QOLOR; FLAG OFF
2070 PLOT 2,254:REM RETURN TO CHARACTER PLOT

2079

2080 NEXT:PLOT 255

2089

2099 PLOT 26,26,26,26,26,10:REM CURSOR BACK & DOWN
2108 NEXT

2108

2109 REM POSITION CURSOR FOR NEXT PIECE

2110 FOR J=1 TO 4:PLOT 25,28:NEXT:PLOT 25,25

2120 BG=22+2* (BG=22) :REM TOGGLE BG (ULOR... CYAN—BLUE
2129

2139 RETURN

12.7 A REAL TIME LUNAR LARDER GAME

I think it must be a Law of Nature that a programmer must, at some
point, write a lunar lander game. Excellant speed, accuracy and graphics
can be implemented on the computer in assembly language. But something
can be done in BASIC, too. The program presented here isnot very sophisticated:
the physics of lunar landers, for example, is given up in favor of speed.

The lunar surface is drawn in vertical mode using the hatch character.
The space ship is drawn in incremental point plot submode with the FLAG
on, so that PLOTting it twice will draw it and then erase it. Keyboard
input is prevented from being echoed on the screen by making use of a
no-echo patch. When information is entered from the keyboard, it is stored
in location 33278. The program periodically checks that location to see if
anything is there. If there is something there, it decides whether it is
valid or not and calculates the new position and velocity accordingly. If
the player manages to land the ship at the lunar base with a very small
velocity (less than 8.5 ft/sec), a special treat is provided by having a
little moon walker (a short line drawn in incremental point plot mode)
"walk" from the space ship to the highest point on the surface and raise
a little green flag. After each attempt at landing, statistics are provided,
and the player is rated according to various factors such as initial speed,
final speed, whether landing was made at the moon base, and the degree of

-111-

difficulty chosen. The degree of difficulty determines the initial horizontal
and vertical velocities; the height of the lunar surface from the bottom
of the screen (the higher the surface, the effectively less time there is
to slow the ship and land); the amount of fuel initially avaliable; and
finally the placement of the lunar base on the surface: in easy simulations,
the lunar base is level with the surface of the moon, so that the ship can
land partly on the base and partly on the surface; in the medium level of
difficulty, one side of the base is level with the lunar surface, but the
other is not., This therefore requires a bit more skill to land at the base
without tipping over. In the advanced version, the lunar base is not level
with the lunar surface on either of its sides: the ship must land precisely
on the base. ‘

The program is quite large, requiring a 16K machine. But if you remove
all unnecessary spaces and REMark statements, and if you put as many
statements on a line as you can (without destroying the destination of
GOSUB's and GOTO's), you might squeeze it into an 8K machine. As usual,

information which you should enter from the keyboard is indicated in
brackets: [].

5 REM PROGRAM 12.8
6 REM REAL TIME LUNAR LANDER

7

8 REM BY DAVID B. SUITS, 12 ANNO LUNAE

9

10 GOTO 63000:REM POKE IN THE NO-ECHO PATCH

99

100 DIM Y(127):REM HEIGHT OF LUNAR SURFACE FOR EACH OF
1091 REM THE 127 HORIZONTAL PLOT POSITIONS.

110 KB=33278:REM LOCATION OF KEYBOARD CHARACTER.
120 KF=33247:REM LOCATION OF KEYBOARD FLAG.

130 MAX=—1.5:REM MAX SAFE LANDING VELOCITY

138

139 REM GIVE INSTRUCTIONS

140 GOSUB 8008

148

149 REM GET DEGREE OF DIFFICULTY AND SET UP LUNAR SURFACE
150 GOSUB 7000

157

158 REM DETERMINE INITIAL FUEL; PLOT THE SHIP; PRINT
159 REM AMOUNT OF FUEL REMAINING

160 GOSUB 6000

168

169 REM CALCULATE EFFECTS OF ANY RETRO-FIRE

170 GOSUB 2000

178

179 REM CALCULATE NB4 QO—-ORDINATES

180 GOSUB 1000

188

189 REM IF SHIP IS STILL ABOVE GROUND, QONTINUE
190 IF Y>Y(X-1)+V2 AND Y>Y(X+l)+V2 THEN 170

198

199 REM SHIP HAS LANDED (OR CRASHED)

200 vV1=V:Y=Y1

219 GOSUB 1050:REM ERASE IT

-112-

(99

218

219 REM SET Y=HIGHEST POINT UNDER SHIP + 4

220 Y=Y (X-1) :IF Y(X)>Y(X-1) THEN Y=Y(X)

230 IF Y(X+1)>Y(X) THEN Y=Y(X+1)

240 Y=INT(Y+4) :X=INT(X)

250 GOSUB 105@0:PLOT 255:REM DRAW SHIP AT FINAL SPOT
259

260 PLOT 29,22:PRINT "FUEL=";:PLOT 14,19:PRINT F:PLOT 3,64,0
268

269 REM VELOCITY TOO GREAT FOR SAFE LANDING?

270 IF V1I<MAX-.0001 THEN TD=0:GOSUB 3000:GOTO 410
278

279 REM NO. BUT IS SHIP STABLE ON SURFACE?

280 IF Y(X-1)<>Y(X+1) THEN TD=@:GOSUB 4000:GOTO 410
288

289 REM SAFE LANDING!
299 PLOT 3,18,1:PRINT "*** TOUCHDOWN ***":TD=1

298

299 REM SEE IF ANY PART OF SHIP IS ON MOON BASE
300 FLG=-1

309

314 FOR J=-1 TO 1

319 '

320 FOR K=MB*2 TO MB*2+3

330 IF X+J=K THEN FLG=0:REM YES
340 NEXT

349

358 NEXT

359

360 IF FLG THEN PLOT 15,3,15,3:PRINT "(BUT YOU MISSED THE MOON BASE
) ":GOTO 410

369

378 PLOT 6,3

380 PLOT 3,15,3:PRINT "SUCCESSFUL LANDING AT MOON BASE"

388

389 REM TURN OFF BLINK AT MOON BASE

399 pLOT 15,39,6,33,3,MB,31-INT(Y (MB*2)/4),101,101,6,3,29,3,64,0
396

397 REM IF SHIP LANDS AT MOON BASE WITH VELOCITY <.85 DOWN, A
398 REM LITTLE MOON WALKER GOES TO THE HIGHEST POINT ON THE
399 REM SURFACE AND RAISES A FLAG

400 IF V1=>-.85 THEN GOSUB 5000

408

409 REM GIVE STATISTICS

410 GOSUB 609

418

419 REM PLAY AGAIN?

420 INPUT" [mag]AGAIN? ";AS$:AS=LEFTS (AS,1)

430 IF AS="Y" OR AS$="O" THEN 150

440 IF AS<O"N" THEN PLOT 28,11:GOTO 420

448

449 REM PUT TOP OF MEMORY BACK WHERE IT WAS

450 TM=256*PEEK (32941) +PEEK (32940) +7

-113-

460 POKE 32941, INT(TM/256) :POKE 32948, TM-256*INT (TM/256)
469

470 END

471

596

597 Rm kkkkkkkkkk SUBMJTINES kkkkkkkkkk

598

599 REM —— GIVE STATISTICS

600 PLOT 3,64,5:REM HIDE CURSOR

616 FOR J=1 TO 10P@:NEXT:REM PAUSE

620 PLOT 15

629

630 PRINT " [cyn]INITIAL VELOCITY:[mag]™TAB(22)-VI*1@" FT/SEC"
6480 PRINT "[cyn]VELOCITY AT ";:IF TD THEN PRINT ™TOUCHDOWN"; :GOTO 6
60

650 PRINT "IMPACT";

660 PRINT ":[mag] "TAB(22)-V1*1@" FT/SEC"

670 PRINT " [cyn]FUEL EXPENDED: [mag] "TAB(22)FI-F" UNITS"
678

679 REM DETERMINE RATING

680 DM=X-MB*2:IF DM>-2 AND DM<5 THEN DM=@:REM DM=DIST. FROM MB
690 RA=127/(ABS(DM)+1) +V1*1@* (F/FI)+ABS (HI)-VI

700 RA=RA+RA*FLG* (V1=>-.85) :RA=—INT (RA*D+.5) *TD

710 PRINT

720 PRINT "[mag]YOUR RATING IS: [wht]™TAB(22)RA

738 TR=TR+RA:LNDG=LNDG+1 : AVG=1INT (TR/LNDG)

740 PRINT

758 PRINT " [yel]AVERAGE RATING"

760 PRINT "AFTER"LNDG" LANDING";

776 IF LNDG>1 THEN PRINT "S";

788 PRINT ":[red] "TAB(22)AVG

798 PRINT

808 RETURN

998

999 REM ——— CALCULATE NEW X,Y AND DRAW SHIP

1008 GOSUB 185@:REM ERASE IT AT OLD LOCATION FIRST
1018 X=X+H:IF X>125 THEN X=125

1020 IF X<2 THEN X=2

1030 Y+Y+V:IF Y>127 THEN Y=127

1048 Y1=Y:V=V~,31:V2=ABS(V)+4

1049

105¢ PLOT 253,X,Y,251,17,5,128,8

1059

1060 RETURN

1998

1999 REM ——— RETRO-FIRE?

2008 IF F=0 THEN RETURN:REM NO FUEL LEFT

2010 A=PEEK (KB)-48:IF A=39 THEN A=.2:GOTO 2100

2020 IF A=21 THEN A=—.2:GOTO 2160

2038 IF A<l OR A>9 THEN RETURN:REM NONSENSE KEY WAS STRUCK,
2031 REM OR ELSE NO KEY AT ALL.
2039 REM VERTICAL RETRO

2040 IF F-A<@ THEN A=F

2048

~114-

2049 REM DON'T PLOT RETRO IF SHIP IS TOO CLOSE TO GROUND
2050 F=F-A:V=V+.2*A-.3:IF Y<Y(X)+8 THEN 2070

2058

2059 REM DRAW YELLOW LINE UNDER SHIP FOR RETRO

2060 PLOT 255,6,3,2,X,Y-5,251,17,16,34,2

2069

207¢ GOTO 2120

2098

2099 REM LATERAL RETRO

2100 F=F-1:H=H+A

2108

2109 REM DRAW YELLOW LINE FOR FIRE

211@ PLOT 255,6,3,2,X-5*A+(A>0) ,Y-1,251,8,4,8

2118

2119 REM PRINT FUEL REMAINING; BLINK IF FUEL <50
2120 PLOT 255,6,6:PRINT "FUEL=";:PLOT 14,6,3-64* (F<50)
2139 PRINT F" ":PLOT 15,6,6,3,64,0,2

2140 FOKE KB,@:REM CLEAR KEYBOARD LOCATION

215¢ RETURN

2998

2999 REM -—-— PLOT AN EXPLOSION AT SITE OF CRASH
3009 PLOT 29,19

3¢1@ PLOT 2

3018

3919 REM IS CRASH SITE TOO CLOSE TO EDGE OF SCREEN?
3020 IF X<6 THEN G=1:GOTO 3200

3030 IF X>121 THEN G=-1:GOTO 3200

3939

3940 PLOT X,Y+13,X-2,Y+7,X+2,Y+20,X,Y, 242 ,%X+5,Y+20,255
3050 GOSUB 3400:PLOT 16

3060 PLOT 2,X,Y,242,X-3,Y+15,255

3078 PLOT 23

3980 PLOT 2,X-1,Y+20,X+3,Y+25,X,Y,242,%X+2,Y+11

3¢9¢ PLOT 253,X,Y,X-1,Y+30,X,Y,242,X+1,Y+8,255

3100 GOSUB 340@0:GOSUB 340@:PLOT 16

3110 PLOT 2,X,Y,242,X+2,Y+11,253,X,Y, 242 ,X+5 ,Y+20
3120 PLOT 253,X,Y,242,X+1,Y+8,253,X,Y,242,X-1,Y+30
3130 GOSUB 3400

314 PLOT 253,X,Y+13,X-2,Y+7,X+2,Y+20,X,Y,242,%X-2,¥+21
315¢ PLOT 253,X,Y,242,X+3,Y+7,253,%X-1,Y+20 ,X+3,Y+25,X+1,Y
3160 PLOT X-1,Y

3178 PLOT 255

3180 RETURN

3198

3199 REM EXPLOSION AT SIDE OF SCREEN

3200 PLOT X,Y,242,X,Y+4,253,X,Y,242 ,X+2*G, Y+2

32108 PLOT 253,X,Y,X+5*G,Y+6

3220 PLOT 253,X,Y,X-G,Y+2,255

3229

3230 FOR K=1 TO 3:GOSUB 3400:NEXT

3239

3249 PLOT 23

3250 PLOT 2,X4G,Y+6,X-G,Y+6,X,Y,242 ,X+5%G, Y+13

3268 PLOT 253,X,Y,242,X,Y+20

-115-

3270
3279
3280
3289
3290
3300
3310
3319
3320
3329
3330
3340
3350
3360
3370
3398
3399
3400
3997
3998
3999
4000
4010
4020
4028
4029
4030
4110
4120
4130
4140
4150
4159
4160
4170
4180
4198
4199
4200
4210
4220
4230
4240
4249
4250
4298
4299
4300
4998
4999
5000
5010
5020
5030

PLOT 253,X+4*G,Y+8,X+6*G,Y+10 ,X+10*G,Y+13,255
GOSUB 3400:PLOT 16

PLOT 2,X,Y,242,X+5*G,Y+6,253,X,Y, 242 ,X+2*G,Y+2
PLOT 253,X,Y,242,X,Y+4,253,X,Y,242,X,Y+20
PLOT 253 ,X+10*G,Y+13 ,X+6*G,Y+10,X~-G,Y+6

GOSUB 3400:GOSUB 3400

PLOT X+G,Y+6,X,Y,242,X-G,Y+2

PLOT 253 ,X+4*G,Y+8,X,Y,242,X+5*G,Y+13

PLOT 253,X-G,Y

PLOT 255

RETURN

REM -—— PAUSE

FOR J=1 TO INT(50*RND(1))+20:NEXT:RETURN

REM -———— VELOCITY AT TOUCHDOWN OK, BUT SHIP IS
REM UNSTABLE AND FALLS

pLOT 3,64,0,6,6,30,2,251

O=1+2* (Y (X-1) <Y (X+1))
IF Q=1 THEN 4200

SHIP FALLS TO LEFT
pLOT 4,32,32,2,16,16,81:GOSUB 4300
PLOT 160,32,36:GOSUB 4300
PLOT 72,24,9:GOSUB 4300
PLOT 64,102,89,144,1:GOSUB 4300
PLOT 32,164,70,25:GOSUB 4300
PLOT 255

PLOT 29,18
X=INT (X+QHQ) : Y=Y-4
GOTO 300@:REM FOR AN EXPLOSION

REM SHIP FALLS TO RIGHT

PLOT 18,4,32,32,2:GOSUB 4300
PLOT 24:GOSUB 4300

PLOT 132,20,5:GOSUB 4300

pLoT 128,170,149,80,1:GOSUB 4300
PLOT 32,184:GOSUB 4300

GOTO 4150

REM -———— SLIGHT PAUSE
FOR J=1 TO 10@:NEXT:RETURN

REM -——— PLOT THE MOON WALKER

PLOT 3,64,0

PLOT 6,6

PLOT 30:REM FLAG ON

G=1:IF X>HP THEN G=-1:REM HP IS X OF HIGHEST POINT OF SURFACE

-116-

5040
5049
5050
5059
5060
5070
5080
5090
5097
5098
5099
5100
5110
5119
5120
5128
5129
5130
5138
5139
5140
5148
5149
5150
5160
5170
5180
5190
5200
5298
5299
5300
5309
5310
5319
5320
5330
5340
5350
5359
5360
5370
5379
5380
5997
5998
5999
6000
6010
6019
6020
6029
6030
6040

PLOT 2
FOR J=X+2*G TO HP STEP G

FOR K=1 TO 2
PLOT J,Y(J)+1,251,34,253
FOR Z=1 TO 20:NEXT

NEXT

REM IF AT BOTTOM OR TOP OF CLIFF,
REM GO UP OR DOWN THE SIDE OF IT

IF Y(J)<>Y(J+G) AND (J<>HP) THEN GOSUB 5300
NEXT

FOR Z=1 TO 150:NEXT

REM RAISE THE FLAG
PLOT 255,29

REM FLAG POLE
pLOT 2,HP,Y(HP)+1,242,HP,Y (HP)+9,255

REM THE FLAG

PIOT 3,127:REM BLIND CURSOR

PLOT (HP+l1)/2,30-INT((Y(HP)+l)/4):REM X,Y
PLOT 2:REM CCI CODE

PLOT 96,96:REM 2 HATCH CHARACTERS

PLOT 27,27:REM EXIT BLIND CURSOR

RETURN

REM --———— MOON WALKER GOES UP OR DOWN THE SIDE OF A CLIFF
== (Y (J)>Y (J+G))

FOR S=1 TO 4
FOR T=1 TO 2
PLOT J+Q*G,Y (J) +1+S* (1-2*Q)
FOR Z=1 TO 50:NEXT
NEXT

FOR Z=1 TO 10:NEXT
NEXT

RETURN

REM DETERMINE INITIAL FUEL, INITIAL VELOCITY,

REM AND INITIAL STARTING CO—-ORDINATES
F=200+(10-(D-1)) *20:REM F IS ALWAYS FUEL REMAINING
FI=F:REM REMEMBER INITIAL FUEL

X=INT (95*RND(1)) +25:Y=127:REM STARTING X,Y FOR SHIP
H=,5*D*RND(1)-(.3*D) :REM HORIZONTAL VELOCITY
HI=H:REM REMEMBER INITTIAL HORIZONTAL VELOCITY

-117-

6049
6050
6060
6069
6070
6078
6079
6080
6090
6099
6100
6109
6110
6998
6999
7000
7010
D$

7020
7030
7049
7050
7059
7060
7070
7080
7089
7090
7091
7092
7100
7109
7110
7120
7128
7129
7130
7138
7139
7140
7147
7148
7149
7150
7158
7159
7160
7169
7170
7180
7187
7188
7189
7190

V=-,.5*D*RND(1) —(.5*D) :REM VERTICAL VELOCITY
VI=V:REM REMEMBER INITIAL VERTICAL VELOCITY

POKE KB,0:POKE KF,31:REM TURN OFF ECHO

REM DRAW THE SHIP
PLOT 8,10
PLOT 2:GOSUB 1050

GOSUB 2120:REM PRINT FUEL REMAINING
RETURN

REM -———- GET DEGREE OF DIFFICULTY & SET UP LUNAR SURFACE
PRINT

INPUT "[grn]WHICH WOULD YOU LIKE: EASY, MEDIUM OR ADVANCED? ";

D$=LEFTS$ (D$,1)

D=2:IF D$="M" THEN D=5:GOTO 7060

IF D$="A" THEN D=10:GOTO 7060

IF D$<>"E" THEN PLOT 28,11:GOTO 7010

PLOT 12
PRINT TAB(26) " [red]STAND BY"
PLOT 3,64,0

S=INT(7*RND(1) +.5*D) :REM SURFACE HEIGHT IS INFLUENCED
REM BY DEGREE OF DIFFICULTY

HP=1:REM HIGHEST POINT ON SURFACE SO FAR

FOR X=0 TO 63 STEP 2:REM 2 COLUMNS AT A TIME
N=S+INT (6*RND(1)) -3:REM NEXT COLUMN UP OR DOWN

REM DON'T GO TOO LOW
IF N<INT(.5*D)+1 THEN N=INT(.5*D)+1

REM DON'T GO TOO HIGH
IF N>INT(.5*D)+7 THEN N=INT(.5*D)+7

REM TRANSLATE HEIGHT OF TWO COLUMNS
REM INTO PLOT CO-ORDINATES
FOR J=0 TO 3:Y(2*X+J)=(N-1) *4+3 :NEXT

REM KEEP TRACK OF HIGHEST POINT
IF Y(2*X+3)>Y(HP) THEN HP=2*X+3

S=N:REM NEXT POINT OF SURFACE STARTS FROM PRESENT HEIGHT
NEXT

REM NOW FIND A SUITABLE LOCATION FOR THE MOON BASE.

REM MB IS CURSOR X OF MOON BASE. N IS A QOUNTER.
MB=INT((30+2*D) *RND(1) +(20-2*D)) :N=0

-118-

7197
7198
7199
7200
7208
7209
7210
7220
7228
7229
7230
7238
7239
7240
7249
7250
7257
7258
7259
7260
7268
7269
7270
7278
7279
7280
7290
7299
7300
7310
7311
7312
7320
7321
7322
7330
7339
7340
7348
7349
7350
7360
7379
7379
7380
7390
7495
7496
7497
7498
7499
7500
7510
7517

REM LUNAR SURFACE IS CREATED TWO QOLUMNS AT A TIME,
REM SO MAKE SURE MB BEGINS AT AN EVEN X
IF MB/2<>INT(MB/2) THEN MB=MB+l

REM DON'T GO TOO FAR RIGHT WITH MB
MB=MB+2:IF MB>60 THEN MB=2
N=Nt1

REM DON'T PUT MB TOO CLOSE TO HIGHEST POINT
IF ABS(MB*2-HP)<4 THEN 7210

REM IF NO SUITABLE SPOT FOR MB IS FOUND, START OVER
IF N>31 THEN 7090

M=MB*2:REM M IS X PLOT QO-ORDINATE OF MOON BASE

REM CHECK APPROPRIATE DEGREE OF DIFFICULTY FOR
REM PROPER ENVIRONMENT FOR MOON BASE
FLG=0:ON INT(D/5)+1 GOSUB 7500 ,7520,7540

REM IF BASE NOT IN GOOD SPOT, MOVE RIGHT & TRY AGAIN
IF FLG THEN 7210

REM BASE POSITIONED PROPERLY; NON DRAW EVERYTHING
PLOT 6,7,12
PLOT 27,10:REM VERTICAL MODE

FOR X=0 TO 63

N=INT (Y (X*2) /4) :REM HEIGHT OF SURFACE TRANSLATED FROM
REM PLOT BLOCKS TO CHARACTER POSITIONS

PLOT 3,X,31-N:REM POSITION CURSOR N CHARACTER POSITIONS
REM ABOVE BOTTOM OF SCREEN

FOR K=0 TO N:PLOT 96:NEXT:REM DRAW A COLUMN
NEXT

REM DRAW BLINKING MOON BASE, FLAG ON
pLoT 27,11,6,97,39

PLOT 3,MB,31-INT (Y (MB*2)/4)

PLOT 101,101

PLOT 6,6
RETURN

REM —-——— CHECK POSITION OF MOON BASE
REM EASY—BOTH EDGES OF TOP SURFACE OF BASE MUST BE
REM LEVEL WITH LUNAR SURFACE

FLG=(Y(M)<>Y(M-1)) OR (Y (M)<>Y (M+4))
RETURN

-119-

7518 REM MEDIUM-—-TOP OF BASE MUST BE LEVEL WITH LUNAR

7519 REM SURFACE ON ONE SIDE BUT NOT THE OTHER

7520 FLG=((Y(M)=Y(M-1)) AND (Y(M)=Y(M+4))) OR ((Y(M)<>Y(M-1)) AND (
Y (M) <Y (M+4)))

7530 RETURN

7537

7538 REM ADVANCED—BOTH EDGES OF TOP OF MOON BASE MUST BE

7539 REM UNBEQUAL WITH LUNAR SURFACE

7540 FLG=(Y(M)=Y(M-1)) OR (Y (M)=Y(M+4))

7550 RETURN

7998

7999 REM ——-—— INSTRUCTIONS

8009 PLOT 29,14,6,6,12

8010 PRINT TAB(20) "LUNAR LANDING SIMULATION"

8020 PLOT 15

8030 PLOT 6,2

8040 PRINT

8050 PRINT "YOU ARE THE PILOT OF A SPACE SHIP LANDING ON THE MOON."
8060 PRINT

8070 PRINT "UNFORTUNATELY, YOUR LANDING COMPUTER WENT BERZERK AND Y
OU HAD TO"

8080 PLOT 28

8090 PRINT "SHOOT IT. NOW YOU MUST LAND THE SHIP MANUALLY. THE I
DEA IS TO"

8100 PLOT 28

8110 PRINT "LAND (SAFELY!) AS CLOSE AS YOU CAN TO THE MOON BASE."
8120 PRINT

8130 PRINT "YOU MAY FIRE YOUR RETRO~-ROCKETS BY PRESSING A NUMBER FR
OM [wht]l[grn] TO [wht]9[grn]"

8140 PLOT 28

8150 PRINT " (NO NEED TO HIT RETURN). [wht]1l[grn] GIVES YOU THE MI
NIMUM THRUST, WHILE"

8160 PLOT 28

8170 PRINT "([wht]9[grn] GIVES YOU THE MAXIMUM. YOU CAN MOVE HORIZ
ONTALLY BY PRESSING"

8180 PLOT 28

8199 PRINT "[wht]W[grn] OR [wht]E[grn], GIVING YOU A SMALL BURST OF
FIRE ON THE [wht]WEST[grn] OR THE [wht]EAST[grn]"

8200 PLOT 28

8210 PRINT "SIDE OF YOUR SHIP."

8220 PRINT

8230 PRINT "IF YOUR VELOCITY AS YOU HIT THE SURFACE IS GREATER THAN
[red]"MAX*-10" FT/S[grn],"

8240 PLOT 28

8250 PRINT "YOU CRASH. SINCE YOUR COMPUTER IS OUT OF ORDER, YOU

WON'T KNOW"

8260 PLOT 28

8270 PRINT "YOUR EXACT VELOCITY DURING DESCENT. YOU'LL HAVE TO EYE
-BALL IT."

8280 PRINT "YOUR FUEL GAUGE IS, HOWEVER, STILL FUNCTIONING. THE NU

MBERS YOU"

8290 PLOT 28

8300 PRINT "TYPE IN FOR RETRO-FIRES ARE THE NUMBERS OF FUEL UNITS W
HICH WILL"

-120-

8319 PLOT 28

8320 PRINT "BE FIRED — EXCEPT FOR [wht]W[grn] AND [wht]E[grn], WHI
CH USE 1 UNIT EACH TO FIRE,"

8330 PRINT

8340 PRINT "THE AMOUNT OF FUEL YOU BEGIN WITH, AS WELL AS YOUR INIT
IAL ALTI-"

8350 PLOT 28

8360 PRINT "TUDE AND VELOCITY, WILL BE DETERMINED BY HOW DIFFICULT
A SIMULA-"

8270 PLOT 28

8280 PRINT "TION YOU WISH TO DO."

8390 RETURN

62998

62999 REM -——- BEN BARLOW'S NO-ECHO PATCH

63000 RESTORE 63000:DATA 245,175,50,255,129,241,201

63010 TM=256*PEEK (32941) +PEEK (32940) -7

63020 FOR X=1 TO 7:READ D:POKE TM+X,D:NEXT

63030 BR=INT(TM/256) :PFOKE 33221,195:POKE 33222,TM-BR*256+1

63040 POKE 33223,BR:POKE 32941 ,BR:POKE 32940 ,TM-BR*256

63050 CLEAR 50:GOTO 100

63051

63052 REM FOR NO-ECHO, POKE 33247,31.

63053 REM TO RETURN TO ECHO, POKE 33247,12.

63054 REM (AN INPUT STATEMENT OR THE END

63055 REM OF THE PROGRAM WILL ALSO DO IT.)

12.8 EXTRA LARGE CHARACTERS

The following program prints extra large characters according to the
chart in Appendix C. The no—echo patch is used so that full cursor control
is allowed, which means that 88 possible keyboard inputs are recognized,
from HOME through " ", excluding TAB and XMIT. ESCAPE ends the program.

In response to a keyboard input, the program will print the appropriate
character in double width and double height (quadruple height if the A7 is
on), or else issue the proper cursor or color command. The program prints
out instructions for its use.

For the sake of good looks, each extra large character is printed with
an additional space to its right (lines 120 and 140); a blank line is left
between each row of printed characters(line 150).

Some of the large characters require the use of a special character
with the FLAG off. These are listed in Appendix C (and in the DATA statements
in lines 600-774) as negative numbers. Line 130 turns the FLAG on or off
for each of the four special characters used in printing one extra large
character.

@ GOTO 63000:REM POKE IN THE NO-ECHO PATCH
1

5 REM PROGRAM 12.9
6 REM EXTRA LARGE CHARACTERS
8

-121-

o

9 REM GIVE INSTRUCTIONS

10
18

GOSUB 300

19 REM GET THE DATA
20 GOSUB 500

28

29 REM NO ECHO

30
38

POKE KF,31

39 REM DRAW -———— MAIN ROUTINE

40
50
60
68

POKE KB,0
A=PEEK (KB) : IF A=0 THEN 50
IF A<8 OR A>95 THEN 40:REM ILLEGAL INPUT

69 REM IF [ESC] IS PRESSED, END THE PROGRAM

70
78

IF A=27 THEN 9000

79 REM CHECK FOR CONTROL CHARACTER
80 A=A-7:REM "HOME" IS SMALLEST ASCII VALUE PERMITTED, NOW = 1

90

93

94

95

98

99

100
109
110
118
119
120
129
130
140
146
147
148
149
150
158
159
160
196
197
198
199
200
210
220
228
229
230
239
240

IF A<25 THEN GOSUB 200:GOTO 150

REM IGNORE UNUSED KEYS SUCH AS TAB
IF C(A,1)=0 THEN 40

REM NON-QONTROL KEYS

PLOT 28:REM EACH CHARACTER BEGINS AT THE TOP LEFT OF 2X2 ARRAY

FOR J=1 TO 4:REM FOR EACH OF THE 4 SPECIAL CHARACTERS... i
REM READY FOR 2ND ROW?
IF J=3 THEN PLOT 32,26,26,26,10
PLOT 29*-(C(A,J)<Q)+30*-(C(A,J)>0) ,ABS(C(A,J))

NEXT:PLOT 32

REM IF RIGHT OF SCREEN IS REACHED, THEN DO CR/LF

REM (THE COMPUQOLOR KEEPS TRACK OF THE X CO—~ORDINATE
REM OF THE CURSOR IN LOCATION 33227)
IF PEEK(33227)>60 THEN PLOT 13,190,10,10

REM BACK FOR MORE
GOTO 490

REM **%%%xkkkxkx%* GUBROUTINES ****kkkkkk
REM ————— (QONTROL KEYS
FOR J=1 TO 4

PLOT C(A,J)
NEXT

REM IF [ERASE LINE], THEN 1 MORE "PLOT 10" IS REQUIRED R
IF A=4 THEN PLOT 10:REM REMEMBER, A=A-7 BY LINE 80

RETURN

-122-

298

299 REM -——— INSTRUCTIONS

399 PLOT 14

31¢ PLOT 6,6,29,12:REM SET UP

320 PRINT TAB(22)"EXTRA LARGE CHARACTERS"

3390 PRINT:PLOT 15,18

349 PRINT TAB(2)"THIS PROGRAM ALLOWNS YOU TO TYPE DOUBLE WIDTH, DOUB
LE HEIGHT"

359 PRINT

360 PRINT TAB(2)"CHARACTERS (WITH A7 OFF), OR DOUBLE WIDTH, QUADRUP
LE HEIGHT"

370 PRINT

380 PRINT TAB(2)"CHARACTERS (WITH A7 ON)."

399 PRINT

499 PRINT

410 PRINT TAB(2) "CURSOR AND COLOR KEYS MAY ALSO BE USED, EXCEPT THA
T YE\G ONI"

428 PRINT

439 PRINT TAB(2)"OR 'BG ON' MUST ALWAYS BE PRESSED BEFORE A QOLOR C
HANGE. "

440 PRINT

459 PRINT

459 PRINT TAB(2)"PRESS [ESC] TO END THE PROGRAM."

479
430
490
498
499
599
510
520
529
539
539
549
559
569
569
579
589
599
596
597
598
599
600
601
602
693
604
605
606
697
608

PRINT:PRINT: PRINT
PLOT 17:PRINT TAB(25) "PLEASE STAND BY"
RETURN

REM -——— GET THE DATA

DIM C(88,4):REM 4 DATA FCOR EACH OF 88 CHARACTERS OR QONTROLS
KB=33278:REM LOCATION OF KEYBOARD CHARACTER

KF=33247:REM LOCATION OF KEYBOARD CHARACTER FLAG

RESTORE 688

FOR A=1TO 88
FOR B=1 TO 4:READ C(A,B) :NEXT
NEXT

PIOT 19,28,11
INPUT "PRESS RETURN TO BEGIN...";AS
PIOT 12,10:RETURN

REM DATA FOR EACH OF THE 88 KEYS
REM HOME

DATA 8,9,9,9

REM TAB (NOT USED)
DATA 9,0,9,9

REM CURSOR DOWN
DATA 106,10,18,0
REM ERASE LINE
DATA 13,11,28,11
REM ERASE PAGE
DATA 12,10,0,0

-123-

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662

REM CR/LF

DATA 13,10,10,10
REM A7 ON

DATA 14,0,0,0

REM BLINK/A7 OFF
DATA 15,0,0,0

REM BLACK

DATA 16,0,0,0

REM RED

DATA 17,0,9,0

REM GREEN

DATA 18,0,0,0

REM YELLOW

DATA 19,0,0,0

REM BLUE

DATA 20,0,0,0

REM MAGENTA

DATA 21,0,0,0

REM CYAN

DATA 22,0,0,0

REM WHITE

DATA 23,0,0,0

REM XMIT (NOT USED)
DATA 0,0,0,0

REM CURSOR RIGHT
DATA 25,25,25,0
REM CURSOR LEFT
DATA 26,26 ,26,0
REM ESCAPE (NOT NEEDED)
DATA ¢,0,0,0

REM CURSOR UP
DATA 28,28,28,0
REM FG ON/FLAG OFF
DATA 29,0,0,0

REM BG ON/FLAG ON
DATA 34,0,0,0

REM BLINK ON
DATA 31,0,0,0

REM SPACE

DATA 32,32,32,32
REM ! ,
DATA 32,-110,32,33
REM ”

DATA 39,39,32,32
REM #

DATA 43,43,43,43
REM $

DATA 99,110,109,100
REM %

DATA 79,126,126,79
REM &

DATA 99,100,99,120
REM

DATA 32,39,32,32

-124-

663 REM (
664 DATA 116,32,118,32
665 REM)
666 DATA 32,117,32,119
667 REM *
668 DATA 32,42,32,32
669 REM +
DATA 109,108,111,110
671 REM ,

DATA 32,32,32,44
REM -
DATA 32,127,32,32
REM .
DATA 32,32,32,46
REM
DATA 32,126,126,32
9 REM 9
? DATA 96,117,118,120
1 REM 1
DATA 39,97,32,97
REM 2
& DATA 194,100,121,127
635 REM 3
686 TA 191,122,103,100
687 REM 4
688 DATA 126,97,161,110
689 REM 5
690 DATA 123,101,183,100
691 REM 6
692 DATA 116,102,-123,100
693 REM 7
694 DATA 101,122,-122,32
695 REM 8
696 DATA 99,100,99,100
697 REM 9
598 DATA 99,-125,103,119
539 REM :
7329 DATA 32,46,32,46
731 REM ;
792 DATA 32,46,32,44
743 REM <
734 TATA 32,126,32,124
785 REM =
726 DATA -95,-95,-101,-101
797 REM >
708 DATA 124,32,126,32
709 REM ?
710 DATA 39,100,32,97
711 REM @ (NOT PROVIDED)
712 DATA 6,0,2,0
713 REM A
714 raTA 116,117,110,111
715 REM B
716 DATA 123,108,123,100

)]
~J
(]

yOMOLh O
. S
T WIN

oy o
NGNS RN
3 AU

[Ca R LN |

YOV Y O Oy Oy Oy C

2EH

-125-

717
718
719
720
721
722
723
724
725
726
727
728
729
739
731

z29
iSd

733
734
735
736
737
738
739
749
741
742
743
744
745
746
747
748
749
759
751
752
753
754
755

e d =g

130
737
758
759
759
761
762
763
764
765
766
767
768
769
770

REM C

DATA 116,102,118,105
REM D

DATA 116,117,198,119
REM E

DATA 123,101,108,127
REM F

DATA 123,191,97,32
REM G

DATA 116,192,118,125
REM H

DATA 97,98,110,111
REM I

DATA 101,119,127,198
REM J

DATA 32,98,103,119
REM K

DATA -98,124,97,124
REM L

DATA 97,32,108,127
REM M

DATA 112,113,97,98
REM N

DATA 112,98,97,115
REM O

DATA 116,117,118,119
REM P

DATA 123,109,97,32
REM 0Q

DATA 116,117,118,120
REM R

DATA 123,109,97,124
REM S

DATA 99,102,183,100
REM T

DATA 101,110,32,97
REM U

DATA 97,98,118,119
REM V

DATA 97,98,124,126
REM W)

DATA 97,98,114,115
REM X

DATA 124,126,126,124
REM Y

DATA 124,126,98,32
REM 2

DATA 101,122,121,127
REM |

DATA 110,32,108,32
REM \

DATA 124,32,32,124
REM]

DATA 32,111,32,109

-126-

Y

771 REM
772 DATA 126,124,32,32

773 REM _

774 DATA 32,32,95,95

8998

8999 REM PUT TOP OF MEMORY BACK WHERE IT WAS

99@0 TM=256*PEEK (32941) +PEEK (32940) +7

9910 POKE 32941, INT(TM/256) : POKE 32948 ,TM-256*INT (TM/256)
9918

9819 REM RESET OOLORS, ETC.

9920 PLOT 15,6,2,29

9929

9930 END

9931

62998

62999 REM BEN BARLOW'S NO-ECHO PATCH

63000 RESTORE 6300@:DATA 245,175,58,255,129,241,201
63010 TM=256*PEEK (32941) +PEEK (32940) -7

63020 FOR X=1 TO 7:READ D:POKE TMtX,D:NEXT

63030 BR=INT (TM/256) : POKE 33221,195:FPOKE 33222,TM-BR*256+1
63040 FOKE 33223,BR:POKE 32941 ,BR:POKE 32940 ,TM-BR*256
63050 CLEAR 58:GOTO 18

63051

63952 REM FOR NO-ECHO, FOKE 33247,31.

63953 REM TO RETURN TO ECHO, FOKE 33247,12.

63054 REM (AN INPUT STATEMENT OR THE END OF

63955 REM THE PROGRAM WILL ALSO DO IT)

12.9 DICE

The following program prints a pair of dice showing a randomly chosen
number. Each die is drawn separately by the subroutine starting at line
1000. Figure 12.8 shows a 15 cell die with the location of the seven possible
spots.

For a cleaner looking display, you could rewrite the program to hide
the cursor and draw the dice in blind cursor mode.

T Y
Ll

aLECE

FIG. 12.8
5 REM PROGRAM 12.10
6 REM DICE
9
1¢ PLOT 15,6,2,29,12:REM SET UP; FLAG OFF
19

-127-

20 Y=6:REM CURSOR Y OF EACH DIE

29

3¢ pLoT 3,18,15

40 INPUT "[yel]PRESS [wht]RETURN[yel] TO ROLL THE DICE ";AS$
50 PLOT 28,11:REM ERASE THE PROMPT

58

59 REM CHOOSE RANDOM # OF TIMES DICE WILL ROLL
60 T=10*RND(1)

68

69 REM ROLL 'EM

70 FOR J=1 TO T

79

80 FOR X=25 TO 32 STEP 7:REM CURSOR X OF EACH DIE
90 N=INT(6*RND(1))+1:REM GET A NUMBER FOR THE DIE
100 GOSUB 1000:REM DRAW THE DIE

119 NEXT

119

120 NEXT

129

130 GOTO 30:REM BACK FOR MORE

994

995 REM --——- SUBROUTINE TO PRINT A DIE

996

997 REM X,Y=CURSOR CO-ORDINATES OF TOP LEFT OF DIE.
998 REM N IS THE NUMBER THE DIE IS TO SHOW.

999 REM FLAG MUST BE OFF.

1000 PLOT 3,X,Y

1009

1010 PLOT 6,7:REM SET COLOR FOR CELL #1

1020 PLOT 116:REM PRINT CELL #1

1029

1030 PLOT 6,56:REM SET COLOR FOR CELLS 2-4

1040 PLOT 32-68*(N=2 OR N>3) :REM CELL #2

1050 PLOT 32:REM CELL #3

1060 PLOT 32-68* (N>2) :REM CELL #4

1069

1070 PLOT 6,7:REM SET COLOR FOR CELL #5

1080 PLOT 117:REM PRINT CELL #5

1088

1089 REM MOVE CURSOR BACK AND DOWN FOR THE 2ND ROW
1099 GOSUB 1500

1099

1100 PLOT 6,56:REM SET COLOR FOR CELLS 6-10
1119 PIOT 32:REM CELL #6

1120 PLOT 32-68* (N=6) :REM CELL #7

113@ PLOT 32-68*(N=1 OR N=3 OR N=5):REM CELL #8
1140 PLOT 32-68* (N=6) :REM CELL #9

1150 PLOT 32:REM CELL #10

1158

1159 REM MOVE CURSOR BACK AND DOWN FOR FINAL ROW
1160 GOSUB 1500

1169

1178 PLOT 6,7:REM SET QOLOR FOR CELL #11

1180 PLOT 118:REM PRINT CELL #11

-128-

1189

1199 PLOT 6,56:REM SET (QOLOR FOR CELLS 12-14
1200 PLOT 32-68*(N>2):REM CELL #12

1210 PLOT 32:REM CELL #13

1220 PLOT 32-68* (N=2 OR N>3) :REM CELL #14
1229

123p PLOT 6,7:REM SET QOLOR FOR CELL #15
1240 PLOT 119:REM CELL #15

1249

125¢ RETURN

1498

1499 REM - MOVE CURSOR BACK & DOWN FOR NEXT ROW
1500 PLOT 26,26,26,26,26,10:RETURN

12.10 DICE — THE FAST WAY

The Dice Program in the previous section is fine, but slow. One of the
fastest ways to put something on the screen in BASIC is to PRINT it. The
following program defines six die faces (based upon Figure 12.8) as six
character strings, D$(1)...D$(6). Each character string has embedded within
it all the necessary PLOT commands. For example, an instruction such as

PLOT 36,16,29,23

can alternatively be coded as:

D$=CHRS (30) +CHRS (16) +CHRS (29) +CHRS (23) : FRINT D$

Each of the six die face character strings incorporates color controls,
cursor controls and special characters according to the ASCII chart in
Appendix A. You may adapt the routine for your own uses by changing the
colors for the dice (lines 30-50) and the co-ordinates (lines 60-70).

5 REM PROGRAM 12.11
6 REM DICE —— THE FAST WAY

9

10 CLEAR 5@0@:REM (YOU'LL NEED IT)

19

20 DIM D$(6) :REM ONE DIE FACE FOR EACH POSSIBLE NUMBER
28

29 REM SET UP THE QONSTANTS

30 FG=23:REM FOREGROUND OOLOR OF DIE

40 BG=16:REM (OLOR OF BACKGROUND AGAINST WHICH DIE IS PRINTED
50 SP=16:REM (QOLOR OF THE SPOTS ON THE DIE

59

60 X(1)=26:Y(1)=3:REM CURSOR X AND Y OF FIRST DIE
70 X(2)=33:Y(2)=3:REM CURSOR X AND Y OF SBCOND DIE
78

79 REM ESTABLISH THE SIX DIE FACES

80 GOSUB 9000

88

-129-

89 REM SET UP THE SCREEN
90 PLOT 15:REM REGULAR HEIGHT. DOUBLE HEIGHT WORKS, TOO, BUT

91
92

REM THE DICE WON'T BE AS WELL PROPORTIONED

198 PLOT 6,6,12,29

109

119 pLOT 3,18,15

120
130
138

INPUT " [cyn]PRESS [wht]RETURN [cyn]TO ROLL THE DICE ";A$
PLOT 28,11:REM ERASE THE PROMPT

139 REM ROLL THE DICE A RANDOM NUMBER OF TIMES
140 FOR ROLL=1 TO 20*RND(1)+5:GOSUB 8000 :NEXT

148

149 REM BACK FOR MORE

156 GOTO 110

7998

7999 REM -——— PRINT THE TWO DICE

8000 FOR DIE=1 TO 2

8010 N=INT(6*RND(1))+1:REM RANDOM NUMBER (1-6) FOR THE DIE
8020 PLOT 3,X(DIE),Y(DIE):REM POSITION THE CURSOR

8030 PRINT D$(N):REM PRINT IT

8040 NEXT

8049

8050 RETURN

8998

8999 REM -——— ESTABLISH THE SIX DIE FACES AS CHARACTER STRINGS
9000 RESTORE 9500

9009

90109 FOR FACE=1 TO 6

9919 REM TOP ROW OF DIE

9020 DS (FACE)=CHRS (30) +CHRS (BG) +CHRS (29) +CHRS (FG) +CHRS (116)
9030 DS$(FACE)=DS$ (FACE)+CHRS (30) +CHRS (FG) +CHRS (29) +CHRS (SP)
9040 GOSUB 9300

9950 DS (FACE)=D$(FACE)+" "

9960 GOSUB 9300

9070 DS$(FACE)=DS$ (FACE)+CHRS (30) +CHRS (BG) +CHRS (29) +CHRS (FG) +CHRS (1
17)

9078

9079 REM BACK AND DOWN FOR SECOND ROW

90980 GOSUB 9400

9088

9989 REM NOW FOR THE SECOND ROW

90908 DS (FACE)=DS$ (FACE)+CHRS (30) +CHRS (FG) +CHRS (29) +CHRS (SP) +" "
91089 FOR K=1 TO 3:GOSUB 9300 :NEXT

9119 DS(FACE)=D$(FACE)+" "

9118

9119 REM BACK AND DOWN FOR THIRD (AND FINAL) ROW

9120 GOSUB 9400

9128

9129 REM THE THIRD ROW

91390 DS$(FACE)=DS$ (FACE)+CHRS (30) +CHRS (BG) +CHRS (29) +CHRS (FG) +CHRS (1
18)

91480 DS$(FACE)=DS$ (FACE)+CHRS (30) +CHRS (FG) +CHRS (29) +CHRS (SP)
9150 GOSUB 9300

9160 DS (FACE)=D$(FACE)+" "

=130~

9170 GOSUB 9300

91890 DS (FACE)=DS$ (FACE)+CHRS (30) +CHRS (BG) +CHRS (29) +CHRS (FG) +CHRS (1
19)

9199 NEXT

9199

9200 RETURN

9298

9299 REM -——-

9309 READ A:D$(FACE)=DS$ (FACE)+CHRS (A) :RETURN
9398

9399 REM ~———-

9400 FOR K=1 TO 5:D$(FACE)=DS$ (FACE)+CHRS (26) :NEXT
9419 D$(FACE)=DS$ (FACE)+CHRS (10)

9420 RETURN

9498

9499 REM 1

9500 DATA 32,32,32,100,32,32,32

9504 REM 2

9505 DATA 32,1090,32,32,32,100,32
9509 REM 3

9519 DATA 10¢9,32,32,100,32,32,1900
9514 REM 4

9515 DATA 190,109,32,32,32,100,100
9519 REM 5

9520 DATA 109,100,32,100,32,100,100
9524 REM 6

9525 DATA 100,100,100,32,100,100,100

12.11 QUICK CHANGE ARTISTRY

If a program of yours makes use of more than one screen display loaded
from disk, or if your program makes use of both disk-loaded displays and
displays generated by the program itself, or (how long can I go on?) if
your program makes use of several internally generated displays, then you
might consider a really flashy way of presenting them.

The method is straightforward: put one display on the screen, as usual,
but put the other one into high memory. Now you can have quick access to
either display simply by interchanging them. To make it quick, you'll have
to use a machine language patch, but that will be fairly simple. Here is
how I have done it:

PUSH H ;Save H&L on stack.

LXI B,1000H ;Use B&C pair as counter for the
;4096 (decimal) bytes of a display.

LXI H,AUX ;H&L point to start of AUX, which
3is 4096 bytes at top of memory.

X1 D,7000H ;D&E point to start of screen ram.

LOOP: LDAX D ;Get a byte from the screen and
PUSH PSwW ;save it temporarily on the stack,

-131-

MOV AM ;Get byte from AUX and

STAX D ;put it onto the screen.

POP PSW ;Reclaim screen byte from stack and
MOV M,A sput it into AUX.

INX H ;Point to-next byte in AUX.

INX D ;Point to next byte on screen.

DCX B ;Decrement counter and continue until all
MOV A,B ;4096 bytes have been interchanged.
ORA C

JNZ LOOP

POP H

RET

The BASIC program which follows incorporates a patch to implement that
routine. The program is only a demo to show you what goes on by using two
of your screen displays stored on disk. No doubt you will discover your
own applications. For example, suppose you have one display (either loaded
from disk or else generated by your program) which is occasionally updated
(charts or graphs, for examples). And suppose you also want to be able to
print a great deal of text, get input, and so on. You might erase the whole
display and draw it later in order to update it. (Or you might confine all
text to a small portion of the screen by using the scrolling patch as a
little text window.)

Quick change artistry can offer an alternative here by allowing you to
store the updated display and recall it whenever you wish. In this way,
you can flip back and forth from one display to another, and the displays
will not be lost.

By changing the patch in suitable ways (another one of those "exercises
for the reader") you could interchange only part of a screen display while
leaving the remainder undisturbed. Or you could call up one of a selection

of auxiliary displays (or parts thereof) depending on the needs of your
application.

@ GOTO 65000:REM LOAD THE PATCH

1

5 REM PROGRAM 12.12

6 REM QUICK CHANGE ARTISTRY

8

9 REM SET UP

19 pLOT 14,39,16,29,18,12

19

20 PRINT TAB(10@) "PROGRAM TO INTERCHANGE SCREEN DISPLAYS"
27

28 REM GET NAME OF AUX DISPLAY

29 REM NOTE: THERE'S NOT MUCH INPUT ERROR CHECKING
30 T$="AUXILIARY STORAGE":GOSUB 1000

38

39 REM GET HEX VALUE FOR LOCATION OF AUX

49 GOSUB 65410:TM=TM+27

5@ R$=" n

60 A=INT(TM/16)

70 R=INT(TM-A*16) :IF R>9 THEN RS$=CHRS (55+R)+RS:GOTO 90
80 RS=RIGHTS (STRS(R),1)+RS

-132-

990 IF A>Q THEN TM=A:GOTO 60

98

99 REM LOAD THE AUX DISPLAY

100 GOSUB 2000@:PLOT 27,4:PRINT "LOA "DS" "R$:PLOT 27,27
108

109 REM NOW GET THE DISPLAY FOR THE SCREEN

110 T$="THE SCREEN":GOSUB 1000

119

12¢0 PRINT "AFTER THE SCREEN DISPLAY IS LOADED, SIMPLY PRESS"
130 PRINT "RETURN TO EXCHANGE THE TWO DISPLAYS."

140 PRINT " (ALSO TRY TYPING SOMETHING ONTO THE DISPLAY.)"
150 PRINT:PRINT "TYPE 'END' TO END THE PROGAM."

160 PRINT

170 INPUT "NOW PRESS RETURN TO LOAD THE SCREEN DISPLAY...":;AS$
179

180 PLOT 12,27,4:PRINT "LOA "D$:PLOT 27,27,3,64,0

189

1990 INPUT "";AS

200 IF AS<>"END" THEN PLOT 3,64,0:Z=CALL(Q) :GOTO 190

218

219 REM PUT TOP OF MEMORY BACK WHERE IT WAS

220 GOSUB 65410:Z=TM+4122:AD=ER:GOSUB 65400

230 END

231

998

999 REM -——— GET DISPLAY NAME

1000 PRINT

19010 PRINT "I NEED THE NAME AND TYPE (AND VERSION, IF YOU WISH)--AS
IIHEY“

1020 PRINT "APPEAR IN THE DIRECTORY—OF THE SCREEN DISPLAY TO BE LO

ADED"

1030 PRINT "INTO "TS"."

1040 PRINT

1950 INPUT "WOULD YOU LIKE TO SEE THE DIRECTORY? ";AS$
1060 IF LEFTS (AS$,1)="N" THEN 1090

1070 GOSUB 2000

1980 PLOT 27,4:PRINT "DIR":PLOT 27,27

1089

1099 PRINT:PRINT

11090 INPUT "PLEASE ENTER NAME.TYPE OF THE DISPLAY: ";D$
1109

1119 IF LEN(D$)<5 OR LEN(D$)>13 THEN 1100

1119

11209 FOR J=1 TO LEN(DS)

1139 IF MIDS(DS$,J,1)="." THEN J=999

1140 NEXT:IF J<999 THEN 1100

1149

1150 PRINT:RETURN

1999

2000 PRINT

2010 INPUT "PLEASE MOUNT THE PROPER DISK AND PRESS RETURN,..";AS

2020 PRINT:RETURN

64998

64999 REM -—— HERE'S THE PATCH

65000 GOSUB 65410:RESTORE 65010

-133-

65010 DATA 229,1,0,16,17,0,112,33,-1,-1,26

65020 DATA 245,126,18,241,119,35,19,11,120

65030 DATA 179,194,-1,-1,225,201

65038

65039 REM CHECK TO SEE IF PATCH IS ALREADY LOADED
65040 IF TM>61413 THEN TM=TM-4122:GOTO 65080

65049

65050 FOR J=1 TO 26:READ A

65060 IF A=>@ AND A<>PEEK(TM+J) THEN J=26:TM=TM-4122
65070 NEXT

65078

65079 REM POKE IN THE PATCH

65080 RESTORE 65010

65090 FOR J=1 TO 26:READ A:POKE TMt+J,A-(A<@) :NEXT
65098

65099 REM SET UP JUMP TO THE PATCH

65100 Z=TM+1:AD=33283:GOSUB 65400

65108

65109 REM SET UP NEW TOP OF MEMORY

65110 Z=TM:AD=ER:GOSUB 65400

65118

65119 REM SET UP ADDRESS OF START OF AUX DISPLAY STORAGE
65120 Z=TM+27:AD=TM+9:GOSUB 65400

65128

65129 REM SET UP ADDRESS OF LOOP IN THE PATCH
65130 Z=TM+11:AD=TM+23:GOSUB 65400

65139

65140 CLEAR 5@:GOTO 10

65399

65400 ZZ=INT(Z/256) :POKE AD,Z-256*ZZ:POKE AD+1,ZZ:RETURN
65409

65410 ER=32940:TM=256*PEEK (ER+1) +PEEK (ER) :RETURN

-134-

IR CVE S

¥ pROJurEg

f

NV O N 00w N

CRENREEIzISIFFd N =B

24
25
26
21
28

E] |

[

¢

(128)
(129
(139)
(131)
(132)
(133)
(134)
(135)
(136)
(137)
(138)
(139)
(143)
(141)
(142)
(143)
(144)
(145)
(146)
(147)
(148)
(149)
(150)
(151)
(152)
(153)
(154)
(155)
(156)
157)
(158)
(159)

rUNCTION-

NULL

AUTO

PLOT
CURSOR X, Y
NOT USED
NOT USED
cci

NOT USED
HOME CURSOR
TAB

CURSOR DOWN
ERASE L INE
ERASE PAGE
RETURN

A7 ON

BLINK OFF/A7 OFF

BLACK

RED

GREEN
YELLOW
BLUE
MAGENTA
CYAN

WHITE

XMIT

CURSOR RIGHT
CURSOR LEFT
ESCAPE
CURSOR UP

FLAG OFF (FOREGROUND)
FLAG ON (BACKGROUND)

BLINK ON

APPENDIX A:

T

ASCII CHART

Crand

1 IRONLg SiAnt

/)

32
33
34
35
36
37
38
39
49
4
42
43
4y
45
4
W7
48
49
59
51
52
53
54
55
56
57
58
59
60
61
62
63

(160)
(161)
(162)
(163)
(164)
(165)
(166)
(167)
(168)
{169)
(178)
a7y
(172)
(173)
(174)
(175)
(176)
arn
(178)
(179
(189)
(181)
(182)
(183)
(184)
(185)
(186)
(187)
(188)
(189)
(199)
(191)

T

ST

i

Y

S

+a¢

-

RN

i

—
|

BN C TN LY o [l RN 1o o' [SO g W

PLaT O EriER

4 PRODVLS TinRIL

/
65
66
67
68
69
10
7
12
73
T4
78
76
mn
78
79
&2
81
&
83
84
85
86
87
88
89
9
9N
92
93
9%
95

!

(192)
(193)
(194)
(195)
(196)
a9n
(198)
(199)
(209)
(281)
(202)
(203)
(204)
(205)
(206)
(2a71)
(208)
(299)
(210)
211
(212}
(213)
(214)
(215)
(216)
(217)
(218)
(219)
(220)
(221)
(222)
(223)

MOomID&

o

AL

mMOZTIC

=

AN=X = C—HNA

J

I L3

57 oF
/
/
|
v
96
97
98
99
100
1
102
183
184
185
106
187
108
199
119
m
112
113
114
115
116
n7
118
119
120
121
122

124
125
126
127

[ETEe MR ¢
PRopurC e

(224)

(226)
(227)
(228)
(229)
(230)
(231)
(232)
(233)
(234)
(235)

(236)

(237)
(238)
(239)
(248)
(241)
(242)
(243)
(244)
(245)
(246)
(247)
(248)
(249)
(250)

(251)

(252)
(253)
(254)
(255)

Pl Mot
30 19

!
LN
FLAG

On Off

B
L Clow

—_
re

1
J

T

NS IV
-£ 1

aall
=0T

-

— —L J

H

(S Il I i | Yo O e Wt | Y

.}

1 e AP = o) O I i, - e e

[

ST
4.

9 O o= > g

wi

e T

o

> o s N

S, P

APPENDIX B:

« =M@
"3 o[

“@ @
"8 [
“[O
"G K
“R * 0
"B "N
“3 *H
“@ » 0

~136-

CHARACTER SET

*
s [

-
7 A

o e]))) 1 50 5 9 e % e D

£

s (g 0 e) T (00 010 859) £ e 5 = 255 ==

ﬂ N m m m m ™ W ”
o~ ~ o~ ~N o~ ~N ~N o~ o~ o~

H!HEN!MEEHE@EE@D
-1 3 2 =] 2 = a = s 2 2 S ~ & ¥

I!EEIIEIHEJHIHIE

§ &’ & 8 m g 8

S =0 £ 1) 5 163 00 £ B 9 5 9 5 (00 4

g 2 & & B

0 B0 e e e i 0 0 o 2 i) O O O

BIHH-IIIIIHDIDID

2

= D T AR ER DI AR IR EN A A LI
8 & 8 5 S " 3 A 3 B 3 2 g 3 ¢ 2

-137-

32
32

32
32

39
32

ns

32
32

32
32

32

32
126

Posttive numbers:

32

32

-0

39

32

RAE

32

2| aa

127

32

32

126

PLOI with FLAG on,

19 97
32 9

]

]

104 100
21 27
]

]

100 122
103 100
]

1
126 97
10 | 1o
1
L]

123 10
103 100
]

1
N6 102
<123 i d 100
L
]

0 122
22 32

99
99

99
103

32 46
32 N 46
'
'
32 . 46
32 3 a4
)
'
32 126
32 124

=101 | | I-'IOI

124

126 ||

39

32

Negative numbers)

13%

119_?’qu "

nol [Jm
i
1
123 100
173 100
]
1
16 102
18 105
t
1
.

10 "7
108 n9
I
[}

123 101
108 27
'

1
123 01
- — -

97 »
!

1
16 102
ns k. [z
'

[}

97 98
Mo m
1
100 10
127 108
I
|
32 98
103 SRLL
]

'

-98 104
97 124
)

]

97 2
108 127
'

1)
nz n3
97 98
1
n2 F;! 98
97 __ijh ns

M7
M9

PLOT with FLAG off,

[}

1230 ' oo
97 | 32
1
]

16 13}
18 120
]

L}

123 100
97 124
t
1
99 102
103 100
]

]

101 o
32| - 97
]

]

97 98
ne A | g M9

' -
. A
97 _ _ 98
124 Ejugiv126
]
L
97 98
N4 1s
]
[}

124 126
126 124
[}

[}

124 [N 126
98 32
]

]

100 122
21 RYY
]

]

10 32
8] | 32
L}

1
12 NI] 32
32 124
[

L]

32 m
32 109
L}

[}

126 124
32 32
]

32 32
95 | 95

!

fLaT 9 30 9799 o0
s

\

Ib ke N 1Y
2 4 }

BT« w4

SMETHY SwirT o
7

SMpT NOT R F

S Lok OB

/

—n\s} Flor 2N sl THA

General Plot Mode

Vectors

Y Bar Graph

X Bar Graph

Point Plot

Character Plot

Plot Mode Escape

APPENDIX D: PLOT MODES

240
241
242

243
244
245
246

247
248

249
250

251
252
253
254

255

General plot mode introduction.
Unless instructed otherwise, the
computer will automatically be
in the point plot submode.

Incremental vector plot
Y co-ordinate of vector end point
X co-ordinate of vector end point

Incremental Y bar graph

Y co-ordinate of top of vert. bar

X co-ordinate of vert. bar

Y co-ordinate of bottom of vert. bar

Incremental X bar graph

X co-ordinate of right of horiz. line
Y co-ordinate of horiz. bar

X co-ordinate of left of horiz. bar

Incremental point plot
Y co-ordinate of point
X co—-ordinate of point

-139-

APPENDIX E:
INCREMENTAL VALUES FOR
INCREMENTAL POINT PLOT AND INCREMENTAL BAR GRAPH SUBMODES

DECIMAL VALUE: 128 64 32 16 8 4 2 1
BIT: 7 6 5 4 3 2 1 0

LI LI []

X] Y] X2 Y2

FIRST INCREMENT SECOND INCREMENT

If the
binary ...then the
value increment

of the of that
two bits| co-ordinate

is... will be...
00 None*
01 -
10 +
11 None

* If X1=0 and Y1=0 then the point or bar graph will be incremented
once according to the values of X2 and Y2.

* If X2=0 and Y2=0 then the point or bar graph will be incremented
once according to the values of X1 and Y1, but the new point or
bar graph will not be drawn.

Incremental values Incremental values Incremental values
for incrementing for incrementing for incrementing
twice in the same only X2,Y2 without plotting
direction. (x1=0, Y1=0). (Xx2=0, Y2=0).
34 170 2 %6 32
4 Iy
102 6 E///Jo . : /,160
N\ /
68 136 4 8 64 «+—— 3 ——»128
: < N
85 153 5 v g 80% 144
17] 16

-140-

APPENDIX F:
INCREMENTAL VALUES FOR
INCREMENTAL VECTOR PLOT SUBMODE

DECIMAL VALUE: 128 64 32 16 8 4 2 1
BIT: 7 6 5 4 3 2 1 0
L T[] [[|

| SRR A Y i ——

X1 Y1 X2 Y2

If the
binary ...then the
value increment

of the of that
two bits | co-ordinate

is... will be...
00 None*
01 -
10 +
11 None

* If X1=0 and Y1=0 then the X1, Y1 co-ordinates of the vector will

be incremented, but the vector will not be drawn.
* If X2=0 and Y2=0 then the vector will be neither incremented nor

drawn.

-141-

XK

gy

VMgt

IR 1S

can sl

W O NN O U b WN H &

W WNBRDNNDNNMNLODNNONNDNHEEFEEEB K 9B B B R B
HF 2O ONIO0OE WNR OIS WN S

KEYBOARD ENCODING

APPENDIX G:
—~3 NUARY
CON PRAD T
KEY WIT R
KEY WITH KEY WITH SHIFT AND
KEY SHIFT CONTROL CONTROL]
4)))
NUwL
e
AUTD Alm‘ ‘ :mo AITO |
T
B n
INSERT LINE INSERT LINE mm INSERT LINE /(‘
TELETY, LINE DELETE LINE DEIETE LINE TELETY LINE V
os by D ﬁ
INSERT CHAR INSERT CHAR INSERT CBAR INSERT CBAR 7
N ®
ccl
F &
[31K /7
G
BME
= (
TAB TAB .
1 .
+ e _‘, P
ERASE LIRE YL EBASE LINE +
- K
ERASE PAGE. Lo ls‘msz PAGE >
EETURN BTN) :mmﬂ -
A7 N PosEL :7 [+] .
KJ/A) FY NS guu CFF Y
RLAX gwx 0
KED
Q \
GRERN SN 3
YELIOW w A ;Eum 4
RUE gul 4
MAGENTA gmm
CYAR CYAN L
v
WHITE o WHITE 7
RN]
X
xN\T g
hd ; 9
- -
[2
| BC 5 F ;
(¢ +
| 404 p \ <
| FG VLG OFF F1G OFF —
[Boow f i)
G VARG (N Ll G VARG O >
Fm o™ e ELINK QN 7
[> 8 .

-142-

BN

n

©32
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

KEY WITH
KEY WITH SHIFT AND

KEY KE}HMTH CONIROL CONIROL
BPACE 8?“2 BPACE SMT
1
2
3
4
5
L 6
7
8
9
* (keymd) | x (keypad) | * (keypad) | = (keypad)
* Geymd) [+ (eypad) | & (keypad) |+ Cheypad)
,
= (keypad)
& ey
0
1
2
3
4
5
6
7
8
9]
:
H
o B
= (keypad) |= (keypad) | = (heypad) | = (keypad)
A

A uk:k
ik SYmb
o o o ' PLOBLCE N
.‘:axnum"\\i\w T V‘DU
KEY WITH KEY WITH i
KEY WITH KEY WITH SHIFT AND | KEY WITH KEY WITH SHIFT AND
KFIY SHlFT CONIROL CONIROL F,‘,ﬁ‘i)7 Kii_Y SHJI'FT CONIROL CONIROL Fing ON.
¢ 64 i 96 ¢ K
~ 65 A ENE T /A\ 97 4 é had
. » S B ’ b
' 66 < 98
67 c Wb, b 2“ 99 c - C
. 68 ° . BINAINY m l" 100 D A
< 69" “1101 " T
70 |F ‘102 i e
71 ¢ 103 ¢ " g
w72 |8 HENRT: ‘L: 104 B o A i
73 [T £ 105 1 ikl P
74 7 .. 106 ’ \ |
© 75 % kwerr 5T 107 -) &
1 i L
. 76 i 108 L 1
w7 189 i -l ~
v 78 ¥ { 110 " I n
> 79 ° [Jphi1 ° 1 :
b ogg Py > 5 172 i \)
. g1 @ e=4\:ﬁn~w(j{ 113 Q ||"|
- g2 " roe— [1 114 * I ;
© 83 |8 crw:./smoi*_>é 115 s \"I
84T] 116 T I~ ;
85 | v 117 ° ™ .
. 86" "] 118 ’ L.
-7 P19 i J =
.~ 88l* K 120 * i *
© 89" fo121 i d y
90 : /122 : 7 >
-l o123 ‘ C {
S92\ |2 124 \ b, 1
7 93] 1 125)] ;
~ 94l & 126) ! ~
e 93| = = 127 | ey o %‘}‘n 'DRFIE GAR | DELETE GUR | == bofele

~143-

el el pasic Tocens

acenobl e gase soie Aok

4
wORD
PRIV CED
BERH

NOT WML N

oM DT o
;
Mopn S
e

T~—

1
END
FoR
NEXT
DATA
INCUT
DI
READ
e
7o

AN

!

128
129
130
131
132
133
134
135
136
137
138

w139

Veedfoe [1om

LIAD

PIKE

k PRINT

A0 T

owT

CLENR

HEF

WA T

140

141

142
143
144

145 |

146
147
148
149
150
151
152
153
154
155

156

157
158
159

MORD

A‘::l::éb
KEY WITH KEY WITH éETF?IKHD}aK
KEY SHIFT CONTROL™ "CONTROL J<ow
e (g
Bt loe (160 ‘
* e 161
* T 162
¢ Js= 163
T
E ~ 165
r % 166
© 7 167
me Roe ~ 168
- Tan M 169
‘ i w170
FRasE LDE Bust Lo 171
ERASE PAGE RsEma | = 172
- e | < 173
O w Lo sen 174
EL/A7 CFF gUAJ CFF Wt 175
| BAX ALK m: 176
RED gm o RLL 177
GREM - e 178
. TeL100 w179
e e ras 180
%_ — MacaTa w181
con ¢ w182
Ty WaTE Le 183
v 184
. 1 << 185
R 2 sin 186
rsc e Tan 187
| * { AT 188
B TG QVFLG OFF feavncar | pee 189
K QURG KanRc® |y 190
LI o a=® |smi191

~144-

NST M

Lrom P
‘,\ Mabt)
/ KEY WITH .
KEY WITH KEY WITH SHIFT AND: o
KEY SHJ',FT CONIROL CONTROL ;connans
T 0
1
2
t A‘ 3
- 4
R 5
N 6
b
[
9
H
’
S R —
1| = (keypad)
¥ /
P <+ (keypad)
oD o
1
2
3
4
H)
6
| 7
8
9
3
H
»
- (keypad)
/
4 (keypad)

e MNIT i)i

WORD NIT Rywy ,r PLaT we. USRS Pl 7 240
SR, [ream MybE
. ‘; 18E . L e
" N KEY WITH KEY WITH SEHFT TAND b L‘;fpl;(EY WITH KEY WITH SEIFTIXND
y KEY SHIFT CONTROL CONT oL KEY SHIFT CONTROL CONTRCL
y —— —
IN- 192 i) 224 L)
nse 193 | 225 n
curi-194 7] 226 n
- %195 » B 227 n
PN 196 o | ¥4 228 ‘{ LA]
me & 197 " s 229 r
198 " 238 | »
199 FI 231 n
200 i 232 n
201) 233 9
202 F10 234 no
2”3 F11 235 ni |
204 n2 236 n
205 n 237 m
206 ne | 238 ne
207 ns 239 ns
208 0 e 240 | B
2@9 n “”"Sf v;;ﬁk 241 n
210 R 4 “‘m 242 |4
211 B i _“"g“ 243 B
212 i - vue ([2441,
213 - /.” who 245 s
214 . [0 246,
215 n Tom 2a7]
216L '8 X RAR \ X e 248 "
217 59 ;:‘ ”E/”’* 249 r
218 3\“}“} 250
F10 L ¥10
219 i m i ‘:':t':: 251 m
220 PAUNT LT < T 252
F12 [P~ F12
221 T\P‘\m::, 253
m ! 3
222 ‘ CAMBLTERG ProT 254
¥l4 Flb
223 Ex T b MIB € 255
F15 s

Nt 15 e B
TR

pag w FEIW = 28s(DY
Py v FR g ()

=145- F@ » P ¥ - u i

CowcipEnit]

APPENDIX H: - SOME HELPFUL EQUATIONS

Plot vs. Cursor

Xplot = 2%*Xcursor

Yplot = 127-4%Ycursor see note
Xcursor = INT(Xplot/2)

Ycursor = INT((127-Yplot)/4)

Screen Memory Location (M) vs. Cursor

M = 28672+128%Ycursor+2*Xcursor

Xcursor = INT((M-28672-128%Ycursor)/2)
Ycursor INT((M-28672)/128)

Screen Memory Location (M) vs. Plot

M = 28672+128*INT((127-Yplot)/4)+2*INT(Xplot/2)

Xplot
Yplot

M-28672-128*INT((M-28672)/128) .
127-4*INT((M-28672)/128) see note

NOTE: where Xplot,Yplot will reference the top left plot block in
a character position.

Some Trigonometric Values

M= 3.1415926
Degrees = T/180*%Radians

/180 = .0174533

SIN(a) = B/C C
cos(a) = A/C B
TAN(a) = B/A -

-146-

cursor

APPENDIX I:

0

WoONOTDNPAEAWNE-=O

28800
28928
29056
29184
29312
29440
29568
29696
29824
29952
30080
30208
30336

30464
30592

30720
30848
30976
31104
31232
31360
31488
31616
31744
31872
32000
32128
32256
32384
32512

32640 32642 32644

0

1
28672 28674 28676

1

SCREEN MEMORY LOCATIONS

2

2

-147-

61

62

63

28794 28796 28798

28926
29054
29182
29310
29438
29566
29694
29822
29950
30078
30206
30334
30462

30590
30718

30846
30974
31102
31230
31358
31486
31614
31742
31870
31998
32126
32254
32382
32510
32638

32762 32764 32766

61

62

63

CoONONNSAEWUNHFHO

APPENDIX J: COLORS

(i) FLAG
If the FLAG bit is off (PLOT 29) then foreground colors are used.
If the FLAG is on (PLOT 30) the background colors are selected.

Colors are determined by subsequent PLOT values:

16 Black
17 Red

18 Green
19 Yellow
20 Blue

21 Magenta
22 Cyan

23 White

(ii) CCI code

Bit:| B7 | B6 m;J u;J B | e | m | me

Decimal:| 128 64 32 16 8 4 2 1
PLOT 6,n Color:
Decimal Binary Background Poreground

] 08600000 black black

1 000008881 black red

2 00000010 black green

3 00088011 black yellow
4 00008100 black blue

5 000800101 black magenta
6 8eee0110 black cyan

7 90088111 black white

8 00001000 red black

9 00091001 red red

62 00111110 white cyan

63 90111111 white white

(iii) FLAG/CCI code conversions

C = (FG-16)+8*(BG-16)
BG = INT(C/8)
FG = C-8%BG

where FG is the foreground color code,
BG 1is the background color code, and
C is the CCI code.

-148-

INDEX

Numbers in regular type are page numbers.
Numbers in boldface are program numbers.

Animated joke 103, 12.6
Artillery game 36f, 6.6
explosion routine 52, 6.17
A7 bit 3, 1.4, 16, 20, 24, 65, 67, 71
AUTO 18, 68
Backwards text 91f, 10.2
Bar graphs see Plot submodes
Blank Menu 93, 11.1
Blind cursor 18ff
addressing 18, 3.1
and double height characters 20, 3.4
and plot 66f, 7.3
reentry to 19, 3.3
in scrolling patch 89
vs. visible cursor 18, 3.2
Blink 15f
and CCI code 17
out of phase 16, 2.10
PLOT 31 16, 2.9, 2.10
CALL (x) 87
Carriage return 2, 1.1 - 1.3, 21
in vertical mode 5, 1.6
CCI code 9
and blind cursor 18
and blink 17
>127 65, 7.2 - 7.5
and screen refresh 69, 8.1, 8.4, 8.5
Character plot submode see Plot submodes
Character strings, plotting 64, 6.25
Characters 135f
double height 3
in blind cursor 20, 3.4
in screen memory 69f
extra large 24, 4.6, 121, 12.9, 138
heights 3, 1.4, 4.6
in blind cursor 20, 3.4
and plot 21
in screen memory 71, 8.4
special 21, 4.1, 4.2, 4.4 - 4.6, 5.1, 5.2, 103, 12.6,
121, 12.9, 135f
and test mode 27, 5.1, 5.2
Chess board 6.11, 106, 12.7
Chess pieces 106, 12.7
Circles 97, 12.2, 12.5
Colors 8
and CCI code 9, 2.2
and CONTROL key 75

~149-

and FLAG bit 8, 2.1
and hatch character 12, 2.6, 2.7
keys 11, 2.4, 2.5, 14
and plot mode 34
resolution of 6.4
Comma 2
COMMAND key 76
CONTROL B 75
CPU reset 59, 76
CRT mode 75
Cursor .
blind see Blind cursor
visible 1
addressing 1
and screen refresh 69, 146, 147
vs. plot co-ordinates 34, 146
controls 1
and blind cursor 18, 3.2
and character plot 31
hiding 2, 90
and test mode 28
Degrees 36, 97, 146
Dice 127, 12.10, 129, 12.11
Displays (screen)
duplicating 78, 79, 9.1, 9.2
editing 78, 9.2
interchanging 131, 12.12
saving 77, 79, 9.2
Double height characters 3
in blind cursor 20, 3.4
in screen memory 71
in scrolling patch 89
Editing screen displays 78, 9.2
Erase line 5
and erase screen 47
Frase page 2
and bar graph submodes 47, 6.13, 6.14
and erase line 47
explosion effect 10, 2.3
in plot 67, 7.5, 73
and test mode 28, 67
and vector plot submode 54, 6.18, 6.19
Explosion effect
with erase page 10, 2.3
with point and vector plot 52, 6.17, 12.8
with test mode 28, 5.3
Extra large characters 24, 4.6, 121, 12.9

Escape
ESC A 19
ESCB 75
ESC CRT 75, 78
ESC D 77

ESC E 59, 77
ESC EsC 18, 75

~-150-

ESCJ 5, 75

ESC K 4, 75
ESC X 4, 75
ESC Y 27

FCs 77

FLAG bit 8, 40, 47, 6.12, 6.14, 71, 12.3, 12.4, 121, 12.9
FLAG keys 11, 14

Flying wedge 57, 6.20

Greek letters 72

Hatch character 12, 2.6, 2.7

Incremental plot submodes see Plot submodes

INPUT statement 2

INTeger function 35

Keyboard

CONTROL with color 75
encoding 142f

keys 11, 2.4, 2.5, 14, 75
special function 64, 75

Line feed 2, 21

in vertical mode 1.6

Lunar lander game 111, 12.8

Menu programs 93, 11.1

Mystery program 2.8, 6.11

No-echo patch 79, 9.2, 12.8, 12.9

Null character see Hatch character

Page mode 4

Plot characters in screen refresh 72, 8.5
Plot co-ordinates 34

vs. cursor co-ordinates 34, 147

Plot-English 65, 7.2, 7.4, 7.5

and blind cursor 66, 7.3

Plot submodes 139f

character 31, 6.1, 6.2, 65, 106, 12.7, 139

in CRT mode 75

default values 58, 6.23

incremental point 41, 6.7, 6.8, 12.8, 139, 140
incremental vector 56, 6.20, 12.4, 139, 141
incremental x bar graph 46, 6.10, 6.11, 12.7, 139, 140
incremental y bar graph 51, 6.16, 6.24, 139, 140
point 33, 6.3, 6.5, 139

reentry to 58, 6.22, 6.24

vector 52, 6.17, 6.18, 6.19, 12.3, 139

x bar graph 45, 6.9, 6.12, 6.13, 6.14, 138

y bar graph 51, 6.15, 138

PLOTting character strings 64, 6.25
Point plot submode see Plot submodes
PRINT statement 2, 1.1 - 1.3

and blind cursor 18
in Plot-English 65
in plot mode 64

Pseudo-random numbers 35, 6.5
Quad-directional scrolling patch 84, 10.1, 10.2
Quick change artistry 131, 12.12

Quiz 13

-151-

Radar scope
using vector plot 97, 12.2

using incremental vector plot 99, 12.4

Radians 38, 97, 146
Random numbers 35, 6.5
Refresh memory see Screen refresh
Regular height characters see Characters
REMark statements 11
Roll up mode &
Screen displays see Displays
Screen refresh 69, 8.1 - 8.6
vs, cursor co-ordinates 69, 146, 147
Script 44, 6.8
Scroll mode &
Srolling patch 84, 10.1, 10.2
Semicolon 2, 14
and blind cursor 19
Special characters see Characters
Special function keys 64, 75
TAB 2
Test mode 27, 5.1 - 5.3
and plot 67, 73
Text 24, 94 11.2
backwards 91, 10.2
Trigonometric values 146
Underlining 24, 4.5
Vector plot see Plot submodes
Vertical mode 5, 1.5 - 1.7
Wrap around
in plot mode 33, 48
in PRINT statements 3, 5, 1.2
screen refresh 69
X bar graph see Plot submodes
Y bar graph see Plot submodes

=-152-

'ﬂ . ..»‘h;;?fi;‘.‘ t;

Coe

Wnadialty .2

-

(insert)

COMPUCOLOR KEYS , 8

Chris Teo has found this useful summary of the ways that the
keys can be used to produce different effects.

Fe=F\s
- o oWLY.
base| control] . - COMPUCOLOR KEYBOARD VALUES (CAPS LOCK ON) l
COmMRMON .
a [° /1 p 112/ v] 208 | INCROMENTAL
i * Piipall S B e
N v 0 Y v . ech -
{, / / ! ‘
A 92 (. - v n ﬁ Yo
65 "Luto / 81!1 Eﬁf"‘/ I‘H 45 | math < 241 VECUIOR_
FOR % 5 ;..:IE ;]2:5} -
B Jor wl W[4 62l r2 218 | Xo
66 82 groen 46 [TCIT__ /17T 242 CTRYV YO VECTOR

-) A S i 230
6c c 99/ ag e - ne '“; ? 6 2‘1.3 . 11| INCReMeNTHL
? [Cupr XY 5/ ellow L BAR

Tﬁ'\'}?‘:\ Ny SAVE LY :mb = sz NS CRAPH
vld . g/l Tt 116] @ | epace v 32] F4 212] 'y
68 84{ bTue v 28] 48 [KBT v YU5| 244 [RYCATETOGL]| | mMax °§
LoAD 14,37 *“Fcr—]‘iﬁs . 228 Y BAR CRAPH
] [2
E / vl u 112) v 3217 FS 213
69 R‘Tﬁm‘u ¢ 5]7 84 magenta V] 49 "LcA—u. V79| 2u5[Tiiog 7 197] X "{ Y BAR

DI 135/ POKE T4 Y * 230 | GRraPH
7;’ éa g2/ az v]13’? 5; " . 'zrg 21 Yo og

cyan I 3 % “

READ T34 PRITT 155 v :'23} Y BAR GRAPH
°”hr—m-‘7 W 19| 3 . 38 7 215 INCREMENTAL
7 & 27 8A whito/ 23| S1[1nP v 1729 247 199] X BAR GRAPH

FILE 13557 LIsFTe O [smiss 34
A o | st He—ril o3 e o
Y [+]) e 2 0S i 2

= / XZ A 5 n.‘t + 104 ’l' 212 X BAR CRAPH
TS T R S A FA1T R YIS SRS 7] | D172 B
73CA0 971 89{ 3 351 53 [SQR 181|219 241 ﬁg o
T35 CLFAR 755 math= 165 , 253 ¥ BAR GR
) §
J we /| 2| 2 122 6|8 38| F1g 2181 %, o][
74 ¢ 9 A Sy [RID v 182] 25¢ 242

IF 138, DEF 154 math® . 166 224 | X 8AR GRAPH

At Sloe) g oy
escpe v 1

EST. 150 /] WATT 155/ math/ . 167 2551 INCREMEWTAL
L{1 w8l N[1 | 8¢ . uB|lF2], 2
726Q erepra127] 9+ 7 281 se [T — Tt zsz“‘% Y fownr

5 O 5 math A/ 108]e 27
N [3
mlm ago | I 3 g5 oln v b|Fis 221
27Cr 1 9N I om 29 57 [Coz 7185|253 285] % foNT
v AD 1 237
Nln 1@/ A| =~ Ji26]|]| . h2|F1y 22
78CAT R 47| 94 B wT | 56 [SIT T8 254 o] CHaacmR

REA 142, ™ 158 OR . 170 255 PLot
olo /| = 2] e usl;s 2231 for
29K 1571 9 “S%‘ v [59 mé‘}zss Lo

T LS, Tw% math 5 A7 259 ESCAfE

€ >
graphics unless lower case option (= SEPARATE CoNTROL KEY

(CONTROL 4 SHIFT = ComMAND)

Owner
Text Box
(insert)

(insert offering

———

disk with source

code)

COLOR GRAFHICS DISKEETTE . « ¢ o o ¢« o 520 .00

COMNTATLINSG S&LMOST aAall THE FROGRaMS
SAVES MAaNY

FROM DdatrTIn
HIOUN=S OF TYPFPIRG.

SUITESS

EBE SURE TO TELL

OFRIDER FROMHM S

Fala

O—=w0n FMO>»>r
(-3
2]

]

ara
4PS
4P6
S5P1
P2
oP3
6P1
6P2
6P3
6P4
6PS
6P6
6P7
6Fr8
6P9
6P10
4P11
6P12
6P13

P14

6P15
6P16
6P17
6P18
6P19
6P20
6P21
P22
P23
6F24
6P25
7P1
7F2
7F3
7F4
7PS
ar1
8r2
8rP3
8r4
8PS
8ré
9F1
9F2
1Pl
1P2
1P3
1P4

b=t b I

e DRO VI
+BAS;01
+BAS;01
+BAS;01
+BAS301
+BAS;01
+BAS;01
+BAS;301
+BAS;01
+BAS;01
+BAS;01
+BAS501
+BAS;01
+BAS;501
+BAS;301
+BAS;01
+BAS$01
+BAS;01
+BAS;01
+BAS; 01
+BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS;301
+BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS301
+BAS;01
+BAS;01
+BAS;01
+BAS301
+BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS01
+BAS;01
+BAS;501
.BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS;301

GRPHCS . DSF 3501

MENU

+BAS301

<FREE SPACE>

EOOK .

WUHAT COMPFUTER MODEL

JOSEFH J CHARLES FPUERLISHING
HILTON NY 14458

Vvl
0024
0029
0038
003K
0047
004 A
0040
0053
0056
005A
005C
0071
0073
0080
0082
0085
0088
008K
W OF
0094
0097
009E
00AA
00K
00R7
00 KA
00C1
00C7
00C?
Q0ED
00F C
00F 2
00F 4
00F 8
OOF I
00FF
0101
0109
010C
01190
0115
011E
0122
0144
0147
0148
0144
014K
016E
f16D

VY J
0003
000F
0003
000C
0003
0003
0006
0003
0004
0002
0015
0002
000N
0002
0003
0003
0003
0004
VLo
0003
0007
000C
0006
0007
0003
0007
0006
0002
0024
0003
0002
0002
0004
0005
0002
0002
0008
0003
0004
0005
0009
0004
0022
0003
0001
0002
0001
0020
0002
0023

7 K
44
4C
O
45
58
80
42
1C
74
40
39
55
34
57
1A
6E
4R
80

oAz
Vo

24
42
42
4F
26
31
iF
6k
69
oL
iC
06
78
28
1C
47
6E
78
23
71
In
&E
oC
66
49
69
855
7A
80
26

mQOm=uw K(W)FW

2F6 +BAS§O01
2P7 +BAS301
1PS +RBAS301
1P6 +BASiO01
2Fr8 +BAS301
2F9 +BASS01
10F2 .BAS#O01
11F1 .BASi#01
11F2 +BASi#01
12F1 +BAS301
12F2 +BASH01
12F3 +BASi#01
12F4 .BAS§O1
12PS .BASiO01
12F6 +BAS;01
12FF7 +BAS301
12F9 .BASi01

0087 0007
008E 0005
0093 0003
0096 0002
0098 0003
009 0003
009E 0011
00AF 000C
O0RR 0006
00C1 0003
00C4 0003
90C7 0006
00CI 0008
oons 0006
00LE 0013
00EE 0023
0111 002A

12F10 .BAS;O0P 013E 000
12F12 .BAS;01 0148 0013
12F11 +EAS301 O1SR 0012
GRPHCS . 1SF 501 0161 0020
MENU JEAS301 0180 0002
ZFREE SPACE> 018F 0001
Label side Back side
1P1-1P4 1P5-1P7
2P10 2P1-2P9%
3P1-3P4
4P1-4Pé6
5P1-5P3
6P1-6P25
7P1-7P5
8P1-8Pé
2P1-9P2
10P1-10P2
11P1-11P2
12P1-12P12

OE
54
37
76
42

70
3F
1A
55
18
44
39
26
5K
O
07
06
2R
3c
80
26

76

Owner
Text Box
(insert offering disk with source code)

_“ BIRECTORY

MT =W rmo>»r

ATR

NAME

2P10
3P1
3p2
3P3
3P4
4P1
4P2
4P3
4P4
4P5
4P6
5P1
5p2
5P3
6P1
6P2
6P3
6P4
6P5
6P6
6P7
P8
P9
6P10
6P11
6P12
6P13

P14

6P15
6P16
6P17
6P18
6P19
4P20
6P21
6P22
6F23
6F24
6P25
7P1
7F2
7F3
7P 4
7PS
8P1
8r2
8prP3
8P4
8PS
8pré
9F1
9F2
1P1
1P2
1P3
1P4
GRFHCS
MENU
<FREE

CDho: GRAPHICS 0A

TYPE VR

+BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS;301
+BAS;01
+BAS301
+BAS;301
+BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS;01
+BAS;301
+BAS;01
+BAS;301
+BAS;01
+BAS;01
+BAS;01
+BAS;01

S AAd
03#57\1&

+BAS301
+BASH01
«BASi01
+BAS301
+BAS301
+BASi01
+BASH01
+BAS;01
+BAS301
+BAS:01
+BASi01
+BAS01
+BASFO01
+BASi 01
+BAS301
«BAS§01
+BAS;301
+BAS301
+BAS301
+BAS301
+BAS§01
+BAS3i01
+BAS01
+BAS301
+BAS301
+BAS301
+BAS501
+BASH01
+DNSF 301
+BASs01
SPACE>

SBLK

0004

000F
0011
0014
0017
0019
001C
001F
0021
0026
0029
0038
003K
0047
004A
0041
0053
0056
005A
005C
0071
0073
0080
0082
0085
0088
008K

e oF
0094
0097
009E
00AA
00E0Q
O0R7
00 kA
00C1
0eCy
00C9
00ETD
00F ¢
00F 2
00F 4
00F 8
00F I
00FF
0101
0109
010C
0110
0115
011E
0122
0144
0147
0148
0144
014K
016Kk
0160

SIZE

0005
0002
0003
0003
0002
0003
0003
0002
0005
0003
000F
0003
000C
0003
0003
0006
0003
0004
0002
0015
0002
ooon
0002
0003
0003
0003
0004
$U30
0003
0007
000C
0006
0007
0003
0007
0006
0002
0024
0003
0002
0002
0004
00035
0002
0002
0008
0003
0004
0005
0009
0004
0022
0003
0001
0002
0001
0020
0002
0023

ERECTORY CDO?

LEC ATR
37 03
5B 03
6A 03
52
6E o
6é 03
SE 03
43 03
7E 03
4C B 03
oL .
03
45 A
58 c 93
80 K 93
03
42 s 03
1c 1 03
74
40 D %2
E 03
39 03
34 03
57 03
14
6 03
4B 03
8¢ 03
vo 03
24 03
42 03
42 01
4F
26
31
1F
I3
69
Ja
iC
06
78
28
1C
47
6E
78
23
71
3n
6E
0cC
bé
40
69
55
7A
80
26

GRAPHICS 0A

NAME TYPE VR SBLK SIZE
10FF1 .BAS#01 000A 000
12F8 BASi01 0017 005A
ir7 +BAS301 0071 0005
2P1 +BAS01 0076 0004
2P2 +BAS301 007A 0003
2P3 +BAS301 007010 0004
2F4 - .BAS01 0081 0004
2PS +BASi01 0085 0002
2F6 +BAS§01 0087 0007
2Fr7 +BAS301 008E 0005
1PS +BAS01 0093 0003
1Ps +BAS301 0096 0002
2r8 +BAS301 0098 0003
2F9 +BAS01 009K 0003
10F2 J.BAS#01 009E 0011
11F1 .RBASO1 00AF 000C
11F2 J+BAS301 OOEE 0004
12F1 .EAS301 00C1 0003
12F2 .BAS301 00C4 0003
12F3 JEAS 01 00C7 0006
12F4 LEAS#01 0OCD 0008
12FS JBAS301 0005 0005
12Fé6 +BAS#01 O0DE 0013
12F7 +BAS+01 O0EE 0023
12F9 JEBAS301 0111 0024
12F10 +EASsO> 013R Q00
12F12 .BAS#01 0148 0013
12F 11 +ERAS501 OISR 0012
GRFHCS . ISP #01 016N 0020
MENU JBAS:01 0180 0002
<FREE SPACE:> 018F 0001
Label side Back side
1P1-1P4 1P5-1P7
2P10 2P1-2P9
3P1-3P4
4P1-4P¢
5P1-5P3
6P1-6P25
7P1-7P5
8P1-8P¢
9P1-9P2

10P1-10P2
11P1-11P2
12P1-12P12

LBC

~)
r S

24
38
12
39
77
33
OF
OE
o4
37
76
42
76
70
3F
1A

55

18
44
39
26
SE
OF
07
06
2E

X
wt

80

26

COLOR GRAPHICS

FOR

INTECOLOR 3651 AND
COMPUCOLOR 11 COMPUTERS

This book is intended for those who want to learn the ins and
outs of color graphics for the Intecolor 3651 or Compucolor II
computer. An introductory knowledge of BASIC programming is
assumed. ')

David B. Suits has unravelled the mysteries of graphics on the
Intecolor 3651 and Compucolor II computers better, perhaps, than
anyone else. Suits guides the reader through the graphics
capabilities of these computers with cleverness, style, and
touches of genius. His appreciation of these computers infects
the reader-—and a wonderful infection it is! His writing is
clear, understandable, witty, and enBaging. The teachlng ability
of a good teacher sh1nes through.,

The depth and subtleties of ' the gr¥phics capabilities shared
with the reader must be experienced to be appreciated. There is
80 much more to be had if one knows how.

COLOR GRAPHICS begins with a discussion of cursor control and
then proceeds through color control, test mode, plot modes,
igcremental plotting, screen refresh memory, and CRT mode. COLOR
GRAPHICS contains over eighty tutorial programs and ten useful
appendices. It takes up where BASIC Training for Compucolor
Computers leaves off and explains many little-understood aspects
of the machine.

David B. Suits received a Ph.D in Philosophy in 1977 from the
University of Waterloo, Ontario, Canada. He presently teaches
Logic and Philosophy at Rochester Institute of Technology,
Rochester, New York. He has published articles in both philosophy
and computer journals and is the author of a number of Intelligent
Systems Corporation's programs, including BOUNCE, MAZEMASTER,
LINKO, and others. His special interests include artificial
intelligence, science fiction, games, and music,

ISBN 0-9607080-1-4

?

*
5

L
]
;

T ey
o

